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Overview

! The previous chapter covers the relational model, 
which provides a formal description of the 
structure of a database

! This chapter covers the relational algebra and 
calculus, which provides a formal basis for the 
query language for the database
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Chapter 5 – Topics We Will Cover

! Meaning of the term relational completeness.

! How to form queries in relational algebra.

! How to form queries in tuple relational calculus.
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Introduction
! Relational algebra and relational calculus are 

formal languages associated with the relational 
model.

! Informally, relational algebra is a (high-level) 
procedural language and relational calculus a 
declarative, non-procedural language.

! However, formally both are equivalent to one 
another.

! A language that produces a relation that can be 
derived using relational calculus is relationally 
complete.
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Relational Algebra
! Relational algebra operations work on one or 

more relations to define another relation 
without changing the original relations.

! Both operands and results are relations, so 
output from one operation can become input to 
another operation. 

! Allows expressions to be nested, just as in 
arithmetic. This property is called closure.
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Relational Algebra
! Five basic operations in relational algebra: 

1. Selection: selects rows from a relation
2. Projection: selects columns from a relation
3. Cartesian product
4. Union
5. Set Difference.

! Also have Join, Intersection, and Division 
operations, which can be expressed in terms of 
5 basic operations.
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Relational Algebra Operations
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Relational Algebra Operations
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Selection (or Restriction)

! spredicate (R)
– Works on a single relation R and defines a 

relation that contains only those tuples (rows) of 
R that satisfy the specified condition (predicate).
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Example - Selection (or Restriction)

! List all staff with a salary greater than £10,000.

ssalary > 10000 (Staff)
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Projection

! Pcol1, . . . , coln(R)
– Works on a single relation R and defines a 

relation that contains a vertical subset of R, 
extracting the values of specified attributes and 
eliminating duplicates.
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Example - Projection

! Produce a list of salaries for all staff, showing only  
staffNo, fName, lName, and salary details.

PstaffNo, fName, lName, salary(Staff)
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Union (R È S)
! defines a relation that contains all the tuples of R, or S, or 

both R and S
– duplicate tuples are eliminated. 
– R and S must be “union compatible”, which means they 

must have the same set of named attributes (the 
attributes may appear in two different orders as long as 
the names can be matched).

! If R and S have I and J tuples, respectively, union is 
obtained by concatenating them into one relation with a 
maximum of (I + J) tuples.
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Example - Union

! List all cities where there is either a branch office 
or a property for rent.
Pcity(Branch) È Pcity(PropertyForRent)

Pearson Education © 2009

Note that we made the two relations “union-compatible” by 
projecting them down to a common column

Id City Address

1 Knoxville 5485 Alcoa Hwy

2 Columbus 1678 Cardiff Rd.

3 Pittsburgh 100 Rockwood Ave

4 Columbus 585 Tremont Rd.

PropId City Address

1 Nashville 110 Parthenon Way

2 Nashville 4868 Vanderbilt Dr

3 Knoxville 2408 Trillium Ln

4 Atlanta 5868 Peachtree Rd

5 Pittsburgh 386 Cedar Ln.

City

Knoxville

Columbus

Pittsburgh

Nashville

Atlanta

È =
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Set Difference

! R – S
– Defines a relation consisting of the tuples that 

are in relation R, but not in S. 
– R and S must be union-compatible.

Pearson Education © 2009



16

Example - Set Difference

! List all cities where there is a branch office but no 
properties for rent.
Pcity(Branch) – Pcity(PropertyForRent)
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Note that we made the two relations “union-compatible” by 
projecting them down to a common column

Id City Address

1 Knoxville 5485 Alcoa Hwy

2 Columbus 1678 Cardiff Rd.

3 Pittsburgh 100 Rockwood Ave

4 Columbus 585 Tremont Rd.

PropId City Address

1 Nashville 110 Parthenon Way

2 Nashville 4868 Vanderbilt Dr

3 Knoxville 2408 Trillium Ln

4 Atlanta 5868 Peachtree Rd

5 Pittsburgh 386 Cedar Ln.

City

Columbus=-
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Intersection

! R Ç S
– Defines a relation consisting of the set of all 

tuples that are in both R and S. 
– R and S must be union-compatible.

