
CS365 Midterm
1) You must answer all of the questions.
2) Place your name on the exam.
3) You must use Java to implement the coding questions.
4) Good luck!	
	
1. (22	points)	Choose	the	appropriate	term	from	the	following	list	to	fill	in	each	

blank	below:		
	

abstract	
type	

abstract	
class	

class	 composition	 concrete	
type	

Error	 Exception	

executable	 extends	 friend	 generic	 hash	
tables	

implementation	 implements	

inheritance	 interface	 jar	 java	 jump	
tables	

library	 longjmp	

module	 namespace	 non-
virtual	

Object	 object-
oriented	

overloading	 package	

parametric	 private	 protected	 public	 pure	
virtual	

replicated	 Runtime	
Exception	

setjmp	 shared	 source	 static	 subclass	 subtype	 superclass	
supertype	 tar	 template	 Throwable	 throws	 types	 virtual	
virtual	
machine	

void	 vtables	 …	 	 	 	

	
a. parametric	polymorphism	uses	templates	instantiated	with	types	while	

subtype	polymorphism	makes	use	of	class	hierarchies	to	support	

polymorphism.	

	

b. Replicated	inheritance	refers	to	multiple	inheritance	in	which	a	subclass	

receives	multiple	copies	of	any	shared	superclasses.	

	

c. C++	attempts	to	provide	some	of	the	benefits	of	packages/modules	through	

its	namespace	and	friend	mechanisms.	

	

d. A	virtual	machine	is	an	interpreter	that	simulates	the	execution	of	a	

machine	by	executing	the	machine's	instruction	set	using	software	piece	of	

software	that	simulates	machine	instructions	

	

e. Exception	If	you	create	a	user-defined	exception	class	in	Java,	which	Java	

class	should	it	subclass?	

	

f. In	Java,	an	interface	is	used	to	declare	a(n)	abstract	type.	

	

g. vtables	are	used	to	implement	virtual	methods	at	run-time	

	

h. 	longjmp	The	C	function	that	takes	stored	state	information	and	an	error	

code	as	arguments,	and	that	throws	control	back	to	the	calling	function	by	

popping	the	stack	and	restoring	the	state	information	of	the	calling	function.	

	

i. A	jar	file	in	Java	allows	a	collection	of	classes	to	be	bundled	together	and	

treated	like	a	single	file	for	execution,	much	like	a	binary	file	in	C/C++.	

	
2. (3	points)	Suppose	that	class	Goo	wants	to	restrict	access	to	its	instance	

variable	size	to	1)	any	class	in	its	package	and	2)	any	subclass,	whether	that	
subclass	is	in	Goo’s	package	or	another	package.	What	access	protection	should	
the	programmer	assign	to	size?	

a. private	
b. protected	
c. package	
d. public	

	
3. (4	points)	Suppose	you	have	the	following	C++	classes:	

Class	Fruit	{	…	}	
Class	Melon	:	public	Fruit	{	…	}	
Class	Cantelope	:	public	Fruit	{	…	}	

Further	assume	that	Fruit	is	an	abstract	class	because	it	has	one	or	more	
pure	virtual	methods.	Circle	all	all	of	the	following	declarations	that	are	legal:	
a. Fruit	f;	
b. Fruit	f	=	Fruit();	
c. Fruit	f	=	Melon();	
d. Fruit	*f	=	new	Fruit();	
e. Fruit	*f	=	new	Melon();	
f. Fruit	*f	=	new	Cantalope();	

	 	

	
4. (20	points--Generics)	Write	a	Java	template	class	named	Stack	that	takes	a	

single	type	parameter	named	E	and	supports	three	methods:	
a. a	constructor	that	initializes	the	stack.	
b. pop:	takes	no	parameters,	removes	the	first	value	from	the	top	of	the	stack	

and	returns	it.	If	the	stack	is	empty	it	should	throw	an	instance	of	a	class	
named	StackEmpty	back	to	the	calling	function.	You	do	not	need	to	know	the	
particulars	of	StackEmpty	and	you	should	assume	that	that	class	already	
exists.	

c. push:	a	void	method	that	takes	a	single	parameter	of	type	E	and	assigns	it	to	
the	top	of	the	stack.	

	
class	Stack<E>	{	
				class	StackNode<E>	{	
								E	value;	
								StackNode<E>	next;	
				}	
				StackNode<E>	top;	
	
