XHTML Web Page Building Blocks
While Web pages have become increasingly complex, their underlying structure remains remarkably simple. A Web page is made up of text content, references to more complex content, and markup to describe how things should be displayed.

Markup: elements, attributes, and values

Markup information for the document content is included in the document itself. Markup can include formatting instructions or details about relationships between parts. Because the markup is text, the document is universally readable. XHTML has three main types of markup: elements, attributes, and values.

Elements identify document structure and can contain text, other elements, or nothing at all.

· An element containing text: <p>Hello, world!</p>
· A nested boldface element within a paragraph element: <p>I like to be bold</p>
· An element with no content: <hr /> or <hr></hr>
Attributes contain information pertaining to an element. In XHTML, attribute values must always be enclosed in quotation marks.

· Table element that spans four columns (colspan attribute): <td colspan="4">Expense Report</td>
· Image element with a specified file name (src attribute) and width (width attribute):

Elements can be block-level or inline.

· Block-level

· Displayed on a new line (e.g., new paragraph)

· Used for structural parts, such as headers

· Inline

· Displayed on the current line (e.g., boldface this word)

· Mainly used for text

If element X contains element Y, X is the parent element of Y, and Y is the child element of X. For example, <p>I like to be bold</p>, the parent element is the paragraph element (p) and the child element is the boldface element (b).

XHTML requires that elements be properly nested, meaning that you cannot terminate a parent element without terminating the children elements.

Correct: <p>I like to be bold</p>
Incorrect: <p>I like to be bold</p> (need to end the boldface element first)

Web page content

The content is basically anything you can type. There are a few exceptions:

· Extra spaces or tabs are converted to a single space.

· Newlines are ignored. If you want to force a line break, use the
 element.

· Special characters (e.g., vowels with accents) need special character entity references, for example é (è) and © (©).

· The ampersand has a special meaning, so if you need an ampersand use &.

· Less than (<) and greater than (>) signs frequently confuse the HTML parser because they begin and end elements. Hence you should use their special character entity references, < and > instead. For example, write #include <stdio.h> rather than #include <stdio.h>. The semicolon after the character reference tells the parser not to insert a space in the output. For example, #include < stdio.h> will be displayed as “#include < stdio.h>”, which is not what was intended.

Other non-text elements, such as links, images, Adobe Flash animations, sound files, movies, etc. are directives to HTML telling it to do something such as go to another URL or import a file into the page.
File names and URLs

Most Web content lives in a file on disk. A few things to keep in mind about file names:

· File names are case sensitive. MyWebpage.html is different than mywebpage.html.

· Extensions should match the content. For example, .html is used for Web pages, .jpg is used for JPEG images, etc.

A URL (uniform resource locator) is an address of some content that the browser should display. Most file-based URLs have three parts: scheme, server name, and path.

· Schemes tell the browser how to deal with the remainder of the URL. Examples are http and ftp.

· The server name is the server on which the desired resource is located. For example in http://www.google.com, www.google.com is the server name.

· The path describes how to get to the desired file on the server. For example, in http://www.utk.edu/libraries/index.html, libraries/index.html is the path telling the browser we want the file index.html in the libraries directory.

Here are some other URL examples:

· Newsgroup: news:soc.culture.catalan
· Email link: mailto:help@cs.utk.edu

· Local file: file:///c|/path/home.html

Absolute URLs specify the entire path to a file, including the scheme, server name, path, and the file name itself. Think of this as a complete street address – no matter where a letter is sent from, the post office will be able to find where to deliver the message. Relative URLs specify how to get to a resource from your current location. An analogy would be “go three blocks and turn right.”

Use absolute URLs when

· Referencing a file on another server.

· Linking to FTP sites, newsgroups, and email addresses (e.g., anything not HTTP).

Use relative URLs when

· Referencing a file in the same directory as the current file.

· Referencing files on the same server as the current file.

HTML versus XHTML

HTML 4 and XHTML 1.0 for the most part use the same elements, attributes, and values – the difference is the syntax.

· XHTML requires html, head, and body elements and DOCTYPE.

· All elements must be closed, even empty elements.

· Attribute values must be enclosed in quotation marks.

· XHTML is case-sensitive (all lowercase).

