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Abstract—We consider the problem of transmitting a Gaussian the fading gain can take continuous values, the receiver can
source on a slowly fading Gaussian channel, subject to the meanpe taken as a continuum of users in a broadcast channel.
squared error distortion measure. The channel state informatio The broadcast strategy naturally matches the successive
is known only at the receiver but not at the transmitter. The . .
source is assumed to be encoded in a successive refinement mar{pflnemgnt (SR) source coding framework [5]_[7_]' a_s the
ner, and then transmitted over the channel using the broadcast information decodable under the most severe fading is pro-
strategy. In order to minimize the expected distortion at the tected the most, and should be used to convey the base layer
receiver, optimal power allocation is essential. We propose an jnformation in the SR source coding. As more information can
efficient algorithm to compute the optimal solution in linear be decoded when the channel is subject to less fading, more

time O(M), when the total number of possible discrete fading .
states is M. Moreover, we provide a derivation of the optimal SR encoded layers can be decoded, and the reconstruction

power allocation when the fading state is a continuum, using the quality improves. In this work, we consider this scheme for
classical variational method. The proposed algorithm as well as a quadratic Gaussian source on a single input single output

the continuous solution is based on an alternative representation (S|SQ) channel. In order to minimize the expected distaréib

of the capacity region of the Gaussian broadcast channel. the receiver, it is essential to find the optimal power alioca
Index Terms—Broadcast strategy, joint source-channel coding, in the broadcast strategy, and this is indeed our focus. It

power allocation, successive refinement. is worth noting that though in [2] the objective function to

be maximized is the expected rate, the cross layer design

approach of combining SR source coding with broadcast

strategy was in fact suggested (though not treated) in that

Fading channel occurs naturally as a model in wireless cooTK- _ o
munications. For slow fading, the receiver can usuallyveco Nitial effort on this problem was made by Sestzal.in [8],
the channel state information (CSI) accurately, however tivhere the broadc_ast strategy coupled with SR source _cod_mg
transmitter only knows the probability distribution of GSIWas compared with several other schemes. The optimization
but not the realization. Such uncertainty can cause signific Problem was formulated by discretizing the continuousrigdi
system performance degradation, and the broadcast straf¥igtes: and an algorithm was devised when the source coding
was used in [1], [2] as an approach to combat this detriment&Y€rs are assumed to have the same rate. This algorithm, how
effect. In this strategy, some information can only be decod€Ver, does not directly yield the optimal power allocatidmew
when the fading is less severe, which is superimposed B fading states are discrete and pre-specified, nor dge®it
the information that can still be decoded when the fading %closed-f_orm solutlo.n for the. contmuou; case. Etemadl_ and
more severe. Thus the receiver can decode the informatifarkhani also considered this problem in [9], and pravide
adaptively according to the realization of the channelestaf" iterative algorithm by separating the optimization jeab
The similarity to the degraded broadcast channel [3] (sse a|MC WO sub-problems. In two interesting recent works [10]
[4]) is clear in this context, particularly for channels wia [11]: Ng et al. provided a recursive algorithm to compute the

finite number of fading states. Generalizing this view, whepPtimal power allocation for the case witf possible fading
states, with worst case complexity 6f(2*); moreover, by
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the classical variational method [16]. Our derivation fbet .
continuous case solution is more general than that in [11] as 1T
it removes the restriction that the optimal power allocatio bs)=p

is concentrated in a single interval. Both the algorithm and =
the derivation rely on an alternative representation of the ,.Y
X"

Better channel

Gaussian broadcast channel capacity, which appearedjin [17 e Re'oeive”
The dual problem of minimizing power consumption subject to ¢ R, X
a given expected distortion constraint is also discussextial . i
given exp _ ; . . D, =exp(2Y R)
specific examples are given as illustrations. . =
. . Receiver 1
The broadcast strategy coupled with SR source coding can

be considered as a source-channel separation approach with
optimized cross-layer resource allocation. More expjigiit  Fig. 1. The broadcast approach for minimizing the expectetbrtisn.
source-channel coding approaches, for example those Jn [13
[18]-[20], may provide better performance in the scenario
being considered, however this aspect is beyond the scope
of the present work. We nevertheless note that the algorithm
proposed in the current work is extremely efficient, whicRnd there is a source channel mismatch factor defined as
makes it possible to use the broadcast strategy coupled®ith® = 2l./ls; this mismatch factor can also be interpreted as
coding as a benchmark for future investigation into thisoi the bandwidth expansion/compression factor. This system i
source-channel Coding prob|em_ This is indeed useful meillustrated in Flg 1. Each channel block is assumed to be
outer bound which is non-trivial yet simple to compute is sgufficiently long to approach channel capacity, as well as
far lacking despite extensive research (see [20] and the cdhe rate-distortion limit, however still much shorter theme
ments therein). Moreover, as pointed out recently by Seemb dynamics of the slowly fading process. It is clear that witho
[21], in certain applications such as medical imaging, it #ss of generality each channel use in the complex domain is
important to enforce the requirement that the reconstnctiequivalent to two channel uses in the real domain subject to
is a deterministic function of the source observation (tH8€ same power constraint as
common knowledge requirement), and under this requirement _
the broadcast strategy coupled with SR source coding isin fa Ve = VX 4 Ny, @
optimal for the Gaussian source and channel setting caesidewhere X, is the real-value channel input, ande R is the
in this work. (random) channel power gain, aid. ~ A/ (0, 1) is the zero-
The rest of the paper is organized as follows. In Sectignean unit-variance real-valued Gaussian additive noigkén
Il we give the system model and some preliminaries, amdhannel. From here on, we shall adopt this equivalent channe
in Section 1ll the new algorithm is provided and its optiand it is clear that the definition of source-channel misimatc
mality is proved; the dual problem of minimizing the powefactorb already takes this into consideration.
consumption subject to an expected distortion constrant i . o .
also considered. In Section IV we give the derivation for FOr the case with a finite number of fading states, itfe
the continuous case solution, and Section V some speé?&lss'ble power gains in an increasing order< s, < ... <
cases of fading distributions are considered. Finally isect 5 aré distributed according to a probability mass funcgion
VI concludes the paper. such th?tZizlpi = 1. The trgnsmltter has an gverage power
constraintP, and if powerP; is allocated to the-th layer in
the broadcast strategy, tligh layer channel rat&; is given

