
Chapter 5

Relational Algebra and
Relational Calculus

Pearson Education © 2009

Overview

! The previous chapter covers the relational model,
which provides a formal description of the
structure of a database

! This chapter covers the relational algebra and
calculus, which provides a formal basis for the
query language for the database

2

3

Chapter 5 – Topics We Will Cover

! Meaning of the term relational completeness.

! How to form queries in relational algebra.

! How to form queries in tuple relational calculus.

Pearson Education © 2009

4

Introduction
! Relational algebra and relational calculus are

formal languages associated with the relational
model.

! Informally, relational algebra is a (high-level)
procedural language and relational calculus a
declarative, non-procedural language.

! However, formally both are equivalent to one
another.

! A language that produces a relation that can be
derived using relational calculus is relationally
complete.

Pearson Education © 2009

5

Relational Algebra
! Relational algebra operations work on one or

more relations to define another relation
without changing the original relations.

! Both operands and results are relations, so
output from one operation can become input to
another operation.

! Allows expressions to be nested, just as in
arithmetic. This property is called closure.

Pearson Education © 2009

6

Relational Algebra
! Five basic operations in relational algebra:

1. Selection: selects rows from a relation
2. Projection: selects columns from a relation
3. Cartesian product
4. Union
5. Set Difference.

! Also have Join, Intersection, and Division
operations, which can be expressed in terms of
5 basic operations.

Pearson Education © 2009

7

Relational Algebra Operations

Pearson Education © 2009

8

Relational Algebra Operations

Pearson Education © 2009

9

Selection (or Restriction)

! spredicate (R)
– Works on a single relation R and defines a

relation that contains only those tuples (rows) of
R that satisfy the specified condition (predicate).

Pearson Education © 2009

10

Example - Selection (or Restriction)

! List all staff with a salary greater than £10,000.

ssalary > 10000 (Staff)

Pearson Education © 2009

11

Projection

! Pcol1, . . . , coln(R)
– Works on a single relation R and defines a

relation that contains a vertical subset of R,
extracting the values of specified attributes and
eliminating duplicates.

Pearson Education © 2009

12

Example - Projection

! Produce a list of salaries for all staff, showing only
staffNo, fName, lName, and salary details.

PstaffNo, fName, lName, salary(Staff)

Pearson Education © 2009

13

Union (R È S)
! defines a relation that contains all the tuples of R, or S, or

both R and S
– duplicate tuples are eliminated.
– R and S must be “union compatible”, which means they

must have the same set of named attributes (the
attributes may appear in two different orders as long as
the names can be matched).

! If R and S have I and J tuples, respectively, union is
obtained by concatenating them into one relation with a
maximum of (I + J) tuples.

Pearson Education © 2009

14

Example - Union

! List all cities where there is either a branch office
or a property for rent.
Pcity(Branch) È Pcity(PropertyForRent)

Pearson Education © 2009

Note that we made the two relations “union-compatible” by
projecting them down to a common column

Id City Address

1 Knoxville 5485 Alcoa Hwy

2 Columbus 1678 Cardiff Rd.

3 Pittsburgh 100 Rockwood Ave

4 Columbus 585 Tremont Rd.

PropId City Address

1 Nashville 110 Parthenon Way

2 Nashville 4868 Vanderbilt Dr

3 Knoxville 2408 Trillium Ln

4 Atlanta 5868 Peachtree Rd

5 Pittsburgh 386 Cedar Ln.

City

Knoxville

Columbus

Pittsburgh

Nashville

Atlanta

È =

15

Set Difference

! R – S
– Defines a relation consisting of the tuples that

are in relation R, but not in S.
– R and S must be union-compatible.

Pearson Education © 2009

16

Example - Set Difference

! List all cities where there is a branch office but no
properties for rent.
Pcity(Branch) – Pcity(PropertyForRent)

Pearson Education © 2009

Note that we made the two relations “union-compatible” by
projecting them down to a common column

Id City Address

1 Knoxville 5485 Alcoa Hwy

2 Columbus 1678 Cardiff Rd.

3 Pittsburgh 100 Rockwood Ave

4 Columbus 585 Tremont Rd.

PropId City Address

1 Nashville 110 Parthenon Way

2 Nashville 4868 Vanderbilt Dr

3 Knoxville 2408 Trillium Ln

4 Atlanta 5868 Peachtree Rd

5 Pittsburgh 386 Cedar Ln.

City

Columbus=-

17

Intersection

! R Ç S
– Defines a relation consisting of the set of all

tuples that are in both R and S.
– R and S must be union-compatible.

