
Chapter 6

SQL: Data Manipulation

Pearson Education © 2009

Follow Along in The Textbook

◆ The queries in these slides use the data from Fig
4.3 in the Dream Home case study that you can
find on Canvas

◆ It would help to have this case study available
while following the lecture

2

SQL Query Language Based on Select-
Project-Join

◆ Select: filters rows
◆ Project: filters columns
◆ Join: connects information from multiple

relations, usually using foreign keys

3

Key SQL DML Commands

◆ Select: Retrieves data
◆ Insert: Adds data
◆ Update: Modifies data
◆ Delete: Removes data

5

Objectives of SQL

◆ Consists of standard English words:

1) CREATE TABLE Staff(staffNo VARCHAR(5),
lName VARCHAR(15),
salary DECIMAL(7,2));

2) INSERT INTO Staff VALUES (‘SG16’, ‘Brown’,
8300);

3) SELECT staffNo, lName, salary
FROM Staff
WHERE salary > 10000;

Pearson Education © 2009

6

Writing SQL Commands

◆ Most components of an SQL statement are case
insensitive, except for literal character data.
– UTK’s mysql server is case insensitive for
everything but relation names

» Keywords
» Field names
» Literal character data

– Oracle is case-insensitive for keywords, but case
sensitive for field names and literal character
data

Pearson Education © 2009

Writing SQL Commands (Cont)

◆ More readable with indentation and lineation:
– Each clause should begin on a new line.
– Start of a clause should line up with start of
other clauses.

– If clause has several parts, each should
appear on a separate line and be indented
under start of clause.

7

8

Writing SQL Commands

◆ These slides use an extended form of BNF
notation:

- Upper-case letters represent reserved words.
- Lower-case letters represent user-defined words.
- | indicates a choice among alternatives.
- Curly braces indicate a required element.
- Square brackets indicate an optional element.
- … indicates optional repetition (0 or more).

Pearson Education © 2009

9

Literals

◆ Literals are constants used in SQL statements.
◆ All non-numeric literals must be enclosed in
single quotes (e.g. ‘London’).
– In SQL standard, single quotes enclose strings
– Double quotes enclose things in database, such
as column names (e.g., “street address”)

– Mysql allows double quotes around strings but
don’t get into the habit of using them

◆ All numeric literals must not be enclosed in
quotes (e.g. 650.00).

Pearson Education © 2009

10

SELECT Statement

SELECT [DISTINCT | ALL]
{* | [columnExpression [AS newName]] [,...] }

FROM TableName [alias] [, ...]
[WHERE condition]
[GROUP BY columnList] [HAVINGcondition]
[ORDER BY columnList]

Pearson Education © 2009

11

SELECT Statement

SELECT Specifies which columns are to
appear in output.

FROM Specifies table(s) to be used.
WHERE Filters rows.
GROUP BY Forms groups of rows with same

column value.
HAVING Filters groups subject to some

condition.
ORDER BY Specifies the order of the output.

Pearson Education © 2009

12

SELECT Statement

◆ Order of the clauses cannot be changed.

◆ Only SELECT and FROM are mandatory.

Pearson Education © 2009

Example SQL Queries

◆ All queries are taken from the books DreamHome
case study

13

14

Example 6.1 All Columns, All Rows

List full details of all staff.

SELECT staffNo, fName, lName, address,
position, sex, DOB, salary, branchNo

FROM Staff;

◆ Can use * as an abbreviation for ‘all columns’:

SELECT *
FROM Staff;

Pearson Education © 2009

15

Example 6.1 All Columns, All Rows

Pearson Education © 2009

16

Example 6.2 Specific Columns, All Rows

Produce a list of salaries for all staff, showing only
staff number, first and last names, and salary.

SELECT staffNo, fName, lName, salary
FROM Staff;

Pearson Education © 2009

17

Example 6.2 Specific Columns, All Rows

Pearson Education © 2009

18

Example 6.3 Use of DISTINCT

List the property numbers of all properties that
have been viewed.

