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Abstract—We consider the problem of transmitting a Gaussian
source on a slowly fading Gaussian channel, subject to the mean
squared error distortion measure. The channel state information
is known only at the receiver but not at the transmitter. The
source is assumed to be encoded in a successive refinement man-
ner, and then transmitted over the channel using the broadcast
strategy. In order to minimize the expected distortion at the
receiver, optimal power allocation is essential. We propose an
efficient algorithm to compute the optimal solution in linear
time O(M), when the total number of possible discrete fading
states isM . Moreover, we provide a derivation of the optimal
power allocation when the fading state is a continuum, using the
classical variational method. The proposed algorithm as well as
the continuous solution is based on an alternative representation
of the capacity region of the Gaussian broadcast channel.

Index Terms—Broadcast strategy, joint source-channel coding,
power allocation, successive refinement.

I. I NTRODUCTION

Fading channel occurs naturally as a model in wireless com-
munications. For slow fading, the receiver can usually recover
the channel state information (CSI) accurately, however the
transmitter only knows the probability distribution of CSI,
but not the realization. Such uncertainty can cause significant
system performance degradation, and the broadcast strategy
was used in [1], [2] as an approach to combat this detrimental
effect. In this strategy, some information can only be decoded
when the fading is less severe, which is superimposed on
the information that can still be decoded when the fading is
more severe. Thus the receiver can decode the information
adaptively according to the realization of the channel state.
The similarity to the degraded broadcast channel [3] (see also
[4]) is clear in this context, particularly for channels with a
finite number of fading states. Generalizing this view, when
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the fading gain can take continuous values, the receiver can
be taken as a continuum of users in a broadcast channel.

The broadcast strategy naturally matches the successive
refinement (SR) source coding framework [5]–[7], as the
information decodable under the most severe fading is pro-
tected the most, and should be used to convey the base layer
information in the SR source coding. As more information can
be decoded when the channel is subject to less fading, more
SR encoded layers can be decoded, and the reconstruction
quality improves. In this work, we consider this scheme for
a quadratic Gaussian source on a single input single output
(SISO) channel. In order to minimize the expected distortion at
the receiver, it is essential to find the optimal power allocation
in the broadcast strategy, and this is indeed our focus. It
is worth noting that though in [2] the objective function to
be maximized is the expected rate, the cross layer design
approach of combining SR source coding with broadcast
strategy was in fact suggested (though not treated) in that
work.

Initial effort on this problem was made by Sesiaet al. in [8],
where the broadcast strategy coupled with SR source coding
was compared with several other schemes. The optimization
problem was formulated by discretizing the continuous fading
states, and an algorithm was devised when the source coding
layers are assumed to have the same rate. This algorithm, how-
ever, does not directly yield the optimal power allocation when
the fading states are discrete and pre-specified, nor does itgive
a closed-form solution for the continuous case. Etemadi and
Jafarkhani also considered this problem in [9], and provided
an iterative algorithm by separating the optimization problem
into two sub-problems. In two interesting recent works [10],
[11], Ng et al. provided a recursive algorithm to compute the
optimal power allocation for the case withM possible fading
states, with worst case complexity ofO(2M ); moreover, by
directly taking the limit of the optimal solution for the discrete
case, a solution was given for the continuous case optimal
power allocation, under the assumption that the optimal power
allocation is concentrated in a single interval. Similar problems
were considered in [12]–[15] in the high SNR regime from the
perspective of distortion exponent.

Our contribution in the present work is two-fold: firstly,
we propose a new algorithm that can compute in linear time,
i.e., ofO(M) complexity, the optimal power allocation for the
case withM fading states; secondly, we provide a derivation
of the continuous case optimal power allocation solution by
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the classical variational method [16]. Our derivation for the
continuous case solution is more general than that in [11] as
it removes the restriction that the optimal power allocation
is concentrated in a single interval. Both the algorithm and
the derivation rely on an alternative representation of the
Gaussian broadcast channel capacity, which appeared in [17].
The dual problem of minimizing power consumption subject to
a given expected distortion constraint is also discussed. Several
specific examples are given as illustrations.

The broadcast strategy coupled with SR source coding can
be considered as a source-channel separation approach with
optimized cross-layer resource allocation. More explicitjoint
source-channel coding approaches, for example those in [13],
[18]–[20], may provide better performance in the scenario
being considered, however this aspect is beyond the scope
of the present work. We nevertheless note that the algorithm
proposed in the current work is extremely efficient, which
makes it possible to use the broadcast strategy coupled withSR
coding as a benchmark for future investigation into this joint
source-channel coding problem. This is indeed useful sincean
outer bound which is non-trivial yet simple to compute is so
far lacking despite extensive research (see [20] and the com-
ments therein). Moreover, as pointed out recently by Steinberg
[21], in certain applications such as medical imaging, it is
important to enforce the requirement that the reconstruction
is a deterministic function of the source observation (the
common knowledge requirement), and under this requirement,
the broadcast strategy coupled with SR source coding is in fact
optimal for the Gaussian source and channel setting considered
in this work.

The rest of the paper is organized as follows. In Section
II we give the system model and some preliminaries, and
in Section III the new algorithm is provided and its opti-
mality is proved; the dual problem of minimizing the power
consumption subject to an expected distortion constraint is
also considered. In Section IV we give the derivation for
the continuous case solution, and Section V some special
cases of fading distributions are considered. Finally Section
VI concludes the paper.

II. SYSTEM MODEL AND PRELIMINARIES

We assume a memoryless source{Xi}∞i=1 is generated
independently and identically according to a zero-mean unit
variance real-valued Gaussian distribution. The channel is
given by the model

Yc = hXc + Nc, (1)

whereXc is the complex-valued channel input andYc is the
channel output,h is the (random) multiplicative channel fading
coefficient with|h|2 = s, andNc ∼ CN (0, 1) is the zero-mean
complex circularly-symmetric independently and identically
distributed (i.i.d.) Gaussian additive noise.

We consider a slowly fading channel model, where each
channel codeword consists of a length-lc channel symbol
block, and the realization of the multiplicative fading co-
efficient is independent across blocks. Source symbols of
block length-ls are encoded into a single channel codeword,
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Fig. 1. The broadcast approach for minimizing the expected distortion.

and there is a source channel mismatch factor defined as
b = 2lc/ls; this mismatch factor can also be interpreted as
the bandwidth expansion/compression factor. This system is
illustrated in Fig. 1. Each channel block is assumed to be
sufficiently long to approach channel capacity, as well as
the rate-distortion limit, however still much shorter thanthe
dynamics of the slowly fading process. It is clear that without
loss of generality each channel use in the complex domain is
equivalent to two channel uses in the real domain subject to
the same power constraint as

Yr =
√

sXr + Nr, (2)

whereXr is the real-value channel input, ands ∈ R is the
(random) channel power gain, andNr ∼ N (0, 1) is the zero-
mean unit-variance real-valued Gaussian additive noise inthe
channel. From here on, we shall adopt this equivalent channel,
and it is clear that the definition of source-channel mismatch
factor b already takes this into consideration.