! Expressed using basic operations:
R Ç S = R – (R – S)
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R
S

R-S

R Ç S = R – (R – S)
R Ç S
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Example - Intersection

! List all cities where there is both a branch office 
and at least one property for rent.
Pcity(Branch) Ç Pcity(PropertyForRent)
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Note that we made the two relations “union-compatible” by 
projecting them down to a common column

Id City Address

1 Knoxville 5485 Alcoa Hwy

2 Columbus 1678 Cardiff Rd.

3 Pittsburgh 100 Rockwood Ave

4 Columbus 585 Tremont Rd.

PropId City Address

1 Nashville 110 Parthenon Way

2 Nashville 4868 Vanderbilt Dr

3 Knoxville 2408 Trillium Ln

4 Atlanta 5868 Peachtree Rd

5 Pittsburgh 386 Cedar Ln.

City

Knoxville

Pittsburgh
Ç =
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Cartesian product

! R X S
– Defines a relation that is the concatenation of 

every tuple of relation R with every tuple of 
relation S.
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Example - Cartesian product

(Student) X (Courses)
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Id Gpa
1 3.5
2 2.6

Id CourseId
1 CS140
1 ECE255
2 CS302

X =

Id Gpa Id CourseId
1 3.5 1 CS140
1 3.5 1 ECE255
1 3.5 2 CS302
2 2.6 1 CS140
2 2.6 1 ECE255
2 2.6 2 CS302
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Example - Cartesian product and Selection
! Use selection operation to extract those tuples where 

Student.Id= Courses.Id.
Õstudent.Id, CourseId(sStudent.Id= Courses.Id(Student X Courses))

• Cartesian product and Selection can be reduced to a single
operation called a Join.
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Id courseId
1 CS140
1 ECE255
2 CS302

Id Gpa Id CourseId
1 3.5 1 CS140
1 3.5 1 ECE255
1 3.5 2 CS302
2 2.6 1 CS140
2 2.6 1 ECE255
2 2.6 2 CS302

=>
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Join Operations
! Join is a derivative of Cartesian product.

! Equivalent to performing a Selection, using join 
predicate as selection formula, over Cartesian 
product of the two operand relations. 

! One of the most difficult operations to implement 
efficiently in an RDBMS and one reason why 
RDBMSs have intrinsic performance problems.
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Join Operations

! Various forms of join operation
– Theta join
– Equijoin (a particular type of Theta join)
– Natural join
– Outer join
– Semijoin
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Theta join (q-join)

! R       FS
– Defines a relation that contains tuples 

satisfying the predicate F from the Cartesian 
product of R and S. 

– The predicate F is of the form R.ai q S.bi
where q may be one of the comparison 
operators (<, £, >, ³, =, ¹).
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Theta join (q-join)

! Can rewrite Theta join using basic Selection and 
Cartesian product operations.

R      FS = sF(R C S)

! Degree of a Theta join is sum of degrees of the 
operand relations R and S. If predicate F contains 
only equality (=), the term Equijoin is used. 
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Example - Equijoin 

! List the names and comments of all students who have 
taken a course.

(PId, Name(Student))      Student.Id = Courses.Id (PId, CourseId, Comment(Courses))
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Id Name

1 Smiley

2 Pooh

3 Nels

Id CourseId Comment

1 CS140 “Great course”

1 ECE255 “Amazing”

2 CS302 “Crushed my 
gpa”

Id Name Id CourseId Comment

1 Smiley 1 CS140 “Great course”

1 Smiley 1 ECE255 “Amazing”

2 Pooh 2 CS302 “Crushed my gpa”

=



27

Natural join

! R      S
– An Equijoin of the two relations R and S over all 

common attributes x. One occurrence of each 
common attribute is eliminated from the result.
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Example – Natural Join

! List the names and comments of all students who have 
taken a course.

(PId, Name(Student))            (PId, CourseId, Comment(Courses))
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Id Name

1 Smiley

2 Pooh

3 Nels

Id CourseId Comment

1 CS140 “Great course”

1 ECE255 “Amazing”

2 CS302 “Crushed my 
gpa”

Id Name CourseId Comment

1 Smiley CS140 “Great course”

1 Smiley ECE255 “Amazing”

2 Pooh CS302 “Crushed my gpa”

=
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Outer join

! To display rows in the result that do not have 
matching values in the join column, use Outer 
join.