Il. SYSTEM MODEL AND PRELIMINARIES by
We assume a memoryless sourf{&,}>°, is generated 1 s; P;
independently and identically according to a zero-mean uni R = §1Og(1 + 1+ s ZM P‘)
variance real-valued Gaussian distribution. The chansel i ) ! Jg:iﬂ J
given by the model - 3 og(1 + O ZZM - ), 3)
S; i 1
Y, = hX.+ N, (1) J=irl T

) ) ) where we use natural logarithm. From the second expression,
where X. is the complex-valued channel input aiidlis the e equivalence to broadcast on a set of channels with eifter
channel outputh is the (random) multiplicative channel fading,,gise variances is clear Let 2 1/s;, which impliesn; >

. . . 2 . H ’ . . !
coefficient with|2|* = s, andN. ~ CN'(0, 1) is the zero-mean ,, -, are the equivalent noise power on the channels.
complex circularly-symmetric independently and ideriyca The |ayers corresponding to smaller valuess s (and larger
distributed (i.i.d.) Gaussian additive noise. values ofn;’s) will be referred to as the lower layers, which
We consider a slowly fading channel model, where eagh consistent with the intuition that they are used to trahsm

channel codeword consists of a lengthchannel symbol the petter protected lower layers of the SR source coding.
block, and the realization of the multiplicative fading co-

efficient is independent across blocks. Source symbols ofSince the Gaussian source is successively refinable [6], the
block lengthi, are encoded into a single channel codewordeceiver with power gairs; can thus reconstruct the source



within distortion there must be a power allocation such that (6) is satisfied for
all m, and it is on the boundary of the capacity region. Thus

D; = exp(—QbZ R;). (4) we can alternatively characterize the capacity region as
Combining (3) and (4), the problem we wish to solve is es-C = { (R, Ra, ..., Ry) : Rpp >0, m=1,2, ..., M,
sentially the following minimization over the power alldican
(P17P27"~7PJ\4)! M i
. —b Z(nz — ni+1) exp 2 Z Rj — N1 S P ;. (7)
P; — —
mmzpz [T+ ) ©)
j=1 /s + Zk —j+1 D) Moreover, the function on the left hand side of this inegyali
is convex in(Ry, Ra, ..., Rar), which is clear by observing its
subjectto: P, >0, i=1,2,...., M, sum-exponential form.
Z?‘i P, <P We can now reformulate the optimization problem as a
standard convex programming problem:
When the fading state is continuous, the density of the "
power gain distribution is then given by(s), which is as- U ‘ ‘ ‘
sumed to be continuous, and differentiable almost everyavhe min ) piexp(=2b ) R;)
In this case, the task is to find a power allocation density
function P(s), or its cumulative function, which m|n|m|zesSubject to: R, >0, i=1.2 ..M,

the expected distortion. " ;
Zi:l(ni — ni+1) exXp (2 Zj:l R]> — N1 S P

I1l. THE NEW ALGORITHM AND ITS OPTIMALITY . :
GO S0 If the optimal rate allocationR can be found, then the

In this section, we consider the optimization problem whegprresponding optimal power allocation can be recovereuh fr
the channel has a finite number of fading states. The difficulihis solution.

is that the optimization problem as defined in (5) is not
convenient for computation due to its complicated form.dct f

it is not immediately clear that the function being optinizeB- The Lagrangian formulation and the algorithm
is a convex function Of(Pl,PQ,.. PM), nevertheless it is Now consider the Lagrangian form

indeed clear that the rate-region of the degraded broadcast o

channel is always convex. Thus our approach is to conver

the problem given in (5) into a convex problem, by ut|I|z- sz exp( QbZR Zyi

ing another characterization dR = (Ri, Ro, ..., Rys) for

the Gaussian broadcast channel capacity. Such an alternati M

characterization was given in [17], and we start by traigjat A Z(
it into our notation.

N — Nit1) €XP QZRJ —ng—P . (8)
i=1 j=1

The Karush-Kuhn-Tucker (KKT) condition requires that

A. Rederivation of the equivalent representation s = 0 for the optimal solution [22], which subsequently

The rate vectorR on the boundary of the Gaussia
broadcast capacity region corresponds to a power allatatio ¢
Py, P,, ..., Py. Solving the value ofP; in terms of the rate ﬁ =- Z 2bp; eXP(*%ZRj)
vector R gives an equivalent system of equations, and through i=m j
further simplification, we have

: +2)\Z — Njt1) €Xp QZR — VU = 0,
T = B en (23] o S

i>m i>m Jj=m
m=1,2,3,.., M, (6) Taking the difference betweeg— = 0 and mfjﬂ = 0 gives

where we definery;; = 0. The RHS of the above equation

is monotonically decreasing im, hence for any non-negative — o)), . exp( gbz Rj) + 2\, — Mimy1) exp | 2 Z R;
rate vectorR, provided that (6) is satisfied fon = 1, i.e., = =
= Vm — VUm+1, m = 1a2a"'aMa (10)
P= p—y 2> Rj| —n, - :
; Mit1) eXp 721 " where for convenience we define,,; £ 0. A > 0 and

vm >0, m=1,2,.., M are the Lagrangian multipliers. Fur-

1The equations given in [17] appears to have a minor typogeapleirror thermore, the complementary Sla‘.:kness reqm’ﬂggm = 0, _
that the inner summation was given %s’_, R;. m = 1,2,..., M; the power constraint should be satisfied with



equility, or A = 0. Note that the set of equations in (10) also m;((””/m}:_(ﬁ“); in other words for all the effective

|mpl-|es the set qf equations 9), an.d thus they are equﬂzalgn layers we havexp(2 Zj‘ll R;) = “3,5(b+1)' Assign the
Since the optimization problem is a convex programming ineffective layers rate zero.

problem, the KKT condition is both necessary and sufficient 3) check power consumption.

for an optimal solution [22]. Clearly if the quantity a) Leti, be the lowest effective layer, and define