For the case with a finite number of fading states, theM
possible power gains in an increasing orders1 < s2 < ... <
sM are distributed according to a probability mass functionpi

such that
∑M

i=1 pi = 1. The transmitter has an average power
constraintP , and if powerPi is allocated to thei-th layer in
the broadcast strategy, thei-th layer channel rateRi is given
by

Ri =
1

2
log(1 +

siPi

1 + si

∑M
j=i+1 Pj

)

=
1

2
log(1 +

Pi

1/si +
∑M

j=i+1 Pj

), (3)

where we use natural logarithm. From the second expression,
the equivalence to broadcast on a set of channels with different
noise variances is clear. Letni , 1/si, which impliesn1 >
n2 > ... > nM are the equivalent noise power on the channels.
The layers corresponding to smaller values ofsi’s (and larger
values ofni’s) will be referred to as the lower layers, which
is consistent with the intuition that they are used to transmit
the better protected lower layers of the SR source coding.

Since the Gaussian source is successively refinable [6], the
receiver with power gainsi can thus reconstruct the source
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within distortion

Di = exp(−2b
i
∑

j=1

Rj). (4)

Combining (3) and (4), the problem we wish to solve is es-
sentially the following minimization over the power allocation
(P1, P2, ..., PM ),

min
M
∑

i=1

pi





i
∏

j=1

(1 +
Pj

1/sj +
∑M

k=j+1 Pk

)





−b

(5)

subject to: Pi ≥ 0, i = 1, 2, ...,M,
∑M

i=1 Pi ≤ P.

When the fading state is continuous, the density of the
power gain distribution is then given byf(s), which is as-
sumed to be continuous, and differentiable almost everywhere.
In this case, the task is to find a power allocation density
function P (s), or its cumulative function, which minimizes
the expected distortion.

III. T HE NEW ALGORITHM AND ITS OPTIMALITY

In this section, we consider the optimization problem when
the channel has a finite number of fading states. The difficulty
is that the optimization problem as defined in (5) is not
convenient for computation due to its complicated form. In fact
it is not immediately clear that the function being optimized
is a convex function of(P1, P2, ..., PM ), nevertheless it is
indeed clear that the rate-region of the degraded broadcast
channel is always convex. Thus our approach is to convert
the problem given in (5) into a convex problem, by utiliz-
ing another characterization ofR = (R1, R2, ..., RM ) for
the Gaussian broadcast channel capacity. Such an alternative
characterization was given in [17], and we start by translating
it into our notation.

A. Rederivation of the equivalent representation

The rate vectorR on the boundary of the Gaussian
broadcast capacity region corresponds to a power allocation
P1, P2, ..., PM . Solving the value ofPi in terms of the rate
vectorR gives an equivalent system of equations, and through
further simplification, we have1

∑

i≥m

Pi =
∑

i≥m

(ni − ni+1) exp



2

i
∑

j=m

Rj



− nm,

m = 1, 2, 3, ...,M, (6)

where we definenM+1 , 0. The RHS of the above equation
is monotonically decreasing inm, hence for any non-negative
rate vectorR, provided that (6) is satisfied form = 1, i.e.,

P =
∑

i≥1

(ni − ni+1) exp



2

i
∑

j=1

Rj



− n1,

1The equations given in [17] appears to have a minor typographical error
that the inner summation was given as

∑i

j=1
Rj .

there must be a power allocation such that (6) is satisfied for
all m, and it is on the boundary of the capacity region. Thus
we can alternatively characterize the capacity region as

C =







(R1, R2, ..., RM ) : Rm ≥ 0, m = 1, 2, ...,M,

M
∑

i=1

(ni − ni+1) exp



2

i
∑

j=1

Rj



− n1 ≤ P







. (7)

Moreover, the function on the left hand side of this inequality
is convex in(R1, R2, ..., RM ), which is clear by observing its
sum-exponential form.

We can now reformulate the optimization problem as a
standard convex programming problem:

min
M
∑

i=1

pi exp(−2b
i
∑

j=1

Rj)

subject to: Ri ≥ 0, i = 1, 2, ...,M,
∑M

i=1(ni − ni+1) exp
(

2
∑i

j=1 Rj

)

− n1 ≤ P.

If the optimal rate allocationR can be found, then the
corresponding optimal power allocation can be recovered from
this solution.

B. The Lagrangian formulation and the algorithm

Now consider the Lagrangian form

L =

M
∑

i=1

pi exp(−2b

i
∑

j=1

Rj) −
M
∑

i=1

νiRi

+ λ





M
∑

i=1

(ni − ni+1) exp



2

i
∑

j=1

Rj



− n1 − P



 . (8)

The Karush-Kuhn-Tucker (KKT) condition requires that
∂L

∂Rm
= 0 for the optimal solution [22], which subsequently

yields

∂L

∂Rm
= −

M
∑

i=m

2bpi exp(−2b

i
∑

j=1

Rj)

+ 2λ

M
∑

i=m

(ni − ni+1) exp



2

i
∑

j=1

Rj



− νm = 0,

m = 1, 2, ...,M. (9)

Taking the difference between∂L
∂Rm

= 0 and ∂L
∂Rm+1

= 0 gives

− 2bpm exp(−2b
m
∑

j=1

Rj) + 2λ(nm − nm+1) exp



2
m
∑

j=1

Rj





= νm − νm+1, m = 1, 2, ...,M, (10)

where for convenience we defineνM+1 , 0. λ ≥ 0 and
νm ≥ 0, m = 1, 2, ...,M are the Lagrangian multipliers. Fur-
thermore, the complementary slackness requiresνmRm = 0,
m = 1, 2, ...,M ; the power constraint should be satisfied with
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equility, or λ = 0. Note that the set of equations in (10) also
implies the set of equations (9), and thus they are equivalent.

Since the optimization problem is a convex programming
problem, the KKT condition is both necessary and sufficient
for an optimal solution [22]. Clearly if the quantity

κm ,
bpm

nm − nm+1

is monotonically increasing, we can setνi = 0 for i =
1, 2, ...,M and find an explicit solution, provided that the
power constraint is not violated; however this is not true
in general. Nevertheless, theκ factor plays an extremely
important role, which in fact reveals certain inherent structure
of the layers.

We observe the following simple fact to motivate the
algorithm: whenever two consecutive layers yield twoκ factors
that are not increasing, some combination of the layers must
occur such that one layer is assigned zero rate. This is because
otherwise the resulting rate vector would include negative
rates, which is invalid. To be more precise, two consecutive
layers are said to be combined when the higher layer is not
allocated any positive rate (power), such that the two layers can
be treated as a single aggregated layer with the sum-probability
mass, and the power gain of the lower layer.

The following algorithm can be used to find the optimal rate
allocation. In the sequel, when a layer is assigned zero rate, it
will be called ineffective; otherwise it will be calledeffective.
For simplicity, defineκM+1 = ∞. A layer is labeledactive if
it is a result of combination of layers in the immediate previous
loop. An intuitive explanation is given in the next subsection;
the readers are encouraged to browse the algorithm below and
read the intuitive explanation first in their initial reading.