! R       S
– (Left) outer join is join in which tuples from 

R that do not have matching values in 
common columns of S are also included in 
result relation.
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Example - Left Outer join

! Produce a report that shows all students and 
the courses they are taking, even if the student 
is not taking a course.

(PId, Name(Student))        Student.Id=Courses.id (PId, CourseId, Comment(Courses))
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Id Name

1 Smiley

2 Pooh

3 Nels

Id CourseId Comment

1 CS140 “Great course”

1 ECE255 “Amazing”

2 CS302 “Crushed my 
gpa”

Id Name CourseId Comment

1 Smiley CS140 “Great course”

1 Smiley ECE255 “Amazing”

2 Pooh CS302 “Crushed my gpa”

3 Nels NULL NULL

=
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Semijoin

! R     F S
– Defines a relation that contains the tuples of R that 

participate in the join of R with S.

! Can rewrite Semijoin using Projection and Join:

R    F S = PA(R      F S)
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Example - Semijoin

! List complete details of all students who are taking 
CS140.

Student    Student.Id=Courses.Id(scourseId=‘CS140’(Courses))
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Id Name

1 Smiley

2 Pooh

3 Nels

Id CourseId Comment

1 CS140 “Great course”

1 ECE255 “Amazing”

2 CS140 “Crushed my 
gpa”

Id Name

1 Smiley

2 Pooh

=
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Division (R ÷ S)
! Example Queries

– List all clients who have viewed all properties with three rooms
– List all guests who have stayed in all rooms of the Grosvenor Hotel 

(the relations below were obtained from the booking and room 
relations by selecting only those bookings and rooms associated with 
the Grosvenor Hotel and by projecting away the dateFrom, 
bookingNo and dateTo fields in the booking relation)

Pearson Education © 2009

guestNo roomNo
20 100
30 200
30 300
10 100
30 100
20 300

÷
roomNo
100
200
300

= guest
No
30



Division (R ÷ S)

! Preconditions
– R is defined over the attribute set A
– S is defined over the attribute set B, such that   
– Let C = A – B (i.e., C is the set of attributes of R 

that are not attributes of S)
! Defines a relation over the attributes C that consists of 

set of tuples from R that match combination of every
tuple in S.

! A more “severe” form of a semi-join, because instead 
of a match applying to a single row in R and a single 
row in S, it requires a match between multiple rows of 
R and S
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B ⊆ A



Division (R ÷ S): Formal Derivation
! Expressed using basic operations:

T1¬PC(R) // Restrict T1 to the attributes in R that are not in S

T2¬PC((T1X S) – R) // T2 contains the “fragment” tuples from R that do not match all rows in S

T ¬ T1 – T2 // Remove from R the rows that do not fully match the multi-rows in S 
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X Y
a 1
a 2
b 1
b 2
c 1

Y
1
2

R S
X
a
b
c

T1
X Y
a 1
a 2
b 1
b 2
c 1
c 2

T1 X S
X
c

T2
X
a
b

T
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Aggregate Operations

! rR(colnames) ÁAL(R)
– Applies aggregate function list, AL, to R to 

define a relation over the aggregate list. 
– AL contains one or more 

(<aggregate_function>, <attribute>) pairs .
– rR(colnames) names the columns being created 

by the aggregate functions: same as a projection
! Main aggregate functions are: COUNT, SUM, 

AVG, MIN, and MAX.
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Example – Aggregate Operations
! How many properties cost more than £350 per month 

to rent?

rR(myCount) ÁCOUNT propertyNo (σrent > 350
(PropertyForRent))
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Grouping Operation

! GAÁAL(R)
– Groups tuples of R by grouping attributes, GA, 

and then applies aggregate function list, AL, to 
define a new relation. 

– AL contains one or more 
(<aggregate_function>, <attribute>) pairs. 

– Resulting relation contains the grouping 
attributes, GA, along with results of each of the 
aggregate functions.
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Example – Grouping Operation
! Find the number of staff working in each branch and 

the sum of their salaries.
rR(branchNo, myCount, mySum)

branchNo Á COUNT staffNo, SUM salary (Staff)
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Relational Calculus

! Relational calculus query specifies what is to be 
retrieved rather than how to retrieve it. 
– No description of how to evaluate a query.

! In first-order logic (or predicate calculus), 
predicate is a truth-valued function with 
arguments. 

! When we substitute values for the arguments, 
function yields an expression, called a proposition, 
which can be either true or false. 