Kom A bpm P,=P+ Ny, -
N — Nm41 b) Let
is monotonically increasing, we can set = 0 for i = Zlf_ (ni, —ni,.,)exp (2 Zi}c— R-)
1,2,..,M and find an explicit solution, provided that the A/ (o41) SRR e =17
power constraint is not violated; however this is not true P
in general. Nevertheless, the factor plays an extremely c) If

important role, which in fact reveals certain inherent ctinoe bpi,

of the layers. N~ ) > 1, (11)
We observe the following simple fact to motivate the tho thott

algorithm: whenever two consecutive layers yield tfactors then reducer;, by 2@% log A, and the algorithm

that are not increasing, some combination of the layers must terminates; otherwise, labg|, ineffective (R;, =

occur such that one layer is assigned zero rate. This is becau 0), incrementk, by 1, updateP, = P +n;,_, and

otherwise the resulting rate vector would include negative return to (3b).
rates, which is invalid. To be more precise, two consecutive
layers are said to be combined when the higher layer is not
allocated any positive rate (power), such that the two kgan
be treated as a single aggregated layer with the sum-piipabiC. The correctness of the algorithm and its complexity
mass, and the power gain of the lower layer. Intuitively, the layers are classified into two kinds: those
The following algorithm can be used to find the optimal rat@ith x value lower than or equal to their lower neighbors
allocation. In the sequel, when a layer is assigned zergitate(the first kind, and those withx value higher than their
will be calledineffective otherwise it will be calleceffective lower neighborsthe second king see Fig. 2. The algorithm
For simplicity, definex ;41 = oo. A layer is labeledactiveif  combines the first kind layers to their lower neighbors inheac
it is a result of combination of layers in the immediate poexd  step, and then continues this operation until no layers ef th
loop. An intuitive explanation is given in the next subsewafi first kind exist in the resulting sequence. The resulting rat
the readers are encouraged to browse the algorithm below aiidcation is valid, if thex sequence is indeed monotonically
read the intuitive explanation first in their initial readin increasing, the rates are non-negative and the power eantstr
is satisfied.
A few more comments are in order: 1) In Step 1, we seek to
1) Combination of layers to reach a monotorisequence. form a monotonic sequence af by combining consecutive
a) AsSignAn,, = n,, — nms1 and calculates,, for layers, such that Step 2 can provide meaningful rates. To do
m =1,2,..., M. Label all the layers effective andthis, we combine (remove) all the layers that are monotdigica
active. Letr — 1. non-increasing. Only the neighbors of those layers whose
b) Denote the lower effective neighbor of layeas Values were updated in the immediate previous loop need to
i~, and its upper effective neighbor layer as. P€ considered, because this is the only case that a change
Start fromi, = 4y, for all the a, active layers Of classification may occur. 2) In Step 3, we need to assure
; that the total power is used up by adjusting the value\ of
However, this has to be done such that the lowest layer still
has positive rate, which is the condition in (11). If this stn
possible, the lowest effective layer is eliminated; thiadition
is checked repeatedly for the reduced layers until it isEad.
3) In the loop of Step (1b), we emphasize that the layer is
combined with its current effective lower layer, because th
layeri, (ori;) may become ineffective in the previous steps.
The complexity of the algorithm i© (M ). Step 2 is clearly
of O(M) complexity. In Step 3\ is updated less than/
times. A close inspection of the summation in the numerator
reveals that each time it can be done wili1) complexity,

il, ig, vy g,

i) If 44 > 1 and K- > k. label layer i
ineffective and combine it with itscurrent
lower effective neighbor layej. Updatep; =
Pj +p2k’ Anj = Anj —+ Anik, as well a.Slij
values accordingly. Label as active.

i) If ki, > label layer i} ineffective and
combine it with its current lower effective
neighbor layerj. Updatep;, An; andx; values
accordingly. Labelj as active.

i) If & < a,, incrementk by 1 and return to

(1(b)D). _ ~and thus Step 3 is o (M) complexity. The complexity of
c) If after the above loop, any layer remains activestep 1 is more subtle. The value of can be computed in
incrementr by 1 and return to (1b). O(M) complexity. Denote the number of loops in Step 1 as

2) Denote the number of effective layers Wy. For all r,; denote the number of layers with value lower than or
the effective layersy, k = 1,2, ..., K, letexp(2R;,) = equal to its lower neighbortt{e first kind in the r-th loop



D. The optimality of the algorithm

K Original values

i I\H

Since we are solving a convex optimization problem, and it
obviously satisfies Slater’s condition, the KKT conditicere
sufficient for optimality. Thus the proof for optimality redes

. to finding v; > 0, that satisfy (10) and the complementary
i-th layer slackness condition;R; = 0, i = 1,2,...,M, with the
solution found by the algorithm; note that the power coristra
is already satisfied with equality.

Theorem 1: The algorithm given above finds the optimal
rate allocation.

Proof: Since for the effective layer®;, > 0 by def-
. inition, we may sety;, = 0 to satisfy the complementary
ih layer slackness condition. There are several cases that we need to
consider next:

The 1%"loop

F—————— e
F————————

N ———————

1) The ineffective layers above the lowest effective layer.
The 2"-loop 2) The (originally effective) layers which are rendered
ineffective by the power constraint, i.e., the layers that
become ineffective in Step 3.
— 3) Other ineffective layers below the lowest effective lay-
i aver ers, i.e., the layers that become ineffective in Step 1 and
K are below the lowest effective layer.