! Expressed using basic operations:
R Ç S = R – (R – S)

Pearson Education © 2009

R
S

R-S

R Ç S = R – (R – S)
R Ç S

18

Example - Intersection

! List all cities where there is both a branch office
and at least one property for rent.
Pcity(Branch) Ç Pcity(PropertyForRent)

Pearson Education © 2009

Note that we made the two relations “union-compatible” by
projecting them down to a common column

Id City Address

1 Knoxville 5485 Alcoa Hwy

2 Columbus 1678 Cardiff Rd.

3 Pittsburgh 100 Rockwood Ave

4 Columbus 585 Tremont Rd.

PropId City Address

1 Nashville 110 Parthenon Way

2 Nashville 4868 Vanderbilt Dr

3 Knoxville 2408 Trillium Ln

4 Atlanta 5868 Peachtree Rd

5 Pittsburgh 386 Cedar Ln.

City

Knoxville

Pittsburgh
Ç =

19

Cartesian product

! R X S
– Defines a relation that is the concatenation of

every tuple of relation R with every tuple of
relation S.

Pearson Education © 2009

20

Example - Cartesian product

(Student) X (Courses)

Pearson Education © 2009

Id Gpa
1 3.5
2 2.6

Id CourseId
1 CS140
1 ECE255
2 CS302

X =

Id Gpa Id CourseId
1 3.5 1 CS140
1 3.5 1 ECE255
1 3.5 2 CS302
2 2.6 1 CS140
2 2.6 1 ECE255
2 2.6 2 CS302

21

Example - Cartesian product and Selection
! Use selection operation to extract those tuples where

Student.Id= Courses.Id.
Õstudent.Id, CourseId(sStudent.Id= Courses.Id(Student X Courses))

• Cartesian product and Selection can be reduced to a single
operation called a Join.

Pearson Education © 2009

Id courseId
1 CS140
1 ECE255
2 CS302

Id Gpa Id CourseId
1 3.5 1 CS140
1 3.5 1 ECE255
1 3.5 2 CS302
2 2.6 1 CS140
2 2.6 1 ECE255
2 2.6 2 CS302

=>

22

Join Operations
! Join is a derivative of Cartesian product.

! Equivalent to performing a Selection, using join
predicate as selection formula, over Cartesian
product of the two operand relations.

! One of the most difficult operations to implement
efficiently in an RDBMS and one reason why
RDBMSs have intrinsic performance problems.

Pearson Education © 2009

23

Join Operations

! Various forms of join operation
– Theta join
– Equijoin (a particular type of Theta join)
– Natural join
– Outer join
– Semijoin

Pearson Education © 2009

24

Theta join (q-join)

! R FS
– Defines a relation that contains tuples

satisfying the predicate F from the Cartesian
product of R and S.

– The predicate F is of the form R.ai q S.bi
where q may be one of the comparison
operators (<, £, >, ³, =, ¹).

Pearson Education © 2009

25

Theta join (q-join)

! Can rewrite Theta join using basic Selection and
Cartesian product operations.

R FS = sF(R C S)

! Degree of a Theta join is sum of degrees of the
operand relations R and S. If predicate F contains
only equality (=), the term Equijoin is used.

Pearson Education © 2009

26

Example - Equijoin

! List the names and comments of all students who have
taken a course.

(PId, Name(Student)) Student.Id = Courses.Id (PId, CourseId, Comment(Courses))

Pearson Education © 2009

Id Name

1 Smiley

2 Pooh

3 Nels

Id CourseId Comment

1 CS140 “Great course”

1 ECE255 “Amazing”

2 CS302 “Crushed my
gpa”

Id Name Id CourseId Comment

1 Smiley 1 CS140 “Great course”

1 Smiley 1 ECE255 “Amazing”

2 Pooh 2 CS302 “Crushed my gpa”

=

27

Natural join

! R S
– An Equijoin of the two relations R and S over all

common attributes x. One occurrence of each
common attribute is eliminated from the result.

Pearson Education © 2009

28

Example – Natural Join

! List the names and comments of all students who have
taken a course.

(PId, Name(Student)) (PId, CourseId, Comment(Courses))

Pearson Education © 2009

Id Name

1 Smiley

2 Pooh

3 Nels

Id CourseId Comment

1 CS140 “Great course”

1 ECE255 “Amazing”

2 CS302 “Crushed my
gpa”

Id Name CourseId Comment

1 Smiley CS140 “Great course”

1 Smiley ECE255 “Amazing”

2 Pooh CS302 “Crushed my gpa”

=

29

Outer join

! To display rows in the result that do not have
matching values in the join column, use Outer
join.