SELECT propertyNo
FROM Viewing;

Pearson Education © 2009

19

Example 6.3 Use of DISTINCT

◆ Use DISTINCT to eliminate duplicates:

SELECT DISTINCT propertyNo
FROM Viewing;

Pearson Education © 2009

20

Example 6.4 Calculated Fields

Produce list of monthly salaries for all staff,
showing staff number, first/last name, and salary.

SELECT staffNo, fName, lName, salary/12
FROM Staff;

Pearson Education © 2009

21

Example 6.4 Calculated Fields

◆ To name column, use AS clause:

SELECT staffNo, fName, lName, salary/12
AS monthlySalary

FROM Staff;

Pearson Education © 2009

22

Example 6.5 Comparison Search Condition

List all staff with a salary greater than 10,000.

SELECT staffNo, fName, lName, position, salary
FROM Staff
WHERE salary > 10000;

Pearson Education © 2009

23

Example 6.6 Compound Comparison Search
Condition

List addresses of all branch offices in London or
Glasgow.

SELECT *
FROM Branch
WHERE city = ‘London’ OR city = ‘Glasgow’;

Pearson Education © 2009

24

Example 6.7 Range Search Condition

List all staff with a salary between 20,000 and 30,000.

SELECT staffNo, fName, lName, position, salary
FROM Staff
WHERE salary BETWEEN 20000 AND 30000;

◆ BETWEEN test includes the endpoints of range.
◆ UTK’s mysql BETWEEN test is inclusive of the endpoints
of the range

Pearson Education © 2009

25

Example 6.7 Range Search Condition

Pearson Education © 2009

26

Example 6.7 Range Search Condition

◆ Also a negated version NOT BETWEEN.
◆ BETWEEN does not add much to SQL’s
expressive power. Could also write:

SELECT staffNo, fName, lName, position, salary
FROM Staff
WHERE salary>=20000 AND salary <= 30000;

◆ Useful, though, for a range of values.

Pearson Education © 2009

27

Example 6.8 Set Membership

List all managers and supervisors.

SELECT staffNo, fName, lName, position
FROM Staff
WHERE position IN (‘Manager’, ‘Supervisor’);

Pearson Education © 2009

28

Example 6.8 Set Membership

◆ There is a negated version (NOT IN).
◆ IN does not add much to SQL’s expressive power.
Could have expressed this as:

SELECT staffNo, fName, lName, position
FROM Staff
WHERE position=‘Manager’ OR

position=‘Supervisor’;

◆ IN is more efficient when set contains many values.

Pearson Education © 2009

29

Example 6.9 Pattern Matching

Find all owners with the string ‘Glasgow’ in their
address.

SELECT ownerNo, fName, lName, address, telNo
FROM PrivateOwner
WHERE address LIKE ‘%Glasgow%’;

Pearson Education © 2009

30

Example 6.9 Pattern Matching

◆ SQL has two special pattern matching symbols:

– %: sequence of zero or more characters;
– _ (underscore): any single character.

◆ LIKE ‘%Glasgow%’ means a sequence of
characters of any length containing ‘Glasgow’.

Pearson Education © 2009

31

Example 6.10 NULL Search Condition

List details of all viewings on property PG4
where a comment has not been supplied.

◆ There are 2 viewings for property PG4, one with
and one without a comment.

◆ Have to test for null explicitly using special
keyword IS NULL:

SELECT clientNo, viewDate
FROM Viewing
WHERE propertyNo = ‘PG4’ AND

comment IS NULL;
Pearson Education © 2009

32

Example 6.10 NULL Search Condition

◆ Negated version (IS NOT NULL) can test for
non-null values.

Pearson Education © 2009

33

Example 6.11 Single Column Ordering

List salaries for all staff, arranged in descending
order of salary.

