
Copyright © 2009 Elsevier

Chapter 10 ::
Functional Languages

Evaluation Order
Michael L. Scott

Copyright © 2009 Elsevier

Evaluation Order Revisited

• Applicative order: evaluates all arguments
before invoking function
– what you're used to in imperative languages
– usually faster

• Normal order: doesn’t evaluate arg until
you need it
– sometimes faster
– terminates if anything will (Church-Rosser

theorem)

Copyright © 2009 Elsevier

Evaluation Order (Example)

(and (not (= y 0)) (/ x y))

Copyright © 2009 Elsevier

Why normal order may be slow

(define double (lambda (x) (+ x x)))
(double (* 3 4))

Normal Order
(double (* 3 4))
è (+ (* 3 4) (* 3 4))
è (+ 12 (* 3 4))
è (+ 12 12)
è 24

Applicative Order
(double (* 3 4))
è(double 12)
è (+ 12 12)
è 24

Copyright © 2009 Elsevier

Scheme Evaluation Order

• In Scheme
– functions use applicative order defined with

lambda
• arguments are evaluated right to left

– special forms (aka macros) use normal order
defined with syntax-rules

Scheme Applicative Order Example

(define add (lambda (x) (+ x 20)))
(define min (lambda (x y) (if (< x y) x y)))
(trace add)
(min (add 5) (add 20))
[Entering #[compound-procedure 4 add] Args: 20]
[40

<== #[compound-procedure 4 add] Args: 20] ; <==
means exiting this fct

[Entering #[compound-procedure 4 add] Args: 5]
[25

<== #[compound-procedure 4 add] Args: 5]
;Value: 25

Copyright © 2009 Elsevier

Strict versus Non-strict Languages

• A strict language requires all arguments to be
well-defined, so applicative order can be used

• A non-strict language does not require all
arguments to be well-defined; it requires
normal-order evaluation

• Scheme is strict for functions, but non-strict
for special forms

• C is strict, except for boolean expressions

Copyright © 2009 Elsevier

Forcing Normal Order in Scheme

• Use delay and force constructs
– delay: creates an expression but does not evaluate it
– force: forces the evaluation of a delayed expression

• Example
(define expr (delay (+ a 10)))
(define a 15)
(force expr) è 25

Copyright © 2009 Elsevier

Creating Generator Functions in Scheme
naturals is an infinite list of natural numbers, but we can’t actually generate an
infinite list so we generate one natural number at a time and then delay the next call
to the natural number generator function until we are ready for the next number
(define naturals

(letrec ((next (lambda (n)
; the delay prevents an infinite recursion
(cons n (delay (next (+ n 1)))))))

(next 1)))
; tail forces the next natural number to be generated
(define tail (lambda (stream) (force (cdr stream))))
(car naturals) è 1
(car (tail naturals)) è 2
(car (tail (tail naturals))) è 3

How to Create and Use a Generic Generator
Function

1. Create: Define a “list” where you cons the next item in
the stream with a delayed call to the generator function.

a. You may need to perform a computation using the current
parameters to the generator function to obtain the next item

b. The delayed call should contain the parameters to create the
subsequent item

2. Use: Create a function that takes your “list” as an
argument

a. Print the next item by taking the car of the list
b. Make a recursive call to your function and pass it the cdr of your

list, prefixed with the force function to force the next evaluation
of the generator function (tail performs this task on the previous
slide)

Memoization

• Memoization: Technique saves an expression’s
result in some type of fast lookup structure
– Thereafter references to the expression use this

computed value
– Brings performance of normal order evaluation within a

constant factor of applicative order evaluation

• Spreadsheets use memoization
Example:
a10 = b10 + c10 b9 = 5
b10 = 3 * b9 c9 = 10
c10 = 8 * c9

Memoization (Potential Problem)

• May not work properly in the presence of side-
effects

• Example:
(define x 5)
(define y 10)
(define (z (* x y))
(set! x 2)
(define (a (* x y))