[ S —
—————e
 ————

[ The 3“-loop For the first case, suppose some of these layers are between
| two effective layersl and J, I < J; if there are ineffective
| layers above the highest effective layer, we take- M + 1.
|

- From Step 3 of the algorithm we can essentially assign the
i-th layer

value of p £ exp(37_,; 2R;) such that

Fig. 2. An example of the algorithm: the lines with dots on thp toe

—2b _ )p?
the layers of the first kind, and dashed lines are the actiyersaafter the [p1 +Pr41+ o+ P2+ Py 1]P

previous loop; the active layers are not labeled before tisé step. In the +2X(ny —ny)p=0. (12)
example, Step-1 of the algorithm terminates after three loApgach loop,
some layers are combined with its lower neighbor layers (ambved). Since |ayer[ and J are effective, we set; = v; = 0. By

expanding the condition in (10), we have

— 2bpp ™ 4+ 2N (g — npy1)p — vk + vk =0,
k=I1T+1,..,J—1. (13)

as b?"- The Comp|exity in ther-th |00p is bounded by linear Though the above equations (Under the solution found by the
term of b, howeverb, < 2a,, because only the active layersalgorithm) uniquely specify;, I < i < J, it is not clear yet

and their lower effective neighbor layers can be of the firé¢hether those values are indeed non-negative. We need the
kind. Moreover, notice tha}."® , a, < M, since it is upper following lemma to proceed, the proof of which is given after
bounded by the total number of layers made ineffectivehtrt the proof of the theorem.

implied by the fact that a layer is active only when a layer Lemma 1. For the combined layers between layeand

is made ineffective and combined into it. Clearly we haviayer-J, given any;* such thatl < j* < J — 2, we have

a1 = M, and thus}"[° a, < 2M. The overall complexity is

o L it J-1 ,
thus O(M), and then the conversion into power allocation is ko & bZi:Ipl > b2 iz 1 Pi £kt (14)
of O(M) complexity. ! rAng T ST An

We note that in order to achieve tli&(A/) complexity of Now we are ready to prove the non-negativeness;f
the given algorithm, a fairly involved data structure is @e@. for the first kind of ineffective layers. The value of, where
More precisely, a doubly-linked list to update effectivgdes, | < i* < J, is also specified by
coupled together with a singly-linked list to update thewact

layers (which can be combined into one linked-list) appears _2szlpip—b i 2A§Anip v =0 (15)
most appropriate. However, even a naive implementation-wit = = ’

out such data structure is 6f(1/?) complexity, since Step 1 1 i1

terminates within at most/ iterations, and each iteration has _9p Z pip~t + 2) Z Anip + v = 0. (16)

maximum complexityO (M ). =1 i1



To seev;- thus specified is indeed non-negative, suppgse<  last term is non-negative from the proceeding argument.

0 was true, then Continue this line of argument, then it is clear
J—1 J—1
o Z pipfb Lo Z Anip = vie <0 a7 Vi 2 Vigq 2 -0 2 Vigyy, > 0. (25)
i=i* i=i By this we conclude that;’s for the second kind of ineffective
Lemma 1 asserts that for we have layers are indeed non-negative.
i1 For the third kind of ineffective layers, we might have to
Koo, = bEl 1 Pi > nt_l _ bEz i Pi ' (18) split any given layer in thé, g1, ..., iz, layers, in order
’ Zi:[ An; ’ Z;] 11 An; to recover the original layers as well as the corresponding
which implies that values. However, from any one of equations in (23), it is seen
i —1 i —1 that
—2b Z pvipib + 2 Z A”iﬁ _2bp;<k+a + 2)‘(nik+a - nik+a+1) = Vikra = Vikyas = 0. (26)

I I Now following the same line of argument as the first kind
< _9 PN Anip < 0 19 ineffective layers, we can mde_ed find the desired n(_)n-mffgat_
- Z pip =t Z 1P (19) v values for all the split layers in Step 1 of the algorithm. T hi
completes the proof for the optimality of the algorithm.m

It now remains to prove Lemma 1, before which we first

i=1* i=%*

However this subsequently implies

J-1 J-1 give the following useful facts.
=26 pip "+ 2N Anip <0, (20)  Lemma 2: When all the quantities are positive
i=I =1
which would contradict (12); alternatively we see that (19) ) a1 . as an . €1 _ e en
would contradict (16) if the supposition was true. This gE®v b= by >z I > A > A >z T
that for the first kind of ineffective layers, the given's are
non-negative. then we have
We next consider the second kind of ineffective layers. 2 i > Zei.
Suppose the originally effective layels ix+1,...ik+» become b T X fi
ineffective due to the power constraint. Since they are alle If
effective originally, we have by the monotonicity of the ay > a2y L0 O + ¢ N N
factor b " T T b A+ T AT T
bp;k < bp?kﬂ <. < bp:k+h . (21) and % > C—Z,
Nij = Mgy Mg = Niggo Niprn = Niggnta
where we have useg to denote the accumulated probability then we have
mass after the combining of layers in Step 1 but before Step 2 aita > 2 i €2
3. By Step 3 of the algorithm we have Yhitdi T Y fitde
bp: These facts are straightforward by elementary calculatéord
A> — (22) thus the detailed proof is omitted.

Mipr, = Mgt
Thus we only need to show the following equations specify a
set of non-negative;’s for ¢ = i, ik11, - lktn:

Proof of Lemma 1

We use an induction approach and show this fact is true after
any loop in Step 1 of the algorithm. The statement is clearly

=2bpf . F2AM(Mipy, — i) Vi, =0, true after the first loop, by the given monotonicity of the
_pr;wH F2A (M 1 = Migsr)  —Vigin s + Vigsn =0, sequence for_ any combined layer be_fore the operation, and

the first fact in Lemma 2. Then considetth step for Step

y (1b). For a given index™, let x;. , , and n}iﬂ._l denote

=25, F2A(Miy ~ M) Vi FVie =00 he appropriate quantities after step- 1; i.e., the quantities

—2bp;, +2X(ngy, —n4y,,) Vi, + Vi, = 0. (23) defined in Lemma 1 in the intervdlto J for which layer;* is

in. Denote the updated layer that the original layelis in as

From the first equation, we get i*. By the procedure, suppose the aggregated layers after the

Vigsn = —2bpl*k+h + 2X (Mg = Migsnsn)s (r—1)-thloopi; <ig < ... <ip <i* <j1 <jo<...<Jm
to be combined into a new aggregated layer inrthle
and it is non-negative because of (22). From the secomf ., which satisfy

equation, we have
Kiy 2> Kiy = . 2> Ki 2> K= > Ky > Kjy > .o > K, (27)
Viken-1 = 72bpz<k+l ot 2)\(717:“,1,1 - nik+h) + Viggns (24) ' ? ! 2 Jm?
which is also non-negative, because-2bp;,