SELECT staffNo, fName, lName, salary
FROM Staff
ORDER BY salary DESC;

Pearson Education © 2009

34

Example 6.11 Single Column Ordering

Pearson Education © 2009

35

Example 6.12 Multiple Column Ordering

Produce abbreviated list of properties in order of
property type.

SELECT propertyNo, type, rooms, rent
FROM PropertyForRent
ORDER BY type;

Pearson Education © 2009

36

Example 6.12 Multiple Column Ordering

Pearson Education © 2009

37

Example 6.12 Multiple Column Ordering

◆ Four flats in this list - as no minor sort key
specified, system arranges these rows in any order
it chooses.

◆ To arrange in order of rent, specify minor order:

SELECT propertyNo, type, rooms, rent
FROM PropertyForRent
ORDER BY type, rent DESC;

Pearson Education © 2009

38

Example 6.12 Multiple Column Ordering

Pearson Education © 2009

39

SELECT Statement - Aggregates

◆ ISO standard defines five aggregate functions:

COUNT returns number of values in specified
column.

SUM returns sum of values in specified column.

AVG returns average of values in specified column.

MIN returns smallest value in specified column.

MAX returns largest value in specified column.

Pearson Education © 2009

40

SELECT Statement - Aggregates

◆ Each operates on a single column of a table and
returns a single value.

◆ COUNT, MIN, and MAX apply to numeric and
non-numeric fields, but SUM and AVG may be
used on numeric fields only.

◆ Apart from COUNT(*), each function eliminates
nulls first and operates only on remaining non-
null values.

Pearson Education © 2009

41

SELECT Statement - Aggregates

◆ COUNT(*) counts all rows of a table, regardless
of whether nulls or duplicate values occur.

◆ Can use DISTINCT before column name to
eliminate duplicates.

◆ DISTINCT has no effect with MIN/MAX, but
may have with SUM/AVG.

Pearson Education © 2009

42

SELECT Statement - Aggregates

◆ Aggregate functions can be used only in
SELECT list and in HAVING clause.

◆ If SELECT list includes an aggregate function
and there is no GROUP BY clause, the SELECT
list cannot reference a column outside an
aggregate function. For example, the following is
illegal because of the reference to staffNo:

SELECT staffNo, COUNT(salary)
FROM Staff;

Pearson Education © 2009

43

Example 6.13 Use of COUNT(*)

How many properties cost more than £350 per
month to rent?

SELECT COUNT(*) AS myCount
FROM PropertyForRent
WHERE rent > 350;

Pearson Education © 2009

44

Example 6.14 Use of COUNT(DISTINCT)

How many different properties viewed in May ‘04?

SELECT COUNT(DISTINCT propertyNo) AS myCount
FROM Viewing
WHERE viewDate BETWEEN ‘1-May-04’

AND ‘31-May-04’;

Pearson Education © 2009

45

Example 6.15 Use of COUNT and SUM

Find number of Managers and sum of their
salaries.

SELECT COUNT(staffNo) AS myCount,
SUM(salary) AS mySum

FROM Staff
WHERE position = ‘Manager’;

Pearson Education © 2009

46

Example 6.16 Use of MIN, MAX, AVG

Find minimum, maximum, and average staff
salary.

SELECT MIN(salary) AS myMin,
MAX(salary) AS myMax,
AVG(salary) AS myAvg
FROM Staff;

Pearson Education © 2009

47

SELECT Statement - Grouping

◆ Use GROUP BY clause to get sub-totals for all rows in a
“set” (or equivalently, a group)
– Example: Use GROUP BY to get the total staff salary

for each branch
◆ SELECT and GROUP BY closely integrated: each item in

SELECT list must be:
– an aggregate function that produces a sub-total
– a column name used in the GROUP BY clause to

group rows to be aggregated
– constants
– expression involving combinations of the above.

Pearson Education © 2009

48

SELECT Statement - Grouping

◆ If WHERE is used with GROUP BY, WHERE is
applied first, then groups are formed from
remaining rows satisfying predicate.

◆ ISO considers two nulls to be equal for purposes
of GROUP BY.