Pearson Education © 2009



41

Relational Calculus

! If predicate contains a variable (e.g. ‘x is a 
member of staff’), there must be a range for x. 

! When we substitute some values of this range for 
x, proposition may be true; for other values, it 
may be false. 

! When applied to databases, relational calculus 
has forms: tuple and domain.
– In this class only consider tuple relational 

calculus
Pearson Education © 2009
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Tuple Relational Calculus
! Interested in finding tuples for which a predicate 

is true. Based on use of tuple variables. 

! Tuple variable is a variable that ‘ranges over’ a
named relation: i.e., variable whose only
permitted values are tuples of the relation.

! Specify range of a tuple variable S as the Staff 
relation using the notation: 

Staff(S)
! To find set of all tuples S such that P(S) is true:

{S | P(S)}
Pearson Education © 2009
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Tuple Relational Calculus - Example
! To find details of all staff earning more than

£10,000:
{S | Staff(S) Ù S.salary > 10000}

! To find a particular attribute, such as salary,
write:

{S.salary | Staff(S) Ù S.salary > 10000}
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Tuple Relational Calculus – Relation with SQL

! If you have trouble writing a relational calculus query, write an SQL
query and translate it:
To find the salary details of all staff earning more than £10,000:
–SQL: SELECT S.staffNo, S.salary

FROM Staff S WHERE S.salary > 10000
–Relational Calculus:

{S.staffNo, S.salary | Staff(S) Ù S.salary > 10000}
–Translation

»Select attributes go on left side of | character
»FROM relations are mapped to tuple variables and combined 
using AND
»WHERE is appended to tuple variables with an AND
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Cartesian Product

The relational calculus expression for R X S is
{R, S | R(T1) Ù S(T2)}
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Join

The relationl calculus expression for
R(a,b) Join S(b, c) is
{R, S | R(T1) Ù S(T2) Ù (T1.b = T2.b)}
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Tuple Relational Calculus
! Can use two quantifiers to tell how many instances 

the predicate applies to:
– Existential quantifier $ (‘there exists’)
– Universal quantifier " (‘for all’)

! Tuple variables qualified by " or $ are called
bound variables, otherwise called free variables.
– Only variables to the left of the bar (|) may be 

free variables
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Tuple Relational Calculus

! Example: List all tuples in Staff such that the 
staff member works in a London Branch:
– Relational calculus query

{S.fName, S.lName | Staff(S) Ù ($B)(Branch(B) Ù
(B.branchNo = S.branchNo) Ù B.city = ‘London’)}

! This example is a semi-join of Staff and Branch
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Tuple Relational Calculus
! Universal quantifier is used in statements about every

instance, such as:
("B) (Branch(B) Ù B.city ¹ ‘Paris’)

! Means ‘For all Branch tuples, the address is not in Paris’.
! Can also use ~($B) (Branch(B) Ù B.city = ‘Paris’) which

means ‘There are no branches with an address in Paris’.
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Tuple Relational Calculus
! Formulae should be unambiguous and make sense. 
! A (well-formed) formula is made out of atoms:

»R(Si), where Si is a tuple variable and R is a relation
»Si.a1 q Sj.a2 where q is a relational or Boolean

operator
»Si.a1 q c

! Can recursively build up formulae from atoms:
» An atom is a formula
» If F1 and F2 are formulae, so are their conjunction,
F1 Ù F2; disjunction, F1 Ú F2; and negation, ~F1

» If F is a formula with free variable X, then ($X)(F)
and ("X)(F) are also formulae.
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Tuple Relational Calculus

! Boolean operators are typically used for SELECT 
queries

! ($X)(F) is typically used for semi-joins
! ~($X)(F) and  ("X)(F) are typically used for integrity 

constraints
– Example: All staff members must make less than 

$100,000
– Example: There does not exist a staff member who 

manages more than 100 properties
! $ and " form subqueries
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Tuple Relational Calculus: Set Operations
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B.city−P.city = {B | Branch(B)∧ ~ (∃P)(PropertyForRent(P)∧B.city = P.city)}

B.city∩P.city = {B.city | Branch(B)∧(∃P)(PropertyForRent(P)∧B.city = P.city)}

Difference: List all cities where there is a branch office but no 
property for rent:

Union: List all cities where there is either a branch office or a 
property for rent:

Intersection: List all cities where there is both a branch office 
and a property for rent:

𝐵. 𝑐𝑖𝑡𝑦 ∪ 𝑃. 𝑐𝑖𝑡𝑦 = 𝑇. 𝑐𝑖𝑡𝑦 𝐵𝑟𝑎𝑛𝑐ℎ 𝑇 ⋁𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝐹𝑜𝑟𝑅𝑒𝑛𝑡(T) }



Tuple Relational Calculus: Set Division

! Suppose you have the following relations:
– Tourist(tname, addr): tourist information
– Visit(tname, pname): parks visited by tourists
– Park(pname, state): park information

! List the tourists who have visited all parks in TN

53

{T |Tourist(T )∧(∀P)(Park(P)
∧((P.state!= 'TN ')∨(∃V )(Visit(V )∧T.tname =V.tname
∧V.pname = P.pname)))}



Tuple Relational Calculus: Left Outer Join
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Left Outer Join

! Suppose you have the following relations
– Student(id, name, addr): student information
– Enrollment(id, coursed): course enrollment information
– List the students and courses they are taking and 

include all students in the result, even if they are not 
taking a course

– 𝑆. 𝑛𝑎𝑚𝑒, 𝐸. 𝑐𝑜𝑢𝑟𝑠𝑒𝐼𝐷 𝑆𝑡𝑢𝑑𝑒𝑛𝑡 𝑆 ⋀𝐸𝑛𝑟𝑜𝑙𝑙𝑚𝑒𝑛𝑡 𝐸 ⋀𝑆. 𝑖𝑑 =
𝐸. 𝑖𝑑) ⋁ (𝑆𝑡𝑢𝑑𝑒𝑛𝑡 𝑆 ⋀~ ∃𝐸 𝐸𝑛𝑟𝑜𝑙𝑙𝑚𝑒𝑛𝑡 𝐸 ⋀𝑆. 𝑖𝑑 = 𝐸. 𝑖𝑑 }
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Example - Tuple Relational Calculus

! List the names of all managers who earn more 
than £25,000.
{S.fName, S.lName | Staff(S) Ù

S.position = ‘Manager’ Ù S.salary > 25000}
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Example Relational Calculus Queries

! List the staff who manage properties for rent in 
Glasgow.
{S | Staff(S) Ù ($P) (PropertyForRent(P) Ù (P.staffNo 

= S.staffNo) Ù P.city = ‘Glasgow’)}
SQL: SELECT S.* FROM Staff S

WHERE EXISTS(SELECT * FROM PropertyForRent P

WHERE P.staffNo = S.staffNo 

AND P.city = ‘Glasgow’);
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Example Relational Calculus Queries

! List the staff who manage properties for rent 
in Glasgow.
– Seemingly comparable Query that you might try 

which is wrong
{S | Staff(S) Ù PropertyForRent(P) Ù (P.staffNo = 

S.staffNo) Ù P.city = ‘Glasgow’)}
– PropertyForRent(P) makes P a free variable, even 

though P does not appear on the left side of |
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Example Relational Calculus Queries

! List each property that rents for more than $450 
and list the name of the staff member who manages 
the property.
{P, S.name | Staff(S) Ù PropertyForRent(P) Ù

(P.staffNo = S.staffNo) Ù P.rent > 450)}
SQL: SELECT P.*, S.name FROM Staff S Natural Join 
PropertyForRent P

WHERE P.rent > 450;
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Example - Tuple Relational Calculus
! List the names of staff who currently do not 

manage any properties.

{S.fName, S.lName | Staff(S) Ù (~($P) 
(PropertyForRent(P)Ù(S.staffNo = P.staffNo)))}

Or
{S.fName, S.lName | Staff(S) Ù (("P) 

(PropertyForRent(P) Ù
(S.staffNo != P.staffNo)))}
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Example - Tuple Relational Calculus

! List the names of clients who have viewed a
property for rent in Glasgow.

{C.fName, C.lName | Client(C) Ù (($V)($P)
(Viewing(V) Ù PropertyForRent(P) Ù
(C.clientNo = V.clientNo) Ù
(V.propertyNo=P.propertyNo) Ù
P.city =‘Glasgow’))}
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Tuple Relational Calculus

! Expressions can generate an infinite set. 
For example:
{S | ~Staff(S)}

! To avoid this, add restriction that all values in 
result must be values in the domain of the 
expression. 
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