				Stack()	{	
								top	=	null;	
				}	
	
				E	pop()	throws	StackEmpty	{	
								if	(top	==	null)	
												throw	new	StackEmpty();	
								E	returnValue	=	top.value;	
								top	=	top.next;	
								return	returnValue;	
				}	
	
				void	push(E	item)	{	
								StackNode<E>	newNode	=	new	StackNode<E>();	
								newNode.value	=	item;	
								newNode.next	=	top;	
								top	=	newNode;	
				}	
}	

	
	
	
	
	
	
	

5. (21	points--Inheritance)	Suppose	that	you	are	designing	the	input	portion	of	a	
Java	application.	The	application	should	be	able	to	read	from	the	1)	console,	2)	a	
file,	or	3)	a	widget	such	as	a	type-in	text	box.	You	have	been	given	the	following	
specifications:	

• Regardless	of	which	input	object	you	are	using,	the	application	needs	to	
be	able	to	open/close	the	object	(open	and	close	methods	that	take	no	
parameters	and	return	void).		

• The	application	needs	to	be	able	to	read	a	text	string	from	an	input	object	
(read	method	that	returns	a	string	and	takes	no	parameters).	

• The	classes	for	the	reader	objects	should	be	ConsoleReader,	FileReader,	
and	TextReader.	

• The	open	and	close	methods	are	the	same	for	each	of	the	three	classes	but	
the	read	method	is	different	for	each	class.	
	
a. Declare	an	interface	named	Reader	so	that	objects	of	any	of	the	three	

classes	can	be	assigned	to	a	Reader	variable.	For	example:	
	

Reader	myReader	=	new	ConsoleReader();	
	
interface	Reader	{	
								void	open();	
								void	close();	
								String	read();	
}	

	
b. Design	and	draw	a	class	hierarchy	for	the	above	three	objects	using	

Java.		
• Next	to	each	class	list	the	methods	that	you	would	declare	with	

that	class.	You	should	list	a	method	with	a	class	only	if	you	would	
provide	an	implementation	for	that	method	in	that	class.	

• Put	an	asterisk	next	to	any	method	that	should	be	declared	
abstract		

 AbstractReader
 open
 close
 read*
 |

 | | |
 ConsoleReader FileReader TextReader
 read read read
	

Since	the	implementation	for	open	and	close	is	the	same	for	all	three	Reader	
objects,	you	should	create	a	superclass	that	declares	and	provides	an	
implementation	for	these	two	methods.	The	read	method	does	not	have	to	be	
declared	in	AbstractReader,	but	in	that	case	you	must	ensure	that	

ConsoleReader,	FileReader,	and	TextReader	all	implement	the	Reader	
interface.	

	
	
	
	

c. Provide	Java	class	declarations	for	any	superclasses	that	you	created	in	(b)	
and	for	ConsoleReader.	

a. The	classes	must	implement	the	Reader	interface	
b. You	should	not	show	any	implementation.	For	example,	to	declare	a	

void	method	named	foo,	write:	
public	void	foo();	

	
abstract	class	AbstractReader	implements	Reader	{	
								public	void	open()	{	...	}	
								public	void	close()	{	...	}	
								abstract	public	String	read();	
}	
	
class	ConsoleReader	extends	AbstractReader	{	
								public	String	read()	{	...	}	
}	
	
or	if	you	choose	not	to	declare	the	read	method	in	
AbstractReader:	
	
class	AbstractReader	{	
								public	void	open()	{	...	}	
								public	void	close()	{	...	}	
}	
	
class	ConsoleReader	extends	AbstractReader	implements	Reader	
{	
								public	String	read()	{	...	}	
}	
	
Note	that	the	latter	solution	is	not	as	good	because	you	can	actually	
create	an	instance	of	AbstractReader,	which	is	undesirable.	You	
cannot	fix	the	problem	by	declaring	AbstractReader	to	be	abstract,	
since	the	Java	compiler	will	complain.	 	

6. (25	points--Java	Programming)	Write	a	complete	Java	program,	including	
import	statements	in	a	class	called	Grader	that	meets	the	following	
specifications:	
a. The	class	should	be	part	of	the	package	Grade.	
b. Use	the	constructor	to	implement	whatever	you	would	normally	implement	

in	main	in	a	C++	program.	The	constructor	should	take	a	single	string	
argument	which	is	the	name	of	the	grade	file.	

c. Your	program	should	read	scores	and	student	names	from	a	grade	file	whose	
name	has	been	provided	as	a	command	line	argument	and	for	each	student	it	
should	print	the	student’s	name	and	average	score	to	stdout.	The	average	
should	be	computed	as	an	integer	average.	For	example,	if	the	student’s	
scores	are	7	and	10,	then	the	printed	average	should	be	8.	

d. Your	constructor	should	not	handle	the	IOException	that	may	be	generated	
by	opening	the	file	but	your	main	method	should	catch	the	exception	and	
print	the	exception’s	message	by	invoking	its	getMessage()	method.	
	