Pearson Education © 2009

49

Example 6.17 Use of GROUP BY

Find number of staff in each branch and their
total salaries.

SELECT branchNo,
COUNT(staffNo) AS myCount,
SUM(salary) AS mySum

FROM Staff
GROUP BY branchNo
ORDER BY branchNo;

Pearson Education © 2009

50

Example 6.17 Use of GROUP BY

Pearson Education © 2009

51

Restricted Groupings – HAVING clause

◆ HAVING clause is designed for use with GROUP BY to
restrict groups that appear in final result table.

◆ Similar to WHERE, but filters groups rather than
individual rows

– HAVING should filter based on aggregate functions
that compute a subtotal for each group, such as
COUNT(staffNo) > 1

– HAVING eliminates groups after the aggregate
function is computed

◆ Column names in HAVING clause must also appear in the
GROUP BY list or be contained within an aggregate
function. Pearson Education © 2009

52

Example 6.18 Use of HAVING

For each branch with more than 1 member of
staff, find number of staff in each branch and
sum of their salaries.

SELECT branchNo,
COUNT(staffNo) AS myCount,
SUM(salary) AS mySum

FROM Staff
GROUP BY branchNo
HAVING COUNT(staffNo) > 1
ORDER BY branchNo;

Pearson Education © 2009

53

Example 6.18 Use of HAVING

Pearson Education © 2009

End of Aggregate Functions

54

Joins

55

56

Multi-Table Queries

◆ If result columns come from more than one table must use a join.

Branch(branchNo, street, city, postcode)
Staff(staffNo, fName, lName, position, sex, birthdate, salary, branchNo)
What address does Brad Vander Zanden work at?
SELECT b.street, b.city, b.postcode FROM Branch b, Staff s

WHERE s.lname = ‘Vander Zanden’ AND s.fname = ‘Brad’
AND s.branchNo = b.branchNo;

◆ To perform join, include more than one table in FROM clause.

◆ Use comma as separator and typically include WHERE clause to
specify join column(s).

Pearson Education © 2009

57

Multi-Table Queries

◆ Also possible to use an alias for a table named in
FROM clause.

◆ Alias is separated from table name with a space.

◆ Alias can be used to qualify column names when
there is ambiguity.

Pearson Education © 2009

58

Example 6.24 Simple Join (also called Inner Join)

List names of all clients who have viewed a
property along with any comment supplied.

SELECT c.clientNo, fName, lName,
propertyNo, comment

FROM Client c, Viewing v
WHERE c.clientNo = v.clientNo;

Pearson Education © 2009

59

Example 6.24 Simple Join

◆ Only those rows from both tables that have
identical values in the clientNo columns
(c.clientNo = v.clientNo) are included in result.

◆ Equivalent to equi-join in relational algebra.

Pearson Education © 2009

Some Syntactic Sugar

◆ If two relations share a common join column, you can
write:
SELECT c.clientNo, fName, lName, propertyNo, comment
FROM Client c INNER JOIN Viewing
USING (clientNo);

◆ If you want to do an equi-join on all common columns,
use NATURAL JOIN and you can omit the join column
names
SELECT c.clientNo, fName, lName, propertyNo, comment
FROM Client NATURAL JOIN Viewing;

60

61

Example 6.26 Three Table Join

For each branch, list staff who manage properties,
including the city in which the branch is located
and the properties they manage.

SELECT b.branchNo, b.city, s.staffNo, fName, lName,
propertyNo

FROM Branch b NATURAL JOIN Staff s
NATURAL JOIN PropertyForRent p

ORDER BY b.branchNo, s.staffNo, propertyNo;

Pearson Education © 2009

62

Example 6.26 Three Table Join

Pearson Education © 2009

63

Example 6.27 Multiple Grouping Columns

Find number of properties handled by each staff
member.

