
Concurrency	in	Java

Brad	Vander	Zanden



Processes	and	Threads

• Process:	A	self-contained	execution	
environment

• Thread:	Exists	within	a	process	and	shares	the	
process’s	resources	with	other	threads



Java’s	Thread	Mechanism

• Low	Level
– Thread	Class
– Runnable	Interface

• High	Level:	Thread	executors	and	tasks



Runnable	Interface
public	class	HelloRunnable implements	Runnable	{

public	void	run()	{
System.out.println("Hello	from	a	thread!");

}

public	static	void	main(String	args[])	{
(new	Thread(new	HelloRunnable())).start();

}

}



Subclassing Thread	
public	class	HelloThread extends	Thread	{

public	void	run()	{
System.out.println("Hello	from	a	thread!");

}

public	static	void	main(String	args[])	{
(new	HelloThread()).start();

}

}



Thread	vs.	Runnable

• Runnable	allows	you	to	subclass	another	
object

• Thread	is	more	direct	and	a	bit	simpler



Pacing	a	Thread

• Thread.sleep(ms)	suspends	execution	for	the	
specified	period
– gives	up	processor
– allows	thread	to	pace	execution,	such	as	when	
doing	an	animation



Handling	Interrupts

• Interrupt()	method	may	be	invoked	on	a	thread	
to	notify	it	of	an	interrupt

• Ways	to	handle	an	interrupt
– Catch	InterruptedException:	Thrown	by	methods	like	
sleep	and	wait

– Call	Thread.interrupted()
• Interrupt	status	flag
– Checked	by	interrupted
– Cleared	by	InterruptedException or	by	calling	
interrupted()



Examples
for	(int	i =	0;	i <	importantInfo.length;	i++)	{
//	Pause	for	4	seconds
try	{
Thread.sleep(4000);

}	catch	(InterruptedException e)	{
//	We've	been	interrupted:	no	more	messages.
return;

}
//	Print	a	message
System.out.println(importantInfo[i]);

}



Examples

for	(int	i =	0;	i <	inputs.length;	i++)	{
heavyCrunch(inputs[i]);
if	(Thread.interrupted())	{
//	We've	been	interrupted:	no	more	

crunching.
return;

}
}



Join

• The	join	method	allows	one	thread	to	wait	for	
the	completion	of	another	thread

• Example:	t.join()	waits	for	the	thread	
referenced	by	t to	finish	execution



A	Detailed	Example

• //docs.oracle.com/javase/tutorial/essential/co
ncurrency/simple.html



Synchronization

• Why	we	need	it
– Thread	interference:	contention	for	shared	
resources,	such	as	a	counter

–Memory	inconsistency:	if	there	is	a	happens-
before relationship	where	thread	A	relies	on	
thread	B	performing	a	write	before	it	does	a	read
• joins	are	a	trivial	way	to	handle	memory	inconsistency



Synchronization	Techniques

• Synchronized	Methods
• Synchronized	Statements/Locks
• Volatile	Variables



Synchronized	Methods
public	class	SynchronizedCounter {
private	int	c	=	0;

public	synchronized	void	increment()	{
c++;

}

public	synchronized	void	decrement()	{
c--;

}

public	synchronized	int	value()	{
return	c;

}
}



Problem	w/o	Synchronization

• The	single	expression	c++ can	be	decomposed	
into	three	steps:
1. Retrieve	the	current	value	of	c.
2. Increment	the	retrieved	value	by	1.
3. Store	the	incremented	value	back	in	c.



A	Bad	Interleaving	of	Operations

• A	possible	interleaving	of	Thread	A	and	B
– Thread	A:	Retrieve	c.
– Thread	B:	Retrieve	c.
– Thread	A:	Increment	retrieved	value;	result	is	1.
– Thread	B:	Decrement	retrieved	value;	result	is	-1.
– Thread	A:	Store	result	in	c;	c	is	now	1.
– Thread	B:	Store	result	in	c;	c	is	now	-1.



Synchronized	Statements

public	void	addName(String	name)	{
synchronized(this)	{
lastName =	name;
nameCount++;

}
nameList.add(name);

}



Example	with	Multiple	Locks
public	class	MsLunch {
private	long	c1	=	0;
private	long	c2	=	0;
private	Object	lock1	=	new	Object();
private	Object	lock2	=	new	Object();

public	void	inc1()	{
synchronized(lock1)	{
c1++;

}}

public	void	inc2()	{
synchronized(lock2)	{
c2++;

}}
}



Volatile	Variables

• Example:	volatile	int	x1;
• Forces	any	change	made	by	a	thread	to	be	
forced	out	to	main	memory

• Ordinarily	threads	maintain	local	copies	of	
variables	for	efficiency



Synchronized	Method	vs Volatile	
Variables

• synchronized	methods
– force	all of	a	thread’s	variables	to	be	updated	
from	main	memory	on	method	entry

– flush	all	changes	to	a	thread’s	variables	to	main	
memory	on	method	exit

– obtain	and	release	a	lock	on	the	object
• volatile	variable
– only	reads/writes	one	variable	to	main	memory
– does	no	locking



Happens-Before	Using	Wait

• Object.wait():	suspends	execution	until	
another	thread	calls	notifyAll()	or	notify()

• Must	check	condition	because	notifyAll/notify	
does	not	specify	which	condition	has	changed
– Use	notify	for	a	mutex where	only	one	thread	can	
use	the	lock

– Use	notifyAll for	situations	where	all	threads	
might	be	able	to	usefully	continue



Example

public	synchronized	guardedJoy()	{
//	keep	looping	until	event	we’re
//	waiting	for	happens
while(!joy)	{
try	{
wait();

}	catch (InterruptedException e)	
{}
}
System.out.println("Joy	and	

efficiency have been achieved!");
}

public	synchronized	notifyJoy()	{
joy =	true;
notifyAll();

}

Thread	1 Thread	2



Producer-Consumer	Example

• http://docs.oracle.com/javase/tutorial/essenti
al/concurrency/guardmeth.html


