PHP: Processing XHTML Forms

Introduction

A Web form is a common method for allowing the user to provide input. As described in XHTML: Forms, there are two parts to a form: the user interface, and a script to process the input and ultimately do something meaningful with it. This document explains how PHP can be used to process form-based input. Consult the XHTML: Forms document for details about form syntax, submission method types (i.e., GET and POST), and the types of form widgets.

Form setup

The first step in handling user input via Web forms is to create the user interface. The form is typically defined in an XHTML document (e.g., a file that ends with .html) unless the form itself has dynamic content. The action attribute of the form element should be the URL of the PHP script that will be processing the form data.

Consider the following XHTML markup that defines a form with selection widgets, text input widgets, and a hidden field. Note that the action attribute of the form element designates the PHP script processform.php as the recipient of the form data.

<form method="post" action="processform.php">

 <!-- Radio buttons, none pre-selected -->

 <p>How would you rate your skill in programming?

 <input type="radio" name="skill" value="beg" />Beginner

 <input type="radio" name="skill" value="int" />Intermediate

 <input type="radio" name="skill" value="adv" />Advanced

 <input type="radio" name="skill" value="sup" />Super-hacker</p>

 <!-- Radio buttons, one pre-selected -->

 <p>How many hours do you spend programming each week?

 <input type="radio" name="hours" value="0-10" />0-10

 <input type="radio" name="hours" value="11-20" checked="checked" />11-20

 <input type="radio" name="hours" value="21-30" />21-30

 <input type="radio" name="hours" value="30+" />30+</p>

 <!-- Checkboxes, several pre-selected -->

 <p>I agree to...

 <input type="checkbox" name="cheaplabor" value="yes" checked="checked" />work for $1.50/hour.

 <input type="checkbox" name="longdays" value="yes" checked="checked" />work 12 hours per day.

 <input type="checkbox" name="late" value="yes" />show up late every day.

 <input type="checkbox" name="usecomments" value="yes" checked="checked" />comment my code.

</p>

 <!-- Menu, one selected, multiple selections allowed -->

 <select name="state[]" size="5" multiple="multiple">

 <option value="al">Alabama</option>

 <option value="ak">Alaska</option>

 <option value="as">American Samoa</option>

 <option value="az">Arizona</option>

 <option value="ar">Arkansas</option>

 <option value="ca" selected="selected">California</option>

 <option value="other">Some other state</option>

 </select>

 <!-- Text box and password box -->

 <p>Username: <input type="text" name="username" /></p>

 <p>Password: <input type="password" name="passwd" /></p>

 <!-- Text area -->

 <textarea name="comments" rows="5" cols="40"></textarea>

 <!-- Hidden field -->

 <input type="hidden" name="promotion_code" value="x3g9kf43" />

 <!-- Submit button -->

 <p><input type="submit" value="Submit the Data" /></p>

</form>

Now that the user interface has been established, the PHP script can be created to process the data.

Receiving form data

Recall that form data is submitted in name-value pairs, which are derived from the form widgets’ name and value attributes. The standard method for accessing this data is by accessing one of the predefined associative arrays named $_POST and $_GET, depending on the form submission method used. The syntax is $_POST['name'], where name corresponds to the name attribute of a given form widget. Here is a complete PHP script that lists the name-value pairs in a table.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

 <head>

 <meta http-equiv="content-type" content="text/html; charset=utf-8" />

 <title>Programming is Fun!</title>

 </head>

 <body>

 <h1>Form Results</h1>

 <table border="1">

 <tr><th>Field</th><th>Value</th></tr>

 <?php>

 print "<tr><td>Skill</td><td>{$_POST['skill']}</td></tr>\n";

 print "<tr><td>Hours spent programming</td><td>{$_POST['hours']}</td></tr>\n";

 print "<tr><td>Programming languages used</td><td>{$_POST['proglang']}</td></tr>\n";

 print "<tr><td>Work for $1.50/hr?</td><td>{$_POST['cheaplabor']}</td></tr>\n";

 print "<tr><td>Work 12-hour days?</td><td>{$_POST['longdays']}</td></tr>\n";

 print "<tr><td>Show up late?</td><td>{$_POST['late']}</td></tr>\n";

 print "<tr><td>Comment your code?</td><td>{$_POST['usecomments']}</td></tr>\n";

 print "<tr><td>State of residence</td><td>{$_POST['state']}</td></tr>\n";

 print "<tr><td>Username</td><td>{$_POST['username']}</td></tr>\n";

 print "<tr><td>Password</td><td>{$_POST['passwd']}</td></tr>\n";

 print "<tr><td>Comments</td><td>{$_POST['comments']}</td></tr>\n";

 print "<tr><td>Promotion code</td><td>{$_POST['promotion_code']}</td></tr>\n";

 ?>

 </table>

 </body>

</html>

If a value for a form widget was not specified – for example, if no text was supplied for the text box named username – the value for that entry in the $_GET or $_POST associative array will be the empty string. The empty string is simply the result of trying to print the value of an undefined key in an associative array.

Menus with multiple selections

When using a menu widget that allows multiple selections, an empty pair of brackets must be added to the name attribute of the select element. Recall the menu definition from the previous XHTML markup:

<select name="state[]" size="5" multiple="multiple">

 ...

</select>

If the brackets are omitted, only the bottom-most selected menu choice will be available via the $_GET or $_POST associative arrays. For example, suppose that three menu options were selected: Alabama, Alaska, and Arkansas.