1) Combination of layers to reach a monotonicκ sequence.

a) Assign∆nm = nm − nm+1 and calculateκm for
m = 1, 2, ...,M . Label all the layers effective and
active. Letr = 1.

b) Denote the lower effective neighbor of layeri as
i−, and its upper effective neighbor layer asi+.
Start from ik = i1, for all the ar active layers
i1, i2, ..., iar

:

i) If ik > 1 and κi−
k

≥ κik
: label layer ik

ineffective and combine it with itscurrent
lower effective neighbor layerj. Updatepj =
pj + pik

, ∆nj = ∆nj + ∆nik
, as well asκj

values accordingly. Labelj as active.
ii) If κik

≥ κi+
k

: label layer i+k ineffective and
combine it with its current lower effective
neighbor layerj. Updatepj ,∆nj andκj values
accordingly. Labelj as active.

iii) If k < ar, incrementk by 1 and return to
(1(b)i).

c) If after the above loop, any layer remains active:
incrementr by 1 and return to (1b).

2) Denote the number of effective layers byK. For all
the effective layersik, k = 1, 2, ...,K, let exp(2Rik

) =

κ
1/(b+1)
ik

/κ
1/(b+1)
ik−1

; in other words for all the effective

layers we haveexp(2
∑ik

j=1 Rj) = κ
1/(b+1)
ik

. Assign the
ineffective layers rate zero.

3) Check power consumption.

a) Let iko
be the lowest effective layer, and define

Pn = P + niko
.

b) Let

λ1/(b+1) =

∑K
k=ko

(nik
− nik+1

) exp
(

2
∑ik

j=1 Rj

)

Pn
.

c) If

bpiko

λ(niko
− niko+1

)
≥ 1, (11)

then reduceRiko
by 1

2(b+1) log λ, and the algorithm
terminates; otherwise, labeliko

ineffective (Riko
=

0), incrementko by 1, updatePn = P + niko
, and

return to (3b).

C. The correctness of the algorithm and its complexity

Intuitively, the layers are classified into two kinds: those
with κ value lower than or equal to their lower neighbors
(the first kind), and those withκ value higher than their
lower neighbors (the second kind); see Fig. 2. The algorithm
combines the first kind layers to their lower neighbors in each
step, and then continues this operation until no layers of the
first kind exist in the resulting sequence. The resulting rate
allocation is valid, if theκ sequence is indeed monotonically
increasing, the rates are non-negative and the power constraint
is satisfied.

A few more comments are in order: 1) In Step 1, we seek to
form a monotonic sequence ofκi by combining consecutive
layers, such that Step 2 can provide meaningful rates. To do
this, we combine (remove) all the layers that are monotonically
non-increasing. Only the neighbors of those layers whoseκ
values were updated in the immediate previous loop need to
be considered, because this is the only case that a change
of classification may occur. 2) In Step 3, we need to assure
that the total power is used up by adjusting the value ofλ.
However, this has to be done such that the lowest layer still
has positive rate, which is the condition in (11). If this is not
possible, the lowest effective layer is eliminated; this condition
is checked repeatedly for the reduced layers until it is satisfied.
3) In the loop of Step (1b), we emphasize that the layer is
combined with its current effective lower layer, because the
layer i−k (or ik) may become ineffective in the previous steps.

The complexity of the algorithm isO(M). Step 2 is clearly
of O(M) complexity. In Step 3,λ is updated less thanM
times. A close inspection of the summation in the numerator
reveals that each time it can be done withO(1) complexity,
and thus Step 3 is ofO(M) complexity. The complexity of
Step 1 is more subtle. The value ofκi can be computed in
O(M) complexity. Denote the number of loops in Step 1 as
r0; denote the number of layers withκ value lower than or
equal to its lower neighbor (the first kind) in the r-th loop
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i

i-th layer1 2
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i

i-th layer1 2

The 2nd-loop

i

2

The 3rd-loop
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Fig. 2. An example of the algorithm: the lines with dots on the top are
the layers of the first kind, and dashed lines are the active layers after the
previous loop; the active layers are not labeled before the first step. In the
example, Step-1 of the algorithm terminates after three loops. At each loop,
some layers are combined with its lower neighbor layers (and removed).

as br. The complexity in ther-th loop is bounded by linear
term of br, howeverbr ≤ 2ar, because only the active layers
and their lower effective neighbor layers can be of the first
kind. Moreover, notice that

∑r0

r=2 ar ≤ M , since it is upper
bounded by the total number of layers made ineffective, further
implied by the fact that a layer is active only when a layer
is made ineffective and combined into it. Clearly we have
a1 = M , and thus

∑r0

1 ar ≤ 2M . The overall complexity is
thusO(M), and then the conversion into power allocation is
of O(M) complexity.

We note that in order to achieve theO(M) complexity of
the given algorithm, a fairly involved data structure is needed.
More precisely, a doubly-linked list to update effective layers,
coupled together with a singly-linked list to update the active
layers (which can be combined into one linked-list) appears
most appropriate. However, even a naive implementation with-
out such data structure is ofO(M2) complexity, since Step 1
terminates within at mostM iterations, and each iteration has
maximum complexityO(M).

D. The optimality of the algorithm

Since we are solving a convex optimization problem, and it
obviously satisfies Slater’s condition, the KKT conditionsare
sufficient for optimality. Thus the proof for optimality reduces
to finding νi ≥ 0, that satisfy (10) and the complementary
slackness conditionνiRi = 0, i = 1, 2, ...,M , with the
solution found by the algorithm; note that the power constraint
is already satisfied with equality.

Theorem 1: The algorithm given above finds the optimal
rate allocation.

Proof: Since for the effective layersRik
> 0 by def-

inition, we may setνik
= 0 to satisfy the complementary

slackness condition. There are several cases that we need to
consider next:

1) The ineffective layers above the lowest effective layer.
2) The (originally effective) layers which are rendered

ineffective by the power constraint, i.e., the layers that
become ineffective in Step 3.

3) Other ineffective layers below the lowest effective lay-
ers, i.e., the layers that become ineffective in Step 1 and
are below the lowest effective layer.

For the first case, suppose some of these layers are between
two effective layersI and J , I ≤ J ; if there are ineffective
layers above the highest effective layer, we takeJ = M + 1.
From Step 3 of the algorithm we can essentially assign the
value ofρ , exp(

∑I
j=1 2Rj) such that

− 2b[pI + pI+1 + ... + pJ−2 + pJ−1]ρ
−b

+ 2λ(nI − nJ )ρ = 0. (12)

Since layerI and J are effective, we setνI = νJ = 0. By
expanding the condition in (10), we have

− 2bpkρ−b + 2λ(nk − nk+1)ρ − νk + νk+1 = 0,

k = I, I + 1, ..., J − 1. (13)

Though the above equations (under the solution found by the
algorithm) uniquely specifyνi, I < i < J , it is not clear yet
whether those values are indeed non-negative. We need the
following lemma to proceed, the proof of which is given after
the proof of the theorem.