Advantages of using XHTML:

· The markup is consistent, well-structured, and free of non-standard tags. These properties make the markup easier to edit, format with cascading style sheets, convert into a database, and to adapt to other systems (e.g., mobile phone browsers).

· XHTML is the new standard for Web pages.

· XHTML is more likely to be properly and consistently supported by current browsers, on all platforms.

XHTML versions

There are three versions of XHTML:

1. Strict: only elements of XHTML are allowed; useful for taking advantage of connecting to databases, working with styles, easily being updated for future systems.

2. Transitional: some elements that will be deprecated are still allowed; useful when the markup includes deprecated elements.

3. Frameset: allows frames; this will eventually be phased out.

You can state the version for your Web document by using the DOCTYPE declaration. XHTML validation tools can then determine if your markup is correct for the XHTML version you chose.

Strict XHTML Page Declaration
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

</html>

Transitional XHTML Page Declaration
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

</html>

Frameset XHTML Page Declaration
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

</html>

Visit the World Wide Web Consortium (W3C) Web site, http://www.w3.org, for more information about DOCTYPE and valid values for DOCTYPE.
Default display of XHTML

Each Web browser has a default method of displaying each kind of XHTML element. These methods may differ slightly, but the basic concepts are maintained. For example, a level-one header (h1) will be larger than a level-three header (h3).

However, the specific formatting for XHTML elements may not be the same between browsers. For example, h1 may be 24pt Times on one browser and 22pt Arial on another. Controlling the display of XHTML elements is done using cascading style sheets (CSS).

Cascading style sheets (CSS)

XHTML provides the basic structure, and CSS defines the appearance of a Web page. A style sheet is made up of one or more rules. Each rule is comprised of a selector, which identifies the parts of the Web page that should be affected, and one or more declarations, which specify the formatting that should be applied.

The simplest selector is the name of an XHTML element, such as h3 or p. More complex rules can apply to an entire class of elements, or even all descendants of an element.

p {

 font-family: "Helvetica", sans-serif;

 font-weight: bold;

 color: #3366cc;

}

In the above example, there is one selector/rule (p), three declarations (font-family, font-weight, and color), and property values for each declaration (property values appear after the colons).

Note: CSS requires that opening elements (such as p) have closing elements. Singleton elements such as img are not required to explicitly have a closing element (e.g.,).

If more than one style rule applies to a given element, a cascade principle is used to take into account inheritance, specificity, and location to determine which rule applies. Inheritance occurs when a child element takes on properties of its parents. For example, if you want all h1 elements to be blue with a red border, any elements within the h1 element will be blue but will not individually have a red border (because color is inherited, but borders are not). Specificity means that the more specific the selector, the stronger the rule. For example, suppose one rule states that all h1 elements should be blue and a second rule states that all h1 elements whose class attribute is french should be red. Then the second rule will override the first rule for all h1 elements whose class is french. Note that id attributes are even more specific than class attributes. Location is used to break ties between inheritance and specificity. For example, locally defined rules (within the element itself via the style attribute) have higher precedence.

Each CSS property has different rules about what values it can accept:

Predefined values: a finite list of values for a given attribute. For example, the display property can only be set to block, inline, list-item, or none For example, border: none;.

Lengths and percentages: values with a quantity and a unit, with no spaces between them. For example, 10px as in padding-left: 10px; pixels (px) are relative to the resolution of the monitor. There are some absolute units, such as inches (in), centimeters (cm), millimeters (mm), and points (pt). In general, these should be used when the size of the output is known (e.g., printed page). Percentage values are relative to some other value. For example, font-size: 80%; means the font for this element is 80% of the parent’s font size.

Bare numbers: a number without a unit. For example, line-height: 1.5;.

URLs: the URL of another file, denoted by url(somefile.ext). For example, background: url(mybackgrund.jpg);. URLs are relative to the location of the style sheet and not the location of the XHTML document.

Colors: a color for an element, which can be declared in one of four ways:

1. Predefined color names (16), such as navy, olive, red, …

2. RGB (red/green/blue) percentages: color: rgb(35%,0%,55%);
3. RGB hexadecimals: color: #59007f;
4. Shortened RGB hexadecimals: color: #f34; is equivalent to color: #ff3344;