! R S
– (Left) outer join is join in which tuples from

R that do not have matching values in
common columns of S are also included in
result relation.

Pearson Education © 2009

30

Example - Left Outer join

! Produce a report that shows all students and
the courses they are taking, even if the student
is not taking a course.

(PId, Name(Student)) Student.Id=Courses.id (PId, CourseId, Comment(Courses))

Pearson Education © 2009

Id Name

1 Smiley

2 Pooh

3 Nels

Id CourseId Comment

1 CS140 “Great course”

1 ECE255 “Amazing”

2 CS302 “Crushed my
gpa”

Id Name CourseId Comment

1 Smiley CS140 “Great course”

1 Smiley ECE255 “Amazing”

2 Pooh CS302 “Crushed my gpa”

3 Nels NULL NULL

=

31

Semijoin

! R F S
– Defines a relation that contains the tuples of R that

participate in the join of R with S.

! Can rewrite Semijoin using Projection and Join:

R F S = PA(R F S)

Pearson Education © 2009

32

Example - Semijoin

! List complete details of all students who are taking
CS140.

Student Student.Id=Courses.Id(scourseId=‘CS140’(Courses))

Pearson Education © 2009

Id Name

1 Smiley

2 Pooh

3 Nels

Id CourseId Comment

1 CS140 “Great course”

1 ECE255 “Amazing”

2 CS140 “Crushed my
gpa”

Id Name

1 Smiley

2 Pooh

=

33

Division (R ÷ S)
! Example Queries

– List all clients who have viewed all properties with three rooms
– List all guests who have stayed in all rooms of the Grosvenor Hotel

(the relations below were obtained from the booking and room
relations by selecting only those bookings and rooms associated with
the Grosvenor Hotel and by projecting away the dateFrom,
bookingNo and dateTo fields in the booking relation)

Pearson Education © 2009

guestNo roomNo
20 100
30 200
30 300
10 100
30 100
20 300

÷
roomNo
100
200
300

= guest
No
30

Division (R ÷ S)

! Preconditions
– R is defined over the attribute set A
– S is defined over the attribute set B, such that
– Let C = A – B (i.e., C is the set of attributes of R

that are not attributes of S)
! Defines a relation over the attributes C that consists of

set of tuples from R that match combination of every
tuple in S.

! A more “severe” form of a semi-join, because instead
of a match applying to a single row in R and a single
row in S, it requires a match between multiple rows of
R and S

34

B ⊆ A

Division (R ÷ S): Formal Derivation
! Expressed using basic operations:

T1¬PC(R) // Restrict T1 to the attributes in R that are not in S

T2¬PC((T1X S) – R) // T2 contains the “fragment” tuples from R that do not match all rows in S

T ¬ T1 – T2 // Remove from R the rows that do not fully match the multi-rows in S

35

X Y
a 1
a 2
b 1
b 2
c 1

Y
1
2

R S
X
a
b
c

T1
X Y
a 1
a 2
b 1
b 2
c 1
c 2

T1 X S
X
c

T2
X
a
b

T

36

Aggregate Operations

! rR(colnames) ÁAL(R)
– Applies aggregate function list, AL, to R to

define a relation over the aggregate list.
– AL contains one or more

(<aggregate_function>, <attribute>) pairs .
– rR(colnames) names the columns being created

by the aggregate functions: same as a projection
! Main aggregate functions are: COUNT, SUM,

AVG, MIN, and MAX.

Pearson Education © 2009

37

Example – Aggregate Operations
! How many properties cost more than £350 per month

to rent?

rR(myCount) ÁCOUNT propertyNo (σrent > 350
(PropertyForRent))

Pearson Education © 2009

38

Grouping Operation

! GAÁAL(R)
– Groups tuples of R by grouping attributes, GA,

and then applies aggregate function list, AL, to
define a new relation.

– AL contains one or more
(<aggregate_function>, <attribute>) pairs.

– Resulting relation contains the grouping
attributes, GA, along with results of each of the
aggregate functions.

Pearson Education © 2009

39

Example – Grouping Operation
! Find the number of staff working in each branch and

the sum of their salaries.
rR(branchNo, myCount, mySum)

branchNo Á COUNT staffNo, SUM salary (Staff)

Pearson Education © 2009

40

Relational Calculus

! Relational calculus query specifies what is to be
retrieved rather than how to retrieve it.
– No description of how to evaluate a query.