Lemma 1: For the combined layers between layer-I and
layer-J , given anyj∗ such thatI ≤ j∗ ≤ J − 2, we have

κ−
j∗ ,

b
∑j∗

i=I pi
∑j∗

i=I ∆ni

≥
b
∑J−1

i=j∗+1 pi
∑J−1

i=j∗+1 ∆ni

, κ+
j∗ . (14)

Now we are ready to prove the non-negativeness ofνi’s
for the first kind of ineffective layers. The value ofνi, where
I < i∗ < J , is also specified by

−2b

J−1
∑

i=i∗

piρ
−b + 2λ

J−1
∑

i=i∗

∆niρ − νi∗ = 0, (15)

−2b

i∗−1
∑

i=I

piρ
−b + 2λ

i∗−1
∑

i=I

∆niρ + νi∗ = 0. (16)
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To seeνi∗ thus specified is indeed non-negative, supposeνi∗ <
0 was true, then

−2b

J−1
∑

i=i∗

piρ
−b + 2λ

J−1
∑

i=i∗

∆niρ = νi∗ < 0 (17)

Lemma 1 asserts that fori∗ we have

κ−
i∗−1 =

b
∑i∗−1

i=I pi
∑i∗−1

i=I ∆ni

≥ κ+
i∗−1 =

b
∑J−1

i=i∗ pi
∑J−1

i=i∗ ∆ni

. (18)

which implies that

− 2b
i∗−1
∑

i=I

piρ
−b + 2λ

i∗−1
∑

i=I

∆niρ

≤ −2b

J−1
∑

i=i∗

piρ
−b + 2λ

J−1
∑

i=i∗

∆niρ < 0 (19)

However this subsequently implies

−2b
J−1
∑

i=I

piρ
−b + 2λ

J−1
∑

i=I

∆niρ < 0, (20)

which would contradict (12); alternatively we see that (19)
would contradict (16) if the supposition was true. This proves
that for the first kind of ineffective layers, the givenνi’s are
non-negative.

We next consider the second kind of ineffective layers.
Suppose the originally effective layersik, ik+1,...,ik+h become
ineffective due to the power constraint. Since they are all
effective originally, we have by the monotonicity of theκ
factor

bp∗ik

nik
− nik+1

≤
bp∗ik+1

nik+1
− nik+2

≤ ... ≤
bp∗ik+h

nik+h
− nik+h+1

, (21)

where we have usedp∗ to denote the accumulated probability
mass after the combining of layers in Step 1 but before Step
3. By Step 3 of the algorithm we have

λ >
bp∗ik+h

nik+h
− nik+h+1

. (22)

Thus we only need to show the following equations specify a
set of non-negativeνi’s for i = ik, ik+1, ..., ik+h:

−2bp∗ik+h
+2λ(nik+h

− nik+h+1
) −νik+h

= 0,

−2bp∗ik+h−1
+2λ(nik+h−1

− nik+h
) −νik+h−1

+ νik+h
= 0,

... ...

−2bp∗ik+1
+2λ(nik+1

− nik+2
) −νik+1

+ νik+2
= 0,

−2bp∗ik
+2λ(nik

− nik+1
) −νik

+ νik+1
= 0. (23)

From the first equation, we get

νik+h
= −2bp∗ik+h

+ 2λ(nik+h
− nik+h+1

),

and it is non-negative because of (22). From the second
equation, we have

νik+h−1
= −2bp∗ik+h−1

+ 2λ(nik+h−1
− nik+h

) + νik+h
, (24)

which is also non-negative, because−2bp∗ik+h−1
+

2λ(nik+h−1
− nik+h

) ≥ 0 due to (21) and (22), and the

last term is non-negative from the proceeding argument.
Continue this line of argument, then it is clear

νik
≥ νik+1

≥ ... ≥ νik+h
≥ 0. (25)

By this we conclude thatνi’s for the second kind of ineffective
layers are indeed non-negative.

For the third kind of ineffective layers, we might have to
split any given layer in theik, ik+1, ..., ik+h layers, in order
to recover the original layers as well as the correspondingν
values. However, from any one of equations in (23), it is seen
that

−2bp∗ik+a
+ 2λ(nik+a

− nik+a+1
) = νik+a

− νik+a+1
≥ 0. (26)

Now following the same line of argument as the first kind
ineffective layers, we can indeed find the desired non-negative
ν values for all the split layers in Step 1 of the algorithm. This
completes the proof for the optimality of the algorithm.

It now remains to prove Lemma 1, before which we first
give the following useful facts.

Lemma 2: When all the quantities are positive

• If
a1

b1
≥ a2

b2
≥ ... ≥ an

bn
≥ e1

f1
≥ e2

f2
≥ ... ≥ en

fn
,

then we have
∑

ai
∑

bi
≥
∑

ei
∑

fi
.

• If
a1

b1
≥ a2

b2
≥ ... ≥ an

bn
≥ c1 + c2

d1 + d2
≥ e1

f1
≥ e2

f2
≥ ... ≥ em

fm
,

and
c1

d1
≥ c2

d2
,

then we have
∑

ai + c1
∑

bi + d1
≥
∑

ei + c2
∑

fi + d2
.

These facts are straightforward by elementary calculations and
thus the detailed proof is omitted.

Proof of Lemma 1
We use an induction approach and show this fact is true after

any loop in Step 1 of the algorithm. The statement is clearly
true after the first loop, by the given monotonicity of theκ
sequence for any combined layer before the operation, and
the first fact in Lemma 2. Then considerr-th step for Step
(1b). For a given indexj∗, let κ−

j∗,r−1 and κ+
j∗,r−1 denote

the appropriate quantities after stepr − 1; i.e., the quantities
defined in Lemma 1 in the intervalI to J for which layerj∗ is
in. Denote the updated layer that the original layerj∗ is in as
i∗. By the procedure, suppose the aggregated layers after the
(r − 1)-th loop i1 < i2 < ... < in < i∗ < j1 < j2 < ... < jm

are to be combined into a new aggregated layer in ther-th
loop, which satisfy

κi1 ≥ κi2 ≥ ... ≥ κin
≥ κi∗ ≥ κj1 ≥ κj2 ≥ ... ≥ κjm

, (27)

as well as

κ−
j∗,r−1 ≥ κ+

j∗,r−1. (28)
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Then by the second fact in Lemma 2, we haveκ−
j∗,r ≥ κ+

j∗,r.
This induction is apparently true for any loop in Step 1 of the
algorithm, thus the lemma is proved.

E. The dual problem

We can also consider the dual problem of minimizing the
power consumption for a given expected distortion value. This
can be done with essentially no change to the problem as

min

M
∑

i=1

(ni − ni+1) exp



2

i
∑

j=1

Rj



− n1 , P ∗,

subject to: Ri ≥ 0, i = 1, 2, ...,M,
∑M

i=1 pi exp(−2b
∑i

j=1 Rj) ≤ D.

The Lagrangian form is almost without change as

L = λ

M
∑

i=1

pi exp(−2b

i
∑

j=1

Rj) −
M
∑

i=1

νiRi

+





M
∑

i=1

(ni − ni+1) exp



2

i
∑

j=1

Rj



− n1 − P



 . (29)

The following condition similar to (10) can be derived, where
againνM+1 , 0

− 2λbpm exp(−2b

m
∑

j=1

Rj) + 2(nm − nm+1) exp



2

m
∑

j=1

Rj





= νm − νm+1 = 0, m = 1, 2, ...,M. (30)

From this form we see that the first and second step of the
algorithm can be used without any change, and in the third
step of the algorithm, only very minor changes are needed for
this dual problem. For simplicity we combine the layers into
the aggregated ones and take the aggregated probability mass
asp∗i .

3a) Let iko
be the lowest effective layer, and defineD′ =

D − p∗iko
.