IN(Miy,p_, — Mir,,) > 0 due to (21) and (22), and the Kool > K

as well as

(28)



Then by the second fact in Lemma 2, we have . > «. .. IV. VARIATIONAL DERIVATION OF THE CONTINUOUS CASE
This induction is apparently true for any loop in Step 1 of the SOLUTION

algorithm, thus the lemma is proved. ] _ )
We next turn our attention to the case of continuum of

layers, which is in fact the case considered in [2]. To featiéi
understanding, we first give a less technical derivationeund
E. The dual problem the assumption that the optimal power allocation concesgra
. s on a single interval of the power gain range, and show that
We can also qon3|der the dual problem of minimizing ¢ is is ingeed true for somepprobabgility dengity functipfs).
power consumptlon for agiven expected distortion Value'SThThis simple derivation provides important intuitions fdret
can be done with essentially no change to the problem as general case, based on which a more general derivation is

then given. For simplicity, we first assumfés) has support

M i
min Z(ni — Miy1)exp ZZRj —ny 2 P, on the entire non-negative real lif@, co); later it is shown
i=1 j=1 that this assumption can be relaxed.
subject to: R; >0, i=1,2,...., M,

o , : L . . .
M piexp(—2b 22:1 R;) < D. A. A simple derivation for the single interval solution

The Lagrangian form is almost without change as In this sub-section we give a simple derivation under the

assumption that there is a unique interi@l, so] which the

M i M power allocation concentrates on. The optimization proble
L=XY piexp(=20> R;)— Y viR; can be reformulated as follows. Define
i=1 j=1 i=1 i
M I(i) = exp(> _2R;). (32)
+ Z(nl —mn;y1)exp | 2 Z Rj| —ni—P]. (29) =
=t =t We take the number of layers to infinity, and the objective
The following condition similar to (10) can be derived, wherfunction the constraint become integrals. The functigs)
againvy1 = 0 we need to find is
— 2X\bpy, exp(—2bz R;) 4+ 2(Nm — Npg1) exp | 2 Z R; I(s) = exp(2 / R(u)du) (33)
j=1 j=1 0
=VUp —VUm+1 =0, m=12 .. M. (30) where we convert back to the power gaininstead of noise

_ . owern, andR(s) is the rate density associated with a fading

From this form we see that the first and second step of "_Egin s. It is clear we can replace the inequality constraint by
algorithm can be used without any change, and in the thigd,,ajity constraint without loss of optimality by writinget

step of the algorithm, only very minor changes are needed {Q§ntinuous counterpart of (6) as

this dual problem. For simplicity we combine the layers into -

?Sep;ggregated ones and take the aggregated probability mas /s*2exp(2/0 R(u)du)ds = / j(s)dS _p (34)

) ) The term to be minimized is
3a) Letiy, be the lowest effective layer, and defifiE =

Dy, . T ‘ [ £
3b) Let ko D(I) = /f(s) exp <_2b./0 R(u)du) ds = / I(s)bds'
D 0 0
)\1/(b+1) _ ) (31) (35)
k ik
2ok, i €XP (_% 2= RJ’) Note the additional condition thdf s) has to be monotonically
3¢) If non-decreasing, and the boundary conditid() = 1.
Abpi,., -1 Ignoring the positivity constrainf’(s) > 0 for now, take
Ny, — Niy, -
o ) I 1.0y = 20 sy =1
then reduceR?;, by mlog A; otherwise, labely, I(s) s
ineffective ®;, = 0), incrementk, by 1, updateD’ = the optimization problem can thus be written in the usual
D' —pj, . and return to 3b). variational notation as
minimize / J(s,I,1")ds, (36)
0

The proof of correctness and optimality remains virtually . e N
unchanged, and the complexity is also unchanged. subject to /0 G(s,I,I')ds = P. (37)



Next we assume there is a unique interyal, s;] for which gives
which power allocation is non-zero. Under this assumption,

T . bsa(1 — F(s2))
the objective function reduces to ——

A= T(y)P T

(45)

I) :/ J(s,I,1')ds Becausel(s;) = 1, A = bf(s1)s?, the expression of (s)
o gives one boundary condition
T8 gy psy) ¢ Lo E02) g .

o 1) I(s2)b 7 1= F(s2) = f(s2)s2. (46)

where F'(s) is the cumulative distribution function of the The lower bounds; is determined by the power constraint,

fading gain random variable, i.€7(s fo u)du, and the from which we have
constraint becomes oo s 1/(b+1
/ G S I I S1 82 S1 f(sl)S%
2\ 1/(b+1)
1
I(s2) 1 L < ( >32> P+, @
- / Io) s+ 12— Lo p (39 5 \J(s1)s7 5
where in the second equation we split the integral into two
parts partitioned by = s;. We have thus found the unique
extremal solution
We can write the Lagrangian for@(1) = D(I)+\(P(I)— F(s)s2

1/(b+1)

P). To find the extremal solution, we consider an increment I(s) = <f(s )82> (48)

q(s) onI(s), and the increment of the Lagrangian functional is P

given byA(q) = L(I+q)— L(I). Take an arbitrary increment N [s1, s2] with the boundary conditions specified by (46) and
q(s) with g(s) = 0 for s ¢ [s1,s0] andg(s;) = 0, and the (47).

principal linear part of the increment given in the follogin _To find the corresponding power allocation, defifigs) =

equation should be zero (see (27) p. 25, and pp. 42-50 in [16]) F(r)dr. We derive from (6) that

ho d
0= 6L(I) = /} (J; FAGT — L+ /\Gp]> o(s)ds
+ (Jr + AG1)|s=s,q(s2) + [w + /\le q(s2)
(40)

where the last term in the summation is due to the terms

outside of the integration in (38) and (39). Singés) can
be arbitrary, we have

d
J]Jr)\G]*%[J]/Jr/\G[/]:O (41)
with
—b 1
JI Ib+{(( )> GI = 5727 JI’ = GI’ = 07 (42)
which further simplifies to
b 1/(b+1)
I(s) = ( f()\) ) . (43)