SELECT s.fname, s.lname, s.branchNo,
s.staffNo, COUNT(*) AS staffCount

FROM Staff s, PropertyForRent p
WHERE s.staffNo = p.staffNo
GROUP BY s.branchNo, s.staffNo
ORDER BY s.branchNo, s.staffNo;

Pearson Education © 2009

64

Computing a Join

Procedure for generating results of a join are:

1. Form Cartesian product of the tables named in
FROM clause.

2. If there is a WHERE clause, apply the search
condition to each row of the product table,
retaining those rows that satisfy the condition.

3. Eliminate columns that are not in the select list (a
projection operation)

Pearson Education © 2009

65

Computing a Join

4. If DISTINCT has been specified, eliminate any
duplicate rows from the result table.

5. If there is a GROUP BY clause, perform the
aggregate function(s) on those groups

6. If there is an ORDER BY clause, sort result table
as required.

Pearson Education © 2009

66

Outer Joins

◆ Inner join: If a row in one relation of the
join is not matched in the other relation of
the join, the row is omitted from the result
table.

◆ Outer join operations retain rows that do
not satisfy the join condition.

Pearson Education © 2009

Outer Joins

◆ Left Join: Includes all rows from the left relation in the
result
– Unmatched rows have NULL values for the columns

drawn from the right relation
◆ Right Join: Includes all rows from the right relation in the

result
– Unmatched rows have NULL values for the columns

drawn from the left relation
◆ Full Join: Includes all unmatched rows in the result

relation, both from the left and right relations

67

68

Example 6.28 Left Outer Join

List branches and properties that are in same city
along with any unmatched branches.
SELECT b.*, p.*
FROM Branch1 b LEFT JOIN

PropertyForRent1 p ON b.bCity = p.pCity;

Pearson Education © 2009

69

Example 6.28 Left Outer Join

◆ Includes those rows of first (left) table unmatched
with rows from second (right) table.

◆ Columns from second table are filled with
NULLs.

Pearson Education © 2009

70

Example 6.29 Right Outer Join

List branches and properties in same city and
any unmatched properties.

SELECT b.*, p.*
FROM Branch1 b RIGHT JOIN

PropertyForRent1 p ON b.bCity = p.pCity;

Pearson Education © 2009

71

Example 6.29 Right Outer Join

◆ Right Outer join includes those rows of second
(right) table that are unmatched with rows from
first (left) table.

◆ Columns from first table are filled with NULLs.

Pearson Education © 2009

72

Example 6.30 Full Outer Join

List branches and properties in same city and
any unmatched branches or properties.

SELECT b.*, p.*
FROM Branch1 b FULL JOIN
PropertyForRent1 p ON b.bCity = p.pCity;

Pearson Education © 2009

73

Example 6.30 Full Outer Join

◆ Includes rows that are unmatched in both tables.
◆ Unmatched columns are filled with NULLs.

Pearson Education © 2009

End of Joins

74

Combining Result Tables

◆ Set Union(A, B): returns all rows that are in either
A or B

◆ Set Intersection(A, B): returns all rows that are in
both A and B

◆ Set Difference(A, B): returns all rows in A that
are not in B

75

Union-compatibility

◆ 2 relations are union compatible if they have
– The same number of columns, and
– each pair of columns is drawn from the same

domain
◆ The set operations require that their parameter

relations be union compatible

76

Sample Scenario

◆ University with 4 categories of members
– Staff
– Professors
– Students
– Administrators

77

Union

◆ Find all employees
– (SELECT name FROM Staff)

UNION
(SELECT name FROM Professors)
UNION
(SELECT name FROM Administrators)

78

Intersection

◆ Find all professors who are also administrators
(SELECT name FROM Professors)
INTERSECT
(SELECT name FROM Administrators)

79

Intersect in MySQL

◆ MySQL does not support Intersect keyword. Use a join to
implement intersection. For example, R(a,b) Ç S(a,b):
a. If Nulls are not an issue: Use Join with distinct, which gets rid of

duplicates
Select Distinct R.a, R.b from R NATURAL JOIN S

b. Use the <=> operator to pick up Nulls: <=> does equality testing
that includes Nulls
Select Distinct R.a, R.b from R, S

where R.a <=> S.a and R.b <=> S.b;