3b) Let

λ1/(b+1) =
D

∑kK

k=ko
pi exp

(

−2b
∑ik

j=1 Rj

) . (31)

3c) If
λbpiko

(niko
− niko+1

)
≥ 1,

then reduceRiko
by 1

2(b+1) log λ; otherwise, labeliko

ineffective (Riko
= 0), incrementko by 1, updateD′ =

D′ − p∗iko
, and return to 3b).

The proof of correctness and optimality remains virtually
unchanged, and the complexity is also unchanged.

IV. VARIATIONAL DERIVATION OF THE CONTINUOUS CASE

SOLUTION

We next turn our attention to the case of continuum of
layers, which is in fact the case considered in [2]. To facilitate
understanding, we first give a less technical derivation under
the assumption that the optimal power allocation concentrates
on a single interval of the power gain range, and show that
this is indeed true for some probability density functionf(s).
This simple derivation provides important intuitions for the
general case, based on which a more general derivation is
then given. For simplicity, we first assumef(s) has support
on the entire non-negative real line[0,∞); later it is shown
that this assumption can be relaxed.

A. A simple derivation for the single interval solution

In this sub-section we give a simple derivation under the
assumption that there is a unique interval[s1, s2] which the
power allocation concentrates on. The optimization problem
can be reformulated as follows. Define

I(i) = exp(

i
∑

j=1

2Rj). (32)

We take the number of layers to infinity, and the objective
function the constraint become integrals. The functionI(s)
we need to find is

I(s) = exp(2

s
∫

0

R(u)du) (33)

where we convert back to the power gains instead of noise
powern, andR(s) is the rate density associated with a fading
gain s. It is clear we can replace the inequality constraint by
equality constraint without loss of optimality by writing the
continuous counterpart of (6) as

∞
∫

0

s−2exp(2

∫ s

0

R(u)du)ds =

∞
∫

0

I(s)

s2
ds = P. (34)

The term to be minimized is

D(I) =

∞
∫

0

f(s) exp

(

−2b

∫ s

0

R(u)du

)

ds =

∞
∫

0

f(s)

I(s)b
ds.

(35)

Note the additional condition thatI(s) has to be monotonically
non-decreasing, and the boundary conditionsI(0) = 1.

Ignoring the positivity constraintI ′(s) ≥ 0 for now, take

J(s, I, I ′) =
f(s)

I(s)b
, G(s, I, I ′) =

I(s)

s2
,

the optimization problem can thus be written in the usual
variational notation as

minimize
∫ ∞

0

J(s, I, I ′)ds, (36)

subject to
∫ ∞

0

G(s, I, I ′)ds = P. (37)
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Next we assume there is a unique interval[s1, s2] for
which power allocation is non-zero. Under this assumption,
the objective function reduces to

D(I) =

∫ ∞

0

J(s, I, I ′)ds

=

∫ s2

s1

f(s)

I(s)b
ds + F (s1) +

1 − F (s2)

I(s2)b
, (38)

where F (s) is the cumulative distribution function of the
fading gain random variable, i.e.F (s) =

∫ s

0
f(u)du, and the

constraint becomes

P (I) =

∫ ∞

0

G(s, I, I ′)ds

=

∫ s2

s1

I(s)
1

s2
ds +

I(s2)

s2
− 1

s1
= P. (39)

We can write the Lagrangian formL(I) = D(I)+λ(P (I)−
P ). To find the extremal solution, we consider an increment
q(s) on I(s), and the increment of the Lagrangian functional is
given by∆(q) = L(I +q)−L(I). Take an arbitrary increment
q(s) with q(s) = 0 for s /∈ [s1, s2] and q(s1) = 0, and the
principal linear part of the increment given in the following
equation should be zero (see (27) p. 25, and pp. 42-50 in [16])

0 = δL(I) =

∫ h2

h1

(

JI + λGI −
d

ds
[JI′ + λGI′ ]

)

q(s)ds

+ (JI′ + λGI′)|s=s2
q(s2) +

[−b(1 − F (s2))

I(s2)b+1
+ λ

1

s2

]

q(s2)

(40)

where the last term in the summation is due to the terms
outside of the integration in (38) and (39). Sinceq(s) can
be arbitrary, we have

JI + λGI −
d

ds
[JI′ + λGI′ ] = 0, (41)

with

JI =
−bf(s)

Ib+1(s)
, GI =

1

s2
, JI′ = GI′ = 0, (42)

which further simplifies to

I(s) =

(

bf(s)s2

λ

)1/(b+1)

. (43)

At this point, it is clear that forI ′(s) ≥ 0 to be true, which is
necessary forI(s) to be a valid solution,f(s)s2 should have
non-negative derivative in any interval such that (43) holds; in
fact for any interval that positive rate is allocated to,f(s)s2

should have strictly positive derivative such thatI(s) is strictly
increasing. If there is only one interval over the support off(s)
wheref(s)s2 has strictly positive derivative, then the single
interval solution assumption is indeed true. Now sinceq(s2)
can be arbitrary, at this variable end (pp. 25-29 in [16]) a
necessary condition for an extremum is

−b(1 − F (s2))

I(s2)b+1
+ λ

1

s2
= 0, (44)

which gives

λ =
bs2(1 − F (s2))

I(s2)b+1
. (45)

BecauseI(s1) = 1, λ = bf(s1)s
2
1, the expression ofI(s)

gives one boundary condition

1 − F (s2) = f(s2)s2. (46)

The lower bounds1 is determined by the power constraint,
from which we have
∫ ∞

s1

I(s)

s2
ds =

∫ s2

s1

(

f(s)

f(s1)s2
1

)1/(b+1)

s−2b/(b+1)ds

+
1

s2

(

f(s2)s
2
2

f(s1)s2
1

)1/(b+1)

= P +
1

s1
, (47)

where in the second equation we split the integral into two
parts partitioned bys = s2. We have thus found the unique
extremal solution

I(s) =

(

f(s)s2

f(s1)s2
1

)1/(b+1)

(48)

in [s1, s2] with the boundary conditions specified by (46) and
(47).

To find the corresponding power allocation, defineT (s) =
∫∞

s
P (r)dr. We derive from (6) that

T (s) =

∞
∫

s

I(r)

I(s)r2
dr − 1

s

=

(

f(s2)s
2
2

f(s)s2

)1/(b+1)
1

s2
+

∫ s2

s

(

f(r)r2

f(s)s2

)1/(b+1)
1

r2
dr − 1

s
.

(49)

For the continuous case being considered, the relation between
T (s) andI(s) can also be derived directly by solving a linear
differential equation without using (6), i.e., without taking the
limit of the alternative channel capacity representation with a
finite number of users; see the Appendix for detail. In fact,
the derivation given in the Appendix can lead naturally to the
constraints in (34) and (39).

Through some basic algebra, it can now be shown that
(49) is in fact the same solution as that in [11]. Thus the
limit of the optimal solution of the discrete case in [11]
indeed converges to the extremal solution derived through the
classical variational method. Moreover, the variational method
derivation directly asserts thatf(s)s2 has a positive derivative
for any positive power allocation interval; this conditionwas
however lacking in the derivation in [11].