! In first-order logic (or predicate calculus),
predicate is a truth-valued function with
arguments.

! When we substitute values for the arguments,
function yields an expression, called a proposition,
which can be either true or false.

Pearson Education © 2009

41

Relational Calculus

! If predicate contains a variable (e.g. ‘x is a
member of staff’), there must be a range for x.

! When we substitute some values of this range for
x, proposition may be true; for other values, it
may be false.

! When applied to databases, relational calculus
has forms: tuple and domain.
– In this class only consider tuple relational

calculus
Pearson Education © 2009

42

Tuple Relational Calculus
! Interested in finding tuples for which a predicate

is true. Based on use of tuple variables.

! Tuple variable is a variable that ‘ranges over’ a
named relation: i.e., variable whose only
permitted values are tuples of the relation.

! Specify range of a tuple variable S as the Staff
relation using the notation:

Staff(S)
! To find set of all tuples S such that P(S) is true:

{S | P(S)}
Pearson Education © 2009

43

Tuple Relational Calculus - Example
! To find details of all staff earning more than

£10,000:
{S | Staff(S) Ù S.salary > 10000}

! To find a particular attribute, such as salary,
write:

{S.salary | Staff(S) Ù S.salary > 10000}

Pearson Education © 2009

44

Tuple Relational Calculus – Relation with SQL

! If you have trouble writing a relational calculus query, write an SQL
query and translate it:
To find the salary details of all staff earning more than £10,000:
–SQL: SELECT S.staffNo, S.salary

FROM Staff S WHERE S.salary > 10000
–Relational Calculus:

{S.staffNo, S.salary | Staff(S) Ù S.salary > 10000}
–Translation

»Select attributes go on left side of | character
»FROM relations are mapped to tuple variables and combined
using AND
»WHERE is appended to tuple variables with an AND

Pearson Education © 2009

Cartesian Product

The relational calculus expression for R X S is
{R, S | R(T1) Ù S(T2)}

45

Join

The relationl calculus expression for
R(a,b) Join S(b, c) is
{R, S | R(T1) Ù S(T2) Ù (T1.b = T2.b)}

46

47

Tuple Relational Calculus
! Can use two quantifiers to tell how many instances

the predicate applies to:
– Existential quantifier $ (‘there exists’)
– Universal quantifier " (‘for all’)

! Tuple variables qualified by " or $ are called
bound variables, otherwise called free variables.
– Only variables to the left of the bar (|) may be

free variables

Pearson Education © 2009

48

Tuple Relational Calculus

! Example: List all tuples in Staff such that the
staff member works in a London Branch:
– Relational calculus query

{S.fName, S.lName | Staff(S) Ù ($B)(Branch(B) Ù
(B.branchNo = S.branchNo) Ù B.city = ‘London’)}

! This example is a semi-join of Staff and Branch

Pearson Education © 2009

49

Tuple Relational Calculus
! Universal quantifier is used in statements about every

instance, such as:
("B) (Branch(B) Ù B.city ¹ ‘Paris’)

! Means ‘For all Branch tuples, the address is not in Paris’.
! Can also use ~($B) (Branch(B) Ù B.city = ‘Paris’) which

means ‘There are no branches with an address in Paris’.

Pearson Education © 2009

50

Tuple Relational Calculus
! Formulae should be unambiguous and make sense.
! A (well-formed) formula is made out of atoms:

»R(Si), where Si is a tuple variable and R is a relation
»Si.a1 q Sj.a2 where q is a relational or Boolean

operator
»Si.a1 q c

! Can recursively build up formulae from atoms:
» An atom is a formula
» If F1 and F2 are formulae, so are their conjunction,
F1 Ù F2; disjunction, F1 Ú F2; and negation, ~F1

» If F is a formula with free variable X, then ($X)(F)
and ("X)(F) are also formulae.

Pearson Education © 2009

Tuple Relational Calculus

! Boolean operators are typically used for SELECT
queries

! ($X)(F) is typically used for semi-joins
! ~($X)(F) and ("X)(F) are typically used for integrity

constraints
– Example: All staff members must make less than

$100,000
– Example: There does not exist a staff member who

manages more than 100 properties
! $ and " form subqueries

51

Tuple Relational Calculus: Set Operations

52

B.city−P.city = {B | Branch(B)∧ ~ (∃P)(PropertyForRent(P)∧B.city = P.city)}

B.city∩P.city = {B.city | Branch(B)∧(∃P)(PropertyForRent(P)∧B.city = P.city)}

Difference: List all cities where there is a branch office but no
property for rent:

Union: List all cities where there is either a branch office or a
property for rent:

Intersection: List all cities where there is both a branch office
and a property for rent:

𝐵. 𝑐𝑖𝑡𝑦 ∪ 𝑃. 𝑐𝑖𝑡𝑦 = 𝑇. 𝑐𝑖𝑡𝑦 𝐵𝑟𝑎𝑛𝑐ℎ 𝑇 ⋁𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝐹𝑜𝑟𝑅𝑒𝑛𝑡(T) }

Tuple Relational Calculus: Set Division

! Suppose you have the following relations:
– Tourist(tname, addr): tourist information
– Visit(tname, pname): parks visited by tourists
– Park(pname, state): park information

! List the tourists who have visited all parks in TN

53

{T |Tourist(T)∧(∀P)(Park(P)
∧((P.state!= 'TN ')∨(∃V)(Visit(V)∧T.tname =V.tname
∧V.pname = P.pname)))}

Tuple Relational Calculus: Left Outer Join

54

Left Outer Join

! Suppose you have the following relations
– Student(id, name, addr): student information
– Enrollment(id, coursed): course enrollment information
– List the students and courses they are taking and

include all students in the result, even if they are not
taking a course

– 𝑆. 𝑛𝑎𝑚𝑒, 𝐸. 𝑐𝑜𝑢𝑟𝑠𝑒𝐼𝐷 𝑆𝑡𝑢𝑑𝑒𝑛𝑡 𝑆 ⋀𝐸𝑛𝑟𝑜𝑙𝑙𝑚𝑒𝑛𝑡 𝐸 ⋀𝑆. 𝑖𝑑 =
𝐸. 𝑖𝑑) ⋁ (𝑆𝑡𝑢𝑑𝑒𝑛𝑡 𝑆 ⋀~ ∃𝐸 𝐸𝑛𝑟𝑜𝑙𝑙𝑚𝑒𝑛𝑡 𝐸 ⋀𝑆. 𝑖𝑑 = 𝐸. 𝑖𝑑 }

55

56

Example - Tuple Relational Calculus

! List the names of all managers who earn more
than £25,000.
{S.fName, S.lName | Staff(S) Ù

S.position = ‘Manager’ Ù S.salary > 25000}

Pearson Education © 2009

Example Relational Calculus Queries

! List the staff who manage properties for rent in
Glasgow.
{S | Staff(S) Ù ($P) (PropertyForRent(P) Ù (P.staffNo

= S.staffNo) Ù P.city = ‘Glasgow’)}
SQL: SELECT S.* FROM Staff S

WHERE EXISTS(SELECT * FROM PropertyForRent P

WHERE P.staffNo = S.staffNo

AND P.city = ‘Glasgow’);

57

Example Relational Calculus Queries

! List the staff who manage properties for rent
in Glasgow.
– Seemingly comparable Query that you might try

which is wrong
{S | Staff(S) Ù PropertyForRent(P) Ù (P.staffNo =

S.staffNo) Ù P.city = ‘Glasgow’)}
– PropertyForRent(P) makes P a free variable, even

though P does not appear on the left side of |

58

Example Relational Calculus Queries

! List each property that rents for more than $450
and list the name of the staff member who manages
the property.
{P, S.name | Staff(S) Ù PropertyForRent(P) Ù

(P.staffNo = S.staffNo) Ù P.rent > 450)}
SQL: SELECT P.*, S.name FROM Staff S Natural Join
PropertyForRent P

WHERE P.rent > 450;

59

60

Example - Tuple Relational Calculus
! List the names of staff who currently do not

manage any properties.

{S.fName, S.lName | Staff(S) Ù (~($P)
(PropertyForRent(P)Ù(S.staffNo = P.staffNo)))}

Or
{S.fName, S.lName | Staff(S) Ù (("P)

(PropertyForRent(P) Ù
(S.staffNo != P.staffNo)))}

Pearson Education © 2009

61

Example - Tuple Relational Calculus

! List the names of clients who have viewed a
property for rent in Glasgow.

{C.fName, C.lName | Client(C) Ù (($V)($P)
(Viewing(V) Ù PropertyForRent(P) Ù
(C.clientNo = V.clientNo) Ù
(V.propertyNo=P.propertyNo) Ù
P.city =‘Glasgow’))}

Pearson Education © 2009

62

Tuple Relational Calculus

! Expressions can generate an infinite set.
For example:
{S | ~Staff(S)}

! To avoid this, add restriction that all values in
result must be values in the domain of the
expression.

Pearson Education © 2009

