MySQL: Database Fundamentals
Introduction

Databases are a key component of most Web-based business, storing everything from basic user credentials (e.g., username and password) to complex purchase histories. There are several facets of database systems that are courses in their own right and are beyond the scope of this document – for example, database implementation, and database normalization (i.e., designing tables to minimize the duplication of data).
The typical setup for a database management system (DBMS) is based on a database server, which handles the storage of data and provides the interface between the users (i.e., programmers) and the data itself. There are several DBMSs available – for example, Oracle, Microsoft SQL Server, and MySQL. Regardless of the specific “flavor” of DBMS, they each provide interaction through some form of SQL (Structured Query Language) – a standardized language for interacting with a DBMS. The topics presented in this document are technically SQL-based; however, they are presented in the context of a MySQL DBMS.
This document describes how to perform basic data manipulation tasks with an existing MySQL DBMS via the command-line interface. The most common method of communicating with a DBMS is through APIs provided by a given programming language (e.g., Java, Perl, or PHP). Rather than covering MySQL syntax in the context of PHP, the specifics for communicating with a MySQL database server within PHP will be discussed in a later document. The MySQL topics covered here will be applicable regardless of which language is used to interact with the DBMS.
This document describes how to: 

1. use the MySQL command-line interface,

2. select data from a table,

3. apply conditions to data selection,

4. add new data,

5. modify existing data,

6. delete data, and

7. combine data from multiple tables.
Using the MySQL command-line interface
The MySQL command-line interface is provided by the mysql application, which is available on any Linux EECS/Claxton machine. Some additional parameters are required to connect to a database:
mysql -h hostname -u username dbname -p

· hostname – the name of the server running the MySQL DBMS

· username – the login name required to access the DBMS
· dbname – the name of the specific database to access; a DBMS typically has several databases

· -p – option to prompt for a password

Once connected to the DBMS, you will be provided with a prompt at which you can enter MySQL statements.

Welcome to the MySQL monitor.  Commands end with ; or \g.

Your MySQL connection id is 8174

Server version: 5.0.37-log Source distribution

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> 
To exit the command-line interface, type exit.
Selecting data from a table

To select rows of information from a database table, use the SELECT statement. (NOTE: MySQL is not case-sensitive; however, SQL keywords are typically notated in uppercase.) The generic form for the SELECT statement is

SELECT column[,column2,...] FROM table
Suppose you have a table named employees that contains three columns: employee_id (integer), first_name (string), and last_name (string). To obtain a list all of the employees’ last names, use the following MySQL statement:

mysql> SELECT last_name FROM employees;

+--------------+

| last_name    |

+--------------+

| Knuth        |

| Page         |

| Lerdorf      |

| Ritchie      |

+--------------+

NOTE: The semicolon at the end of the statement is a requirement of the command-line interface, not of MySQL itself. Multiple columns can be selected by separating their names with commas. 

mysql> SELECT last_name,first_name FROM employees;

+--------------+------------+

| last_name    | first_name |

+--------------+------------+

| Knuth        | Donald     |

| Page         | Larry      |

| Lerdorf      | Rasmus     |

| Ritchie      | Dennis     |

+--------------+------------+
To select all columns from a table, use the asterisk (*) as the column identifier.

mysql> SELECT * FROM employees;

+-------------+------------+--------------+

| employee_id | first_name | last_name    |

+-------------+------------+--------------+

|           2 | Donald     | Knuth        |

|           3 | Larry      | Page         |

|           5 | Rasmus     | Lerdorf      |

|           6 | Dennis     | Ritchie      |

+-------------+------------+--------------+

A useful modifier for the SELECT statement is DISTINCT, which allows you to select columns where each row is unique. For example, suppose you have a table named orders that contains three columns: product_id (integer), name (string), and employee_id (integer). This table contains information about products were ordered by certain employees. Here’s what the table looks like:
mysql> SELECT * FROM orders;

+------------+---------+-------------+

| product_id | name    | employee_id |

+------------+---------+-------------+

|        234 | printer |           2 |

|        865 | chair   |           5 |

|        657 | table   |           5 |

+------------+---------+-------------+

To determine which employees have placed orders, you could use the following MySQL statement:

mysql> SELECT employee_id FROM orders;

+-------------+

| employee_id |

+-------------+

|           2 |

|           5 |

|           5 |

+-------------+
Because employee “5” has placed two orders, his employee ID appears in two rows. To obtain a list of employee IDs without duplicates, use the DISTINCT keyword:

mysql> SELECT DISTINCT employee_id FROM orders;

+-------------+

| employee_id |

+-------------+

|           2 |

|           5 |

+-------------+

Providing conditions when selecting data
To select rows from a table based on certain conditions, use the WHERE clause. The generic form for the SELECT statement with a WHERE clause is

SELECT column FROM table WHERE column condition value
The most common condition operators are =, !=, <, >, >=, <=, and LIKE.