B. Derivation of the general case solution

Next we provide a more technical and complete derivation
for the general case when the power allocation does not
necessarily concentrate in a single interval of the range of
power gain. From the physical meaning ofI(s), we assume
that I(s) is a piecewise smooth continuous and differentiable
function, and it is within this function space we seek the
optimal solution. With the positivity condition ofI ′(s) ≥ 0,
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the Lagrangian functional subject to optimization can be
written as

L(I) =

∞
∫

0

(

f(s)

I(s)b
+ λ

I(s)

s2
− I ′(s)v(s)

)

ds (50)

wherev(s) is an arbitrary non-negative function; see page 249
in [23]. The general extremum and subsidiary conditions are
then similar as in the last sub-section, and we state here for
completeness

−b
f(s)

I(s)b+1
+

λ

s2
+ v′(s) = 0 (51)

and the complementary slackness conditions are

λ





∞
∫

0

I(s)

s2
ds − P



 = 0, (52)

I ′(s)v(s) = 0 (53)

We thus have the general solution forI(s) in some interval
whereI ′(s) 6= 0,

I(s) =

(

bf(s)s2

λ

)1/b+1

, (54)

which has the same form as given in the previous sub-section.
We first observe from the complementary slackness in (53)
that for anyI ′(s) 6= 0, it must be true thatv(s) = 0. Thus for
any interval[a, b] for which I ′(s) 6= 0, it is seen that

− bf(s)

Ib+1(s)
+ λ

1

s2
= 0. (55)

This implies thatλ 6= 0, because otherwise,I(s) = ∞ in this
interval, which clearly violates the power constraint. Then the
first complementary slackness condition requires

∫ ∞

0

I(s)
1

s2
ds − P = 0. (56)

Because for any interval[a, b] for which I ′(s) > 0, we have

bf(s)

Ib+1(s)
= λ

1

s2
, (57)

it is clear thatf(s)s2 has to have positive derivatives in any
interval which are allocated with positive rate (and power); if
on the other hand this condition is not satisfied, thenI ′(s) = 0
for this interval, and accordinglyv(s) can be strictly positive.

Given the above discussion, it is clear that disjoint intervals
with positive rate (power) allocation are separated by intervals
whereI ′(s) = 0. Moreover, it will be shown in the sequel that
only a single continuous allocation interval may occur within
a single interval where the derivative off(s)s2 is strictly
positive; we shall assume that the number of such intervals
is finite. For simplicity, assume that the first such intervalhas
the form [0, a], i.e., the lower boundary is zero; this condition
can be relaxed as shown in the next sub-section. Denote there
are a total ofK positive power allocation intervals, and let
the i-th positive power allocation interval be specified by
[si,l, si,u], and label the positivef(s)s2 derivative interval it

belongs to as thei-th such interval, specified by[li, ui]; i.e.,
[si,l, si,u] ⊆ [li, ui].

For a piecewise smooth continuous extremal solution, the
Weierstrass-Erdmann (corner) conditions must be satisfied
(page 63 in [16]). These are given for every corner point
sc ∈ {si,l, si,u}K

i=1. The two conditions are

LI′ |s=s−

c
= LI′ |s=s+

c

(L − I ′LI′) |s=s−

c
= (L − I ′LI′) |s=s+

c

. (58)

By substitutingL(I) from (50) into the corner conditions (58),
we get

v(s−c ) = v(s+
c ) (59)

and
(

f(s)

I(s)b
+ λ

I(s)

s2
+ I ′(s)v(s) − I ′(s)v(s)

)∣

∣

∣

∣

s=s−

c

=

(

f(s)

I(s)b
+ λ

I(s)

s2
+ I ′(s)v(s) − I ′(s)v(s)

)∣

∣

∣

∣

s=s+
c

(60)

which further simplifies into

f(sc)

I(s−c )b
+ λ

I(s−c )

s2
c

=
f(sc)

I(s+
c )b

+ λ
I(s+

c )

s2
c

(61)

where (59) and (61) impose certain continuity conditions
on v(s) and on I(s), respectively. Thusv(s) = 0 for
s ∈ [si,l, si,u] for all i = 1, 2, ...,K, and is non-negative
otherwise; from (59), we havev(s+

i,u) = 0 and v(s−i,l) = 0
for all i = 1, 2, ...,K.

The continuity ofv(s) at the corner points does not rely
on the presumption that in the extremal solution, the power
allocation in a single interval[ln, un] with positive s2f(s)
derivative does not have within it more than one disjoint
positive power allocation sub-interval. We now prove that the
presumption is indeed true. Suppose otherwise, which implies
the range(c, d) ⊆ [ln, un] is assigned withI ′(s) = 0, and
there existc′ ∈ [ln, c) andd′ ∈ (d, un] such thatI ′(s) > 0 in
[c′, c] and [d, d′]. We have that

v(c) = v(d) = 0, (62)

v′(s) =
bf(s)

Ib+1(c)
− λ

1

s2
for s ∈ (c, d) (63)

bf(c)

Ib+1(c)
− λ

1

c2
= 0, (64)

where (62) is due to the preceding discussion, (63) is due
to (51), and (64) is due to (57), the continuity ofI(s) and
the continuous assumption onf(s). Sinces2f(s) has strictly
positive derivative in(c, d), we have that in this interval

v′(s) =
bf(s)

Ib+1(c)
− λ

1

s2
> 0. (65)

But this contradicts (62). Thus the supposition can not be true,
and there can be only one effective allocation interval in each
such first kind interval[ln, un].

In order to determine all corner pointssc ∈ {si,l, si,u}K
i=1,

we rewrite the original functional (50), as a piecewise opti-
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δL(I) =

K
∑

i=1







si,u
∫

si,l

(

DI −
d

ds
DI′

)

q(s)ds + DI′ |s=si,u
q(si,u) − DI′ |s=si,l

q(si,l)







+

K
∑

i=1

[

−b
F (si+1,l) − F (si,u)

I(si,u)b+1
+ λ

(

1

si,u
− 1

si+1,l

)]

q(si,u)

=

K
∑

i=1







si,u
∫

si,l

(−bf(s)

Ib+1(s)
+ λ

1

s2

)

q(s)ds






+

K
∑

i=1

[

−b
F (si+1,l) − F (si,u)

I(si,u)b+1
+ λ

(

1

si,u
− 1

si+1,l

)]

q(si,u) (67)

mization problem, and derive the variation.

L(I) = F (s1,l) − λ
1

s1,l
−

s1,l
∫

0

I ′(s)v(s)ds

+

K
∑

i=1







si,u
∫

si,l

(

f(s)

I(s)b
+ λ

I(s)

s2
− I ′(s)v(s)

)

ds







+

K
∑

i=1







F (si+1,l) − F (si,u)

I(si,u)b
+ λI(si,u)

(

1

si,u
− 1

si+1,l

)

−
si+1,l
∫

si,u

I ′(s)v(s)dh






(66)

where we definesK+1,l , ∞, and thusF (sK+1,l) = 1. The
variation ofL(I) in (66) w.r.t. an arbitrary functionq(s), which
satisfiesq′(s) = 0 for s /∈ [si,l, si,u], is given by (67) at the
top of this page, whereD(I) ,

f(s)
I(s)b + λ I(s)

s2 − I ′(s)v(s).
Note that forI(s) to remain a continuous function, it must be
true thatq(si,u) = q(si+1,l).

