The table below shows a sample booking for a guest at the XYZ chain of hotels:

Hotel No	Guest No	HotelN ame	Hotel City	Hotel Zip	GuestN ame	Guest City	Guest Zip	DateFr om	Date To	Room No	RoomT ype	RoomP rice
3	232	Hilton	San Diego	83835	Brad VZ	Knoxvi lle	37996	$2012-$ $11-28$	2012 $-12-$ 02	635	King	89.99

You may make the following assumptions about the data:
a. A hotel number uniquely identifies a hotel's name and zip code
b. A zip code uniquely identifies a city for both hotels and guests (not true in the real world, but true in our fantasy world)
c. A guest number uniquely identifies a guest's name and zip code
d. A room number and a hotel number uniquely determine a room type and price
e. A guest may not have overlapping reservations.
f. A room may not be double booked.

Answer the following questions:
a. Give an example of the following types of anamolies:

- insert
- update
- delete
b. What are the functional dependencies for this relation?
c. What are the candidate keys for this relation?
d. Show how you would convert this relation to 2 nd normal form, and show which functional dependencies you would use to create each new relation.
e. Show how you would convert the relations from 2 nd to 3 rd normal form, and show which functional dependencies you would use to create each new relation.
f. What is the name for the type of functional dependency used to convert a relation to 2nd normal form?
g. What is the name for the type of functional dependency used to convert a relation to 3rd normal form?