At this point, it is clear that fod’(s) > 0 to be true, which is
necessary for (s) to be a valid solutiony(s)s? should have
non-negative derivative in any interval such that (43) bpld
fact for any interval that positive rate is allocated fs)s>
should have strictly positive derivative such ttiét) is strictly
increasing. If there is only one interval over the supporf @f)

where f(s)s? has strictly positive derivative, then the singlqeO

interval solution assumption is indeed true. Now sig¢e;)
can be arbitrary, at this variable end (pp. 25-29 in [16])
necessary condition for an extremum is

“b(1-F(s2) | |1

1(32)b+1 S5 =0,

(44)

oo

T(s) /11(127)22117“2

S

_ <f<sz>s%)”““>1 11
f(s)s? S9

S2 2
. f (f(r)r

s f(s)s? r2 s

(49)

For the continuous case being considered, the relationdagtw
T'(s) andI(s) can also be derived directly by solving a linear
differential equation without using (6), i.e., without ia§ the
limit of the alternative channel capacity representatioti &
finite number of users; see the Appendix for detail. In fact,
the derivation given in the Appendix can lead naturally te th
constraints in (34) and (39).

Through some basic algebra, it can now be shown that
(49) is in fact the same solution as that in [11]. Thus the
limit of the optimal solution of the discrete case in [11]
indeed converges to the extremal solution derived throbgh t
classical variational method. Moreover, the variationatimod
derivation directly asserts thd{s)s? has a positive derivative
for any positive power allocation interval; this conditioras
however lacking in the derivation in [11].

>1/(b+1) 1 1

B. Derivation of the general case solution

Next we provide a more technical and complete derivation
r the general case when the power allocation does not
necessarily concentrate in a single interval of the range of
Fower gain. From the physical meaning bfs), we assume
that I(s) is a piecewise smooth continuous and differentiable
function, and it is within this function space we seek the
optimal solution. With the positivity condition of’(s) > 0,



the Lagrangian functional subject to optimization can beelongs to as theé-th such interval, specified by;, u]; i.e.,

written as [8i,15 8iu) € [l gl
oo
fls) |\ I(s) o, For a piecewise smooth continuous extremal solution, the
L(I)= A—=—1 d 50 . . D
(D /(I(s)b + 52 (s)o(s) | ds (50) Weierstrass-Erdmann (corner) conditions must be satisfied

(page 63 in [16]). These are given for every corner point
whereu(s) is an arbitrary non-negative function; see page 249 € {s, ,, sm}{il. The two conditions are
in [23]. The general extremum and subsidiary conditions are
then similar as in the last sub-section, and we state here for , Lrlo—e: = LI/'SZS;? . (58)
completeness (L=T'Ly) |y, = (L= I"Lr) [

A By substitutingLL(1) from (50) into the corner conditions (58),
_b[(J;()& tat v'(s) =0 (51) we get
and the complementary slackness conditions are v(s, ) =v(st) (59)
OOI(s) and
A —Zds—P| =0, (52) f(s I(s , ,
(_0/ 52 ) <I((s))b + AET) +I'(s)v(s) — I (s)v(s)> e
I'(s)v(s) =0 (53) :(£§1+AZ?+JKQM$—F@M@0SJC (60)

We thus have the general solution fbfs) in some interval

whereT'(s) # 0, which further simplifies into

- +
2\ 1/b+1 f(sc) /\I(Sc ) _ f(SC) /\I(Sc ) 61
o= () (54) oy TN e Ty T D

) _ _ . ‘where (59) and (61) impose certain continuity conditions
which has the same form as given in the previous sub-sectigp. v(s) and on I(s), respectively. Thusu(s) = 0 for

We first observe from the complementary slackness in (53)c [sis, i) for all i = 1,2,..,K, and is non-negative
PR 5 ) (RS 1

that for anyl’(s) # 0, it must be true thab(s) = 0. Thus for  henwise: from (59), w; have(s;,) = 0 and v(s;;) = 0

7,U

any intervalla, b] for which I'(s) # 0, it is seen that foralli=1.2.. . K.
bf(s) 1 o .
T (s) Az =0 (55)  The continuity ofu(s) at the corner points does not rely

o _ _ ~on the presumption that in the extremal solution, the power
This implies that\ 7 0, because otherwisé(s) = oo in this allocation in a single intervall,,,u,] with positive s?f(s)
interval, which clearly violates the power constraint. fittee derivative does not have within it more than one disjoint

first complementary slackness condition requires positive power allocation sub-interval. We now prove thea t
oo 1 presumption is indeed true. Suppose otherwise, which @apli
/0 I(s)zds — P =0. (56)  the range(c,d) C [, u,] is assigned withl’(s) = 0, and

. ) there exist’ € [l,,,¢) andd’ € (d,u,] such thatl’(s) > 0 in
Because for any intervak, b] for which I'(s) > 0, we have [/, ] and [d, d']. We have that

%?):A%v (57) v(c) =v(d) =0, (62)
Lo L7 N U
it is clear thatf(s)s> has to have positive derivatives in any (s) = i) 5 or s € (c,d) (63)
interval which are allocated with positive rate (and poyvér) bf(c) 1
on the other hand this condition is not satisfied, tii&r) = 0 i) @ 0, (64)

for this interval, and accordingly(s) can be strictly positive. . . ) . ]
) . . . L where (62) is due to the preceding discussion, (63) is due
Given the above discussion, it is clear that disjoint iredsv (51), and (64) is due to (57), the continuity 6fs) and

with positive rate (power) allocation are separated byriats the continuous assumption gffs). Sinces®f(s) has strictly

/ f— i 1 I . . . . . . .
where] ,(S) = 0. Mioreover, I W'",be §hown in the sequell t_hatposmve derivative in(c, d), we have that in this interval
only a single continuous allocation interval may occur with

a single interval where the derivative ¢f(s)s? is strictly '(s) = bf(s) _ )\i < 0. (65)
positive; we shall assume that the number of such intervals It+i(c) 82
is finite. For simplicity, assume that the first such intetvas gt this contradicts (62). Thus the supposition can not be, tr

the form[0, a}, i.e., the lower boundary is zero; this conditiorhng there can be only one effective allocation interval ichea
can be relaxed as shown in the next sub-section. Denote thgjieh first kind intervall,,, u,,].