80

Set Difference

◆ Find all administrators who are not professors
– (SELECT name FROM Administrators)

EXCEPT
(SELECT name FROM Professors)

81

Set Difference in MySQL

◆ MySQL does not support EXCEPT. To get P(id) – Q(id):
a. Select * from P

where P.id not in (Select id from Q);
b. Select * from P left join Q

on P.id = Q.id where Q.id is NULL

82

P.id Q.id P Left Join Q = P.id Q.id

3 3 3 3

7 6 7 Null

8 4 8 Null

Modification Statements

83

84

INSERT

INSERT INTO TableName [(columnList)]
VALUES (dataValueList)

◆ columnList is optional; if omitted, SQL assumes a
list of all columns in their original CREATE
TABLE order.

◆ Any columns omitted must have been declared as
NULL when table was created, unless DEFAULT
was specified when creating column.

Pearson Education © 2009

85

INSERT

◆ dataValueListmust match columnList as follows:
– number of items in each list must be same;
– must be direct correspondence in position of
items in two lists;

– data type of each item in dataValueList must
be compatible with data type of
corresponding column.

Pearson Education © 2009

86

Example 6.35 INSERT … VALUES

Insert a new row into Staff table supplying data
for all columns.

INSERT INTO Staff
VALUES (‘SG16’, ‘Alan’, ‘Brown’, ‘Assistant’,
‘M’, Date‘1957-05-25’, 8300, ‘B003’);

Pearson Education © 2009

87

Example 6.36 INSERT using Defaults

Insert a new row into Staff table supplying data
for all mandatory columns.

INSERT INTO Staff (staffNo, fName, lName,
position, salary, branchNo)

VALUES (‘SG44’, ‘Anne’, ‘Jones’,
‘Assistant’, 8100, ‘B003’);

◆ Or
INSERT INTO Staff
VALUES (‘SG44’, ‘Anne’, ‘Jones’, ‘Assistant’, NULL,

NULL, 8100, ‘B003’);

Pearson Education © 2009

88

UPDATE

UPDATE TableName
SET columnName1 = dataValue1
[, columnName2 = dataValue2...]

[WHERE searchCondition]

◆ TableName can be name of a base table or an
updatable view.

◆ SET clause specifies names of one or more
columns that are to be updated.

Pearson Education © 2009

89

UPDATE

◆ WHERE clause is optional:
– if omitted, named columns are updated for all
rows in table;

– if specified, only those rows that satisfy
searchCondition are updated.

◆ New dataValue(s) must be compatible with data
type for corresponding column.

Pearson Education © 2009

90

Example 6.38/39 UPDATE All Rows

Give all staff a 3% pay increase.

UPDATE Staff
SET salary = salary*1.03;

Give all Managers a 5% pay increase.

UPDATE Staff
SET salary = salary*1.05
WHERE position = ‘Manager’;

Pearson Education © 2009

91

Example 6.40 UPDATE Multiple Columns

Promote David Ford (staffNo=‘SG14’) to
Manager and change his salary to £18,000.

UPDATE Staff
SET position = ‘Manager’, salary = 18000
WHERE staffNo = ‘SG14’;

Pearson Education © 2009

92

DELETE

DELETE FROM TableName
[WHERE searchCondition]

◆ TableName can be name of a base table or an
updatable view.

◆ searchCondition is optional; if omitted, all rows
are deleted from table. This does not delete table.
If search_condition is specified, only those rows
that satisfy condition are deleted.

Pearson Education © 2009

93

Example 6.41/42 DELETE Specific Rows

Delete all viewings that relate to property PG4.

DELETE FROM Viewing
WHERE propertyNo = ‘PG4’;

Delete all records from the Viewing table.

DELETE FROM Viewing;

Pearson Education © 2009