Hence the general solution extremal expression is the same
as that afore-specified, with an additional condition, arising
from the variable end-point problem similar as in the previous
sub-section. This condition is given by

−b
F (si+1,l) − F (si,u)

I(si,u)b+1
+ λ

(

1

si,u
− 1

si+1,l

)

= 0, (68)

By using the general solution forI(s) within [si,l, si,u] as
given in (54), the condition (68) becomes

F (si+1,l) − F (si,u)

f(si,u)s2
i,u

−
(

1

si,u
− 1

si+1,l

)

= 0. (69)

From the continuity conditions on the corner points, i.e.
I(si,u) = I(si+1,l) the next condition is obtained

f(si+1,l)s
2
i+1,l = f(si,u)s2

i,u. (70)

For i = K, the condition (69) simplifies into

1 − F (si,u) = f(si,u)si,u, (71)

which is (46) whenK = 1.

To summarize, the extremal solution is given by

I(s) =

(

f(s)s2

f(s1,l)s2
1,l

)1/(b+1)

, (72)

in the intervals[si,l, si,u], i = 1, 2, ...,K, and the boundary
values are determined by

F (si+1,l) − F (si,u)

1/si,u − 1/si+1,l
= f(si,u)s2

i,u = f(si+1,l)s
2
i+1,l,

i = 1, 2, ...,K, (73)

as well as the power constraint
∞
∫

0

I(s)

s2
ds = P (74)

These are the necessary conditions to determine an extremum.

C. Comments on relaxing the support condition

Until this point, we have assumed that the pdff(s) has
support on the entire non-negative real line[0,∞], such that
the conditions (69) and (70) (or (46) and (47)) are sufficient
to determine boundary values. This assumption can be relaxed
to the case thatf(s) has a compact support, however certain
complication will be introduced. To illustrate this, we next treat
one special case where the support off(s) is on a single finite
interval [sa, sb] and s2f(s) has a unique positive derivative
interval [l1, u1], such thatsa ≤ l1 and sb ≥ u1; the same
approach can be extended to more general support. Without
loss of generality, we can assumesa = l1 and sb > u1. We
shall follow the less general derivation as given in Section
IV-A for simplicity. The main difference now is thatI(s1) = 1
is not necessarily true ifs1 = sa, i.e., it is possible forI(s)
to be discontinuous atsa.

In order to resolve this difficult, first assumes1 > sa, then
indeed we haveI(s1) = 1, from which (46) and (47) follow. If
the solution given by them indeed satisfiesl1 < s1 ≤ s2 ≤ u1,
then an extremal solution is specified by these boundaries.
If on the other hand this is not true, thens1 = sa and the
condition I(s1) = 1 is not necessarily true. Denote the value
asI(sa) , I0. In this case, i.e.s1 = sa, the solution in[s1, s2]
can be written as

I(s) = I0

(

f(s)s2

f(sa)s2
a

)1/(b+1)

. (75)
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The boundary condition (46) can still be derived. The other
boundary condition derived from the power constraint is now
given by

I0

∫ s2

s1

(

f(s)s2

f(sa)s2
a

)1/(b+1)
1

s2
ds

+ I0

(

f(s2)s
2
2

f(sa)s2
a

)1/(b+1)(
1

s2
− 1

sb

)

− 1

s1
− P = 0.

(76)

Thus for this case thats1 = sa, the solution is given by
(75) with the value ofs2 and boundary function valueI0

determined by (46) and (76).

V. NUMERICAL EXAMPLES

In this section, several examples are solved using the
solution developed in the previous sections. We start with one
example motivated by multiple access with user interference,
then discuss the Rayleigh fading case, finally a simple example
is given for the general solution when the optimal power
allocation does not concentrate in a single interval.

A. Interference multiple access channel

Consider here an additive white Gaussian noise (AWGN)
channel with interfering users. The goal by a single user is
to find the optimal power allocation of transmitting in the
presence of unknown interference by the other users. The
level of interference depends on the number of users using the
multiple access channel at a given transmission block. Such
channel models were considered, for example, in [24]–[26].
More precisely, consider the following model

y = x +
N
∑

i=1

zi∆i + w (77)

where y is the received signal, andx is the multi-layer
transmitted real-valued signal the user can design subjectto
an average power constraintP . The additive interferencezi’s
are assumed to be Gaussian distributed, which are the signals
sent by other users in this time slot. Finally,w ∼ N (0, 1) is
the additive noise in the channel. Every interference element
zi is associated with an average power levelσ2

i , and a random
binary variable∆i to determine whether useri is transmitting
at this time slot.∆i is assumed to be i.i.d. Bernoulli random
variable withPr(∆i = 1) = pon. The exact realization of the
∆i’s are not known to userj 6= i, however it is assumed that
the value ofpon is known. Since the receiver has no knowledge
of zi and cannot attempt joint decoding, it has to treatzi as
AWGN when decodingx. Thus an equivalent channel model
representation may be useful,

y =
1

√

1 +
N
∑

i=1

σ2
i ∆i

x + w′, (78)

wherew′ ∼ N (0, 1). The equivalent fading gainsj is then

sj =

(

1 +

N
∑

i=1

σ2
i ∆i

)−1

, j = 1, .., 2N . (79)

It is clear that there are2N possible fading gain states, which
correspond to all possible states of∆i. The optimal power
allocation for multi-layer coding can be found by the discrete
layering algorithm presented in Section III-B.

We demonstrate by examples of the optimal power alloca-
tion for two cases of interference distributions. Figures 3.(a) -
3.(d) show the fading gain discrete densitypi, the optimal
discrete power allocationPi and Ii , exp(−2

∑i
j=1 Rj),

respectively, where there areN = 4 interfering users; the
transmit power isP = 0 dB; the bandwidth expansion is
b = 2; σi, andpon are

σ = (0.95, 0.45, 0.55, 0.81), pon = 0.3 (80)

The second example is given in Figures 4.(a) - 4.(d), where
there areN = 6 interfering users, withσi, andpon specified
by

σ = (0.49, 0.91, 0.51, 0.87, 0.81, 0.46), pon = 0.5 (81)

where the transmit power and bandwidth expansions are the
same in both examples.

The results may just as well be generalized to the case that
pon is different for every user, depending on the scheduling
method in the system.

B. The Rayleigh fading case

We consider here the SISO Rayleigh fading channel. Start-
ing with the outage approach minimal distortion, which is a
single level coding distortion bound. This is later compared to
the minimal average distortion with continuous broadcasting.

1) Outage approach:In case there is only a single source
code and channel code, the transmission scheme is known
as the outage approach. When channel conditions allow, the
data can be completely recovered, otherwise an outage event
occurs. Let the transmission rate beR1

R1 =
1

2
log(1 + s1P ), (82)

where s1 can be considered as the fading gain threshold.
For any s ≥ s1, a rateR1 may be achieved, otherwise a
failure occurs such thatD1 = 1. This is in contrast with
the continuous broadcasting, where there is an outage region
with different decodable rates depending on the fading gain
realization. The obtained distortion when decodingR1 is
D1 = (1 + s1P )−b. Under this coding strategy, one can also
optimize the expected distortion

D1,opt = min
s1∈[0,∞)

F (s1) + (1 + Ps1)
−b (1 − F (s1)) . (83)

For a flat Rayleigh fading channel, the fading power dis-
tribution is F (s1) = 1 − e−s1 , the average distortion then
corresponds to

D1,opt = min
s1∈[0,∞)

D(s1)

= min
s1∈[0,∞)

1 − e−s1 + (1 + Ps1)
−be−s1 . (84)
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Fig. 3. An example of AWGN interference channel withN = 4 interfering users (pon = 0.3, b = 2, P = 0dB). (a) pdf of the fading gainsi, denoted by
pi. (b) The associatedκi. (c) Optimal discrete power allocationPi. (d) Optimal cumulative rate exponentI(si).