are a total of K positive power allocation intervals, and let
the i-th positive power allocation interval be specified by In order to determine all corner points € {s;;,s; .},
[si1,5:.4), and label the positivef(s)s? derivative interval it we rewrite the original functional (50), as a piecewise -opti
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d
/ <D1 - DI’) q(s)ds 4+ Dy ls=s, ,q(8iu) — Drrls=s, ,q(5i,)

ds
i=1 Si,l
— i+17l B i,u o 4
+; [ ' I(s3u)"*! A <Szu Si+1,l)] 4(si)
K Si,u K
= —bf(s) L F(si+11) — F(siu) 1 1 |
= ; / <1b+1(3) + /\82) q(s)ds| + ; { b I(8.)0H1 + A b q(siw) (87)

mization problem, and derive the variation.

s1,1

() = F(_SU) - A%l - O/ I'(s)0(s)ds
+ : /( If((;))b + A% - I'(s)v(s)) ds
+§ 'F<Si+},(l;;)§<s@u> (L)
- SHI’ZI’(S)v(s)dh (66)

Si,u

where we definesk 1, £ oo, and thusF(sx41,) = 1. The
variation of L(I) in (66) w.r.t. an arbitrary function(s), which
satisfiesq’(s) = 0 for s ¢ [s;4, s;.4], iS given by (67) at the

top of this page, wheré(I) = f((j))b + AL 1 (s)u(s).

Note that for/(s) to remain a continuous function, it must b

true thatg(s;,.) = q(sit1.)-

To summarize, the extremal solution is given by

g\ M
I(s) = <ff“> , (72)

(s1,0)87

in the intervals[s; ;, s; .}, ¢ = 1,2,..., K, and the boundary
values are determined by
F(sit1,0) — F(siu)
1/8iuw—1/Sit1.

= f(siw)si o = f(sit10)st10s

1=1,2,.. K, (73)
as well as the power constraint
[ 1)
S

0
These are the necessary conditions to determine an extremum

C. Comments on relaxing the support condition
Until this point, we have assumed that the pflfs) has

Support on the entire non-negative real lifleoo], such that

the conditions (69) and (70) (or (46) and (47)) are sufficient
to determine boundary values. This assumption can be tlaxe

Hence the general solution extremal expression is the saffidne case thaf(s) has a compact support, however certain
as that afore-specified, with an additional condition, ings complication will be introduced. To illustrate this, we méeat

from the variable end-point problem similar as in the presio O"€ Special case where the supporf ¢f) is on a single finite

sub-section. This condition is given by
F(Si+1l) 7F(51 u) 1 1

—b : : A — = 68

[(Si,u)b+1 + Si,u Si+1,1 07 ( )

By using the general solution faf(s) within [s;;, s;.] as
given in (54), the condition (68) becomes

F(sit1,0) = F(siu) ( 1 1 ) _0
2 - —_— — .
f(Si,u)Sw Siu Si4+1,1

(69)

interval [s,, s;] and s?f(s) has a unique positive derivative
interval [ly,u;], such thats, < l; and s, > u;; the same
approach can be extended to more general support. Without
loss of generality, we can assumg = [; and s, > u;. We
shall follow the less general derivation as given in Section
IV-A for simplicity. The main difference now is thdl(s;) = 1
is not necessarily true if; = s,, i.e., it is possible forl(s)
to be discontinuous af,,.

In order to resolve this difficult, first assume > s,, then

From the continuity conditions on the corner points, i.dndeed we havé(s,) = 1, from which (46) and (47) follow. If

I(siwn) = I(si4+1,) the next condition is obtained

F(siv1)siiny = f(siu)s? (70)

Fori = K, the condition (69) simplifies into
1-— F(Szu) - f(si,u)si,ua
which is (46) whenk = 1.

(71)

the solution given by them indeed satisfles< s1 < so < uq,

then an extremal solution is specified by these boundaries.
If on the other hand this is not true, then = s, and the
conditionI(s;) = 1 is not necessarily true. Denote the value
asl(s,) 2 Io. In this case, i.es; = s,, the solution ins;, s

can be written as

_7 ( f(s)s? >1/(b+1).
f(sa)s2

I(s) = Io (75)
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The boundary condition (46) can still be derived. The othétis clear that there ar2™ possible fading gain states, which
boundary condition derived from the power constraint is noeorrespond to all possible states 4f. The optimal power

given by allocation for multi-layer coding can be found by the disere
2 [ f(s)5 V(b+D) layering algorithm presented in Section 1lI-B.
Iy / < 2) —ds We demonstrate by examples of the optimal power alloca-
s \f(sa)s3 5 tion for two cases of interference distributions. Figurgs)3-
7 f(s2)s3 V@) g 1 1 P_0 3.(d) show the fading gain discrete densjty, the optimal
* f(sq)s2 se sy s discrete power allocatior?; and I; = exp(—2 > =1 By),

(76) respectively, where there al¥ = 4 interfering users; the
transmit power isP = 0 dB; the bandwidth expansion is

Thus for this case that; = s,, the solution is given by b= 2: o, andp,, are
- H (2] on

(75) with the value ofs; and boundary function valué,
determined by (46) and (76). o = (0.95,0.45,0.55,0.81), po, = 0.3 (80)

V. NUMERICAL EXAMPLES The second example is given in Figures 4.(a) - 4.(d), where

In this section, several examples are solved using tHre arelV = 6 interfering users, withv;, andp,, specified

solution developed in the previous sections. We start with 0°Y

example motivated by multiple access with user interfezenc  — (0.49,0.91,0.51,0.87,0.81,0.46), pon, =0.5 (81)

then discuss the Rayleigh fading case, finally a simple el@amp ) _ _

is given for the general solution when the optimal powe¥here the transmit power and bandwidth expansions are the

allocation does not concentrate in a single interval. same in both examples.
The results may just as well be generalized to the case that
A. Interference multiple access channel pon IS different for every user, depending on the scheduling