Each	line	of	the	grade	file	lists	a	student's	name	and	then	the	student’s	scores.	The	
grade	file	may	have	multiple	students.	For	example:	
	
Baby Daisy 59 75 93 53
Smiley The Amazing Hound 86 45 100 63 78 91
Chipmunk 45
	
Note	that	a	name	may	consist	of	an	arbitrary	number	of	words	and	that	a	student	
may	have	an	arbitrary	number	of	scores.		
	
Your	output	should	be	formatted	as	follows:	

1. The	name	should	be	left-justified	in	a	field	30	characters	wide.		
2. The	average	should	be	right-justified	in	a	field	3	characters	wide.	
3. There	should	be	a	space	between	the	two	fields.	

	
For	the	above	input,	your	program	would	produce	the	output:	
	
Baby Daisy 70
Smiley The Amazing Hound 77
Chipmunk 45
	
Here	is	some	additional	information:	

1. You	are	guaranteed	that:	
• there	is	at	least	one	score	for	each	student,		
• that	all	scores	are	non-negative	integers,	and	
• that	every	line	starts		with	at	least	one	word.		

2. The	API	for	the	Scanner	class	has	been	provided	at	the	end	of	this	exam.	
3. You	should	use	the	FileReader	class	for	a	file.	You	do	not	need	the	API	for	the	

FileReader	class	in	order	to	complete	this	problem.	
4. The	Scanner	class	is	in	Java’s	util	library	and	the	FileReader	class	is	in	Jave’s	

io	library	

			
	
package	Grade;	
	
import	java.util.Scanner;	
import	java.io.*;	
	
class	Grader	{	
				Grader(String	filename)	throws	IOException	{	
								Scanner	reader	=	new	Scanner(new	FileReader(filename));	
								Scanner	tokenizer;	
								String	line,	name;	
								int	sum,	count;	
								while	(reader.hasNextLine())	{	
												line	=	reader.nextLine();	
												tokenizer	=	new	Scanner(line);	
												name	=	tokenizer.next();	
												while	(!tokenizer.hasNextInt())	{	
																name	=	name	+	"	"	+	tokenizer.next();	
												}	
												sum	=	0;	
												count	=	0;	
												while	(tokenizer.hasNextInt())	{	
																			sum	+=	tokenizer.nextInt();	
																			count++;	
												}	

tokenizer.close();	
System.out.printf("%-30s	%3d%n",	name,	sum	/	count);	

								}	
				}	
				static	public	void	main(String	args[])	{	
								try	{	
												new	Grader(args[0]);	
								}	
								catch	(IOException	e)	{	
												System.out.println(e.getMessage());	
								}	
				}	
}	 	

7. (5	points:	Executing	a	Java	Program)	Answer	the	following	questions	about	
the	previous	problem.		

	
a) What	is	the	name	of	the	file	in	which	Grader	should	be	placed?	

Grader.java	
	

b) What	is	the	name	of	the	directory	in	which	Grader’s	file	should	be	placed?	
Grade	

	
c) Suppose	that	I	am	in	an	arbitrary	directory	and	that	the	directory	containing	

Grader’s	file	is	stored	in	a	directory	named	/home/bvz/labs.	Further	assume	
that	the	grade	file	is	named	input.txt.	Write	the	full	java	command	required	
to	execute	the	Grader	program	that	you	wrote	in	the	previous	question.	

	
Any	of	the	following	answers	are	acceptable:	
	
java	–cp	.:../home/bvz/labs	Grade.Grader	input.txt	
java	–cp	/home/bvz/labs	Grade.Grader	input.txt	
	
java	–classpath	.:../home/bvz/labs	Grade.Grader	input.txt	
java	–classpath	/home/bvz/labs	Grade.Grader	input.txt	
	
-cp	is	an	abbreviation	for	–classpath.	You	also	don’t	have	to	include	the	
.:..	prefix	since	you	know	that	the	Grade	package	is	in	/home/bvz/labs.	