The condition for extremum, i.e.dds1
D(s1) = 0, yields the

following polynomial,

xb+1 − x + Pb = 0 (85)

where x , 1 + Ps1. An explicit solution fors1,opt cannot
be derived analytically in general for everyb. However, for
particular cases it can be analytically solved. For example, for
b = 1, solving (85) gives,

s1,opt(b = 1) =
1

2P

(

1 +
√

1 + 4P
)

− 1/P. (86)

2) Continuous case broadcast:We consider the average
achievable distortion for a SISO Rayleigh fading channel.
Consider the following fading gain distribution,

F (s) = 1 − exp
(

−s

s

)

, (87)

wheres is the expected fading gain power. For this distribution
the optimal power allocation is single interval continuous, and
zero outside the interval[s1, s2]. That can be immediately
observed fromf(s)s2 by taking its first derivative

d

ds
f(s)s2 = (

2s

s
− s2

s2 ) exp
(

−s

s

)

, (88)

where d
dsf(s)s2 ≥ 0 on a single intervals ∈ [0, 2s]. Then the

upper bounds2 ∈ [0, 2s] is determined by (46), which reduces
to

exp
(

−s2

s

)

=
s2

s
exp

(

−s2

s

)

(89)

yielding s2 = s. Solving (47) gives the other boundary value
s1, denoted ass1,opt; the condition (47) does not lead to an
analytical expression, but can be solved numerically. Thenthe
general expression forI(s), for the Rayleigh fading channel
is given by

I(s) =



















1 s ≤ s1,opt
(

s2

s2
1,opt

exp
(

− s−s1,opt

s

))1/(b+1)

s1,opt < s ≤ s
(

s2

s2
1,opt

exp
(

− s−s1,opt

s

))1/(b+1)

s > s

.

In Fig. 5, the average distortion bounds for Rayleigh
fading channels are demonstrated for three different values
of bandwidth expansion values (b = 0.5, 1, 2). For every
bandwidth expansion, the minimal average distortion of the
outage approach and broadcast approach are compared. It can
be noticed that the largerb is, the larger is the broadcast
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Fig. 4. An example of AWGN interference channel withN = 6 interfering users (pon = 0.3, b = 2, P = 0dB). (a) pdf of the fading gainsi, denoted by
pi. (b) The associatedκi. (c) Optimal discrete power allocationPi. (d) Optimal cumulative rate exponentI(si)..
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Fig. 5. Minimal average distortion, a comparison of outage approach and
broadcast approach, forb = 0.5, 1, 2.

gain, which can be defined as the SNR gain of the broadcast
approach over the outage approach for the same average
distortion value. Thus the benefit of the broadcast approach
compared to the outage directly depends on the system design

parameterb.

C. An example with more than one power allocation interval

Consider the following piece-wise smooth pdff(s)

f(s) =















(70cf (s − 0.1) + 10)/s2 s ∈ [0.1, 1.1)
(−70cf (s − 1.1) + 80)/s2 s ∈ [1.1, 2.1)
(390cf (s − 2.1) + 10)/s2 s ∈ [2.1, 3.1)
(−80cf (s − 3.1) + 400)/s2 s ∈ [3.1, 4.1]

(90)

wherecf is a normalizing constant such that
∫∞

0
f(s)ds = 1,

which can be computed to becf ≈ 274.0645. Fig. 6 shows
pdf f(s), f(s)s2 and the optimal continuous power allocation
densityP (s) with P = 0 dB. It is worth noting that at the
upper bound for the first effective power allocation interval and
the lower bound of the second interval, the values off(s)s2

is exactly the same, as required by (73).

VI. CONCLUSION

We considered the optimal power/rate allocation in the
broadcast strategy, in order to minimize the expected distortion
of a quadratic Gaussian source transmitted over a fading
channel. A linear complexity algorithm is proposed, and its



14

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

s

 

 

f(s)

f(s)s2

P(s)

Fig. 6. Optimal power allocationP (s) for f(s) given in (90) with the total
powerP = 0dB.

correctness and optimality are proved. Moreover, a derivation
for the optimal allocation with a continuum of layers is given,
using the classical variational method.

APPENDIX

In this appendix, we derive directly the relation between
the power allocation and the rate allocation when there exists
a continuum of users, without relying on the alternative
representation of the Gaussian broadcast channel capacitywith
a finite number of users given in [17]. This also provides
naturally the power constraint for the continuous case given
in (34) and (39).

Denote the complementary power distribution function by

T (s), i.e.,T (s) =
∞
∫

s=0

P (r)dr as defined above (49); note that

without loss of generality we may assumeT (0) = P . Then
the incremental broadcasting rate is

R(s)ds =
1

2
· −sT ′(s)ds

1 + sT (s)
. (91)

By using the definitionI(s) = exp(2
s
∫

0

R(u)du) as in (33),

we have the following relation
s
∫

0

R(u)du =
1

2
log(I(s)) (92)

R(s)ds =
1

2

I ′(s)ds

I(s)
. (93)

In order to express the power constraint as a function ofI(s),
we need to solve the equation obtainable from (91) and (93),

I ′(s)ds

I(s)
=

−sT ′(s)ds

1 + sT (s)
. (94)

The above simplifies by definingQ(s) ,
I′(s)
I(s) into

T ′(s) + Q(s)T (s) = −Q(s)/s. (95)

The solution for the above standard first order differential

equation is given by

T (s) = c1 exp{−
∫ s

0

duQ(u)}

+ exp{−
∫ s

0

duQ(u)} ·
c2
∫

s

dr
Q(r)

r
exp{

∫ r

0

duQ(u)} (96)

wherec1, c2 are constants. By substitutingQ(u) = I′(s)
I(s) , the

expression forT (s) is simplified as,

T (s) = c1
1

I(s)
+

1

I(s)
·

c2
∫

s

dr
I ′(r)

r
. (97)

Following the boundary conditionT (s → ∞) = 0 it is
required to setc1 = 0, and by definitionT (s) ≥ 0 for every
s ≥ 0, thereforec2 = ∞, hence

T (s) =
1

I(s)
·

∞
∫

s

dr
I ′(r)

r
. (98)

The above expression is identical to (49), which is verified by
another step of of integration in parts, that is

T (s) =
1

I(s)
[
I(r)

r
]r=∞
r=s +

1

I(s)

∞
∫

s

dr
I(r)

r2
(99)

=
1

I(s)

∞
∫

s

dr
I(r)

r2
− 1

s
. (100)

It is worth noting that this formula holds generally regardless
the number of positive power allocation intervals. In the single
interval case, whereT (s) is a decreasing function over[s1, s2],
and T (s) = P for s ≤ s1 and T (s) = 0 for s ≥ s2,
(99) becomes the subsidiary condition as given in (39). In
the general case, (99) is equivalent to (56).
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