Consider here an additive white Gaussian noise (AWGHN)ethod in the system.
channel with interfering users. The goal by a single user is
to find the optimal power allocation of transmitting in the
presence of unknown interference by the other users. The
level of interference depends on the number of users using #r The Rayleigh fading case

multiple access channel at a given transmission block. Such ] ) ]
channel models were considered, for example, in [24]_[26]_We consider here the SISO Rayleigh fading channel. Start-

More precisely, consider the following model ing with the outage approach minimal distortion, which is a
N single level coding distortion bound. This is later complaie
the minimal average distortion with continuous broadoasti
y=a+ > zA +w (77) J ) oroacees
Py 1) Outage approachin case there is only a single source
where y is the received signal, and is the multi-layer code and channel code, the transmission scheme is known
as the outage approach. When channel conditions allow, the

transmitted real-valued signal the user can design sul Ctdata can be completely recovered, otherwise an outage event
an average power constraift The additive interference;’s PiEtely e ' 9
curs. Let the transmission rate Be

are assumed to be Gaussian distributed, which are the sigr?e?l
sent by other users in this time slot. Finally,~ N(0,1) is Ry = 1 log(1 + 51 P), (82)

the additive noise in the channel. Every interference efgme 2

z; is associated with an average power levgl and a random where s; can be considered as the fading gain threshold.
binary variableA,; to determine whether useis transmitting For any s > s;, a rate R; may be achieved, otherwise a
at this time slot.A; is assumed to be i.i.d. Bernoulli randonfailure occurs such thaD; = 1. This is in contrast with
variable with Pr(A; = 1) = p,,,. The exact realization of the the continuous broadcasting, where there is an outagernregio
A;’s are not known to usef # i, however it is assumed thatwith different decodable rates depending on the fading gain
the value of,,, is known. Since the receiver has no knowledge=alization. The obtained distortion when decodifg is

of z; and cannot attempt joint decoding, it has to treags D; = (1 + s;P)~". Under this coding strategy, one can also
AWGN when decodingz. Thus an equivalent channel modebptimize the expected distortion

representation may be useful, . _
P y D1 opt = rr[un F(s1) 4+ (1 + Psq) b (1-"F(s1)). (83)

s 0,00
y= S S w', (78) e : . :
N For a flat Rayleigh fading channel, the fading power dis-
L+ ;Ui A tribution is F(s;) = 1 — e, the average distortion then

corresponds to

Digp = min D
Lot =, B Do)

N -1
sj:(”ZU?AJ Cj=12Y (79) =, min T—eTt (T4 Py e (89)
i=1 srelee

wherew’ ~ N (0, 1). The equivalent fading gais; is then
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0.6 | o P, - discrete power allocation|
o~ 041 4
0.2 B
0 & B— B——= . £l
0.4 0.5 0.6 0.7 0.8 0.9 1

(c) s,

0.6 0.7 0.8 0.9 1
@ s,

Fig. 3. An example of AWGN interference channel with = 4 interfering usersg,», = 0.3, b = 2, P = 0dB). (a) pdf of the fading gais;, denoted by
pi. (b) The associated;. (c) Optimal discrete power allocatiaR;. (d) Optimal cumulative rate exponef(s; ).

The condition for extremum, i.e;2-D(s;) = 0, yields the where { f(s)s*> > 0 on a single intervak  [0,25]. Then the

following polynomial, upper bounds; € [0, 23] is determined by (46), which reduces
t
Tz 4 Pb=0 @5 °
” . . exp (—8—2) . exp (—8—2) (89)
wherez = 1+ Ps;. An explicit solution fors; ., cannot 3 3 5

be derived analytically in general for evety However, for yielding s, = 5. Solving (47) gives the other boundary value
particular cases it can be analytically solved. For exanfple s, denoted as op¢; the condition (47) does not lead to an

b =1, solving (85) gives, analytical expression, but can be solved numerically. Tthen
1 general expression faf(s), for the Rayleigh fading channel
stow(=1) = 55 (1+VI+4P) =1/P.  (86) s given by
2) Continuous case broadcastVe consider the average 1 s < S1,0pt
achievable distortion for a SISO Rayleigh fading channel. ( ? exp (75731,(% 1/(b+1) s cs<3
Consider the following fading gain distribution, I(s) =4 \si.. s . Lopt =5 =
52 _ 5—81.0pt -
F(s) =1 —exp (-%) 7 (87) ( exp ( s )) 525

wheres is the expected fading gain power. For this distribution |, Fig. 5, the average distortion bounds for Rayleigh
the optimal power allocation is single interval continuoaisd fading channels are demonstrated for three different galue
zero outside the interva[lsl_,SQ]: That can bg immediately ot pandwidth expansion value$ (= 0.5,1,2). For every
observed fromf (s)s* by taking its first derivative bandwidth expansion, the minimal average distortion of the
25 §2 ( s ) outage approach and broadcast approach are compared. It can

d
gf(s)é’2 =(5 —Z)exp (88) pe noticed that the large is, the larger is the broadcast
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Fig. 4. An example of AWGN interference channel with = 6 interfering usersy,, = 0.3, b = 2, P = 0dB). (a) pdf of the fading gais;, denoted by
pi. (b) The associated;. (c) Optimal discrete power allocatiaf;. (d) Optimal cumulative rate exponeffs;)..

parameteib.

C. An example with more than one power allocation interval
Consider the following piece-wise smooth pfifs)

(70cs(s —0.1) + 10) /s> s€0.1,1.1

) (=T0cs(s —1.1)+80)/s* se[l.1,2.1
T =9 (390¢,(s —2.1) +10)/s? s e [2.1.3.1
(—80cf(s —3.1) +400)/s* s € [3.1,4.1

Continuous Broadcasting, b=0.5
=—#— Continuous Broadcasting, b=1

~ =—6— Continuous Broadcasting, b=2
10 "t | —e— Outage Approach, b=0.5
—8— Outage Approach, b=1

—&— Outage Approach, b=2

Average Distortion
=
o

|
]) (90)

wherec; is a normalizing constant such thAf® f(s)ds = 1,
which can be computed to hg ~ 274.0645. Fig. 6 shows
pdf £(s), f(s)s? and the optimal continuous power allocation
o s 0 15 20  » 30 3 0 density P(s) with P =0 dB. It is worth noting th_at at the
SNR