The table below shows a sample booking for a guest at the XYZ chain of hotels:

Hotel	Guest	HotelN	Hotel	Hotel	GuestN	Guest	Guest	DateFr	Date	Room	RoomT	RoomP
No	No	ame	City	Zip	ame	City	Zip	om	To	No	ype	rice
3	232	Hilton	San Diego	83835	Brad VZ	Knoxvi lle	37996	2012- 11-28	2012 -12- 02	635	King	89.99

You may make the following assumptions about the data:

- a. A hotel number uniquely identifies a hotel's name and zip code
- b. A zip code uniquely identifies a city for both hotels and guests (not true in the real world, but true in our fantasy world)
- c. A guest number uniquely identifies a guest's name and zip code
- d. A room number and a hotel number uniquely determine a room type and price
- e. A guest may not have overlapping reservations.
- f. A room may not be double booked.

Answer the following questions:

- a. Give an example of the following types of anamolies:
 - insert
 - update
 - delete
- b. What are the functional dependencies for this relation?
- c. What are the candidate keys for this relation?
- d. Show how you would convert this relation to 2nd normal form, and show which functional dependencies you would use to create each new relation.
- e. Show how you would convert the relations from 2nd to 3rd normal form, and show which functional dependencies you would use to create each new relation.
- f. What is the name for the type of functional dependency used to convert a relation to 2nd normal form?
- g. What is the name for the type of functional dependency used to convert a relation to 3rd normal form?