[image: image1.png]American Samoa
Atizana

Without the brackets, the value of $_POST['state'] is the string "Arkansas". However, if the name attribute’s value for the select element is changed to state[], the value stored in $_POST['state'] is an array with three string elements. There are several things to note here:

· When multiple menu options are selected, the form data sent to the server actually contains multiple name-value pairs. For example, the URL encoding for a GET request may look something like the following:

...&state=alabama&state=alaska&state=arkansas...

· The value of $_POST['state'] will be an array even if only one item in the menu is selected. In this case $_POST['state'] will be an array with one element.

· Arrays will be covered in a later document. However, there are two concepts worth mentioning at this point.

1. If you call print() with an array, the output will be Array. Here is how the output may appear in a browser:

[image: image2.png]| D

State of residence ay

2. To display the contents of an array, use print_r() – meaning “print recursively”. The output format is rather crude, but it allows you to see the contents of the array. The modified line of PHP code and example browser output follows:

print "<tr><td>State of residence</td><td>";

print_r($_POST['state']);

print "</td></tr>\n";

[image: image3.png]|~ QTUIENL your code: es

[state of residence [Array (T0]= al [1] = ak [2]=> ar)
T

1

· The requirement of modifying the name attribute seems to be unique to PHP. For example, Perl’s CGI interface automatically converts the multiple selections into an array.

Useful string functions

This section lists common PHP functions that manipulate strings in the context of XHTML forms. For more information as well as examples of these functions, use the PHP online reference by visiting http://www.php.net/function, where function is the name of the PHP function of interest.
	Function
	Description

	addslashes($str)
	Replaces single quotes, double quotes, and backslashes in string $str with their escaped equivalents (i.e., \', \", and \\ respectively).

	crypt($str)
	Returns an encrypted version of string $str using the standard Unix DES-based encryption algorithm.

	htmlentities($str)
	Returns a new string where the characters in string $str that are illegal in XHTML (e.g., &, < and ") with their legal equivalents (e.g., &, <, and " respectively).

	html_entity_decode($str)
	Returns a new string where the ampersand-escaped XHTML entities in string $str are replaced with their text equivalents.

	htmlspecialchars($str)
	Returns a new string where ampersands, single quotation marks, double quotation marks, less-than characters, and greater-than characters in string $str are replaced with their legal XHTML equivalents (e.g., &, ', ", <, and > respectively). NOTE: This function only performs a subset of the replacements handled by htmlentities().

	nl2br($str)
	Returns a new string where XHTML line breaks (i.e.,
) are placed before the newline characters in string $str. NOTE: The newline characters are not replaced.

	rawurldecode($str)
	Returns a new string where percent-escaped entities in URL string $str are replaced with their text non-alphabetic equivalents.

	rawurlencode($str)
	Returns a new string where non-alphabetic symbols in string $str are replaced with their percent-escaped equivalents.

	strip_tags($str)
	Returns a new string where all XHTML tags have been removed from string $str.

	stripslashes($str)
	Returns a new string where escaped characters (e.g., \") in string $str are replaced with their text equivalents (e.g., ").

Cross-site scripting

“Cross-site scripting (XSS) is a type of computer security vulnerability typically found in web applications which allow code injection by malicious web users into the web pages viewed by other users” (Wikipedia). There are several types of cross-site scripting, but this section will cover the simplest method – DOM-based XSS.
The Document Object Model (DOM) is a standard for representing XML or HTML documents as a hierarchy of objects. For example, a browser window contains an XHTML document. This document, denoted by the html element, contains a body element, which in turn contains other XHTML elements. In DOM-based XSS, the vulnerability is exploited through client-side scripts (e.g., JavaScript) via the user’s Web browser. These scripts access various parts of the DOM in ways that the user (and the Website’s authors) did not intend. The most common example of a DOM-based XSS vulnerability is to have the user click on a link which takes the user to an unexpected site.

Suppose you are writing PHP code to handle forum posts. Your page has two purposes: to display existing comments/posts by retrieving content from a database, and to provide a Web form to take input from the user (i.e., allowing the user to post to the forum). To keep the coding simple, suppose you decide to store the content of the form input as is into the database. Most of the time, this method will not cause many problems; however, consider the following “post”:
Sort posts by date

A casual user will simply see a link labeled “Sort posts by date.” Given that the user would likely see such a link in a forum, he/she would assume that clicking on the link would perform the desired operation. However, when the link is clicked, the JavaScript assignment statement (i.e., the value of the link’s onclick attribute) takes effect. Two components of the DOM hierarchy are used in the left-hand side of the assignment: the document object and the location object, where the location object contains information about the URL of the document. The location object has member named href that holds the URL of the current Website. If changed, the browser will navigate to the given URL. Thus when the user clicks the link, the user’s Web browser navigates to “http://www.downloadvirus.com”, which would presumably cause unexpected events to occur (e.g., downloading a virus).
If your simplistic PHP code simply queries the database and prints the content of the post, your page opens up the potential for DOM-based XSS. An easy solution to this problem is to “sanitize” the result of the database query via the htmlentities() function. Instead of printing the malicious post as the attacker intended (i.e., XHTML markup), the XHTML characters will be replaced by their entity equivalents:

<a href="#" onclick="document.location.href='http://www.downloadvirus.com'
">Sort posts by date

The above when rendered as XHTML will appear as XHTML on the Web page, but will not function as the attacker intended.