Suppose you have a table named products that contains three columns: product_id (integer), name (string), and unit_cost (floating-point). To obtain a list all of the products that cost less than $100, use the following MySQL statement:

mysql> SELECT * FROM products WHERE unit_cost < 100;

+------------+---------+------------+

| product_id | name    | unit_cost  |

+------------+---------+------------+

|        865 | chair   |      79.99 |

|        657 | table   |      94.99 |

+------------+---------+------------+

When providing conditions for character strings, use single-quotation marks around the value. The following example will list all products whose name is exactly chair.

mysql> SELECT * FROM products WHERE name = 'chair';

+------------+---------+------------+

| product_id | name    | unit_cost  |

+------------+---------+------------+

|        865 | chair   |      79.99 |

+------------+---------+------------+

The LIKE condition is used when an exact match for character strings is not required. The wildcard character is the percent sign (%). To find all products whose names begin with the letter “c”, use the following statement:
mysql> SELECT * FROM products WHERE name LIKE 'c%';

+------------+-------------+------------+

| product_id | name        | unit_cost  |

+------------+-------------+------------+

|        865 | chair       |      79.99 |
|        953 | calculator  |      12.99 |
+------------+-------------+------------+

To find all products whose names contain the character sequence “ar” anywhere in the string, use the following statement:
mysql> SELECT * FROM products WHERE name LIKE '%ar%';

+------------+-------------+------------+

| product_id | name        | unit_cost  |

+------------+-------------+------------+

|        314 | markers     |       1.99 |
|        979 | calendar    |       3.49 |

|        350 | archivebox  |      12.39 |
+------------+-------------+------------+

Inserting new data
To insert data into a database table, use the INSERT statement. The generic form for the INSERT statement is

INSERT INTO table VALUES (value1,value2,...)
To add another employee to the database, use the following MySQL statement:

mysql> INSERT INTO employees VALUES (9, 'Jimmy', 'Wales');

Query OK, 1 row affected (0.00 sec)
Note that the order in which the values are provided is important. If you are unsure about the order, you can use the DESCRIBE statement:

mysql> DESCRIBE employees;

+-------------+-------------+------+-----+---------+-------+

| Field       | Type        | Null | Key | Default | Extra |

+-------------+-------------+------+-----+---------+-------+

| employee_id | int(3)      | YES  |     | NULL    |       |

| first_name  | varchar(10) | YES  |     | NULL    |       |

| last_name   | varchar(15) | YES  |     | NULL    |       |

+-------------+-------------+------+-----+---------+-------+

You can also specify the columns into which data should be inserted.
mysql> INSERT INTO employees (last_name, first_name) VALUES ('Yang', 'Jerry');
Query OK, 1 row affected (0.00 sec)

The above example inserts 'Yang' into the last_name column, and 'Jerry' into the first_name column. Because no value was specified for the employee_id column, it remains empty (i.e., null).

mysql> SELECT * FROM employees;

+-------------+------------+--------------+

| employee_id | first_name | last_name    |

+-------------+------------+--------------+

|           2 | Donald     | Knuth        |

|           3 | Larry      | Page         |

|           5 | Rasmus     | Lerdorf      |

|           6 | Dennis     | Ritchie      |
|           9 | Jimmy      | Wales        |

|             | Jerry      | Yang         |
+-------------+------------+--------------+

Modifying existing data

To modify existing data in a table, use the UPDATE statement. The generic form for the UPDATE statement is

UPDATE table SET column = newvalue WHERE column = value
Suppose you want to change the name of product 314 to be 'whiteboard markers' instead of 'markers'.
mysql> UPDATE products SET name = 'whiteboard markers' WHERE product_id = 314;

Query OK, 1 row affected (0.00 sec)

You can also modify multiple columns at once. The following example changes the name and price of product 314.

mysql> UPDATE products SET name = 'whiteboard markers', unit_cost = 2.19 WHERE product_id = 314;

Query OK, 1 row affected (0.00 sec)

Deleting rows from a table

To delete data from a table, use the DELETE statement. The generic form for the DELETE statement is

DELETE FROM table WHERE column = value
To delete product 314 from the table of existing products, use the following MySQL statement:
mysql> DELETE FROM products WHERE product_id = 314;

Query OK, 1 row affected (0.00 sec)

To remove all rows from a table, omit the WHERE clause:

mysql> DELETE FROM products;

Query OK, 7 rows affected (0.00 sec)

Combining data from multiple tables

Data is typically stored across multiple tables within a database. For example, you may have one table that stores information about employees, and another table that lists orders made by employees. A basic SELECT statement as described previously is not sufficient to select data from multiple tables (e.g., a list of employees and what orders they placed). Consider the following example:
mysql> SELECT employees.last_name, orders.name FROM employees, orders WHERE employees.employee_id = orders.employee_id;
+-----------+---------+

| last_name | name    |

+-----------+---------+

| Knuth     | printer |

| Lerdorf   | table   |

| Lerdorf   | chair   |

+-----------+---------+
The dot-separator allows you to specify columns names within a certain table. You can also use the WHERE clause to be more specific about the query. To list the products purchased by an employee with the last name 'Lerdorf', use the following MySQL statement:

mysql> SELECT orders.name FROM employees, orders WHERE employees.employee_id = orders.employee_id AND employees.last_name = 'lerdorf';

+-------+

| name  |

+-------+

| chair |

| table |

+-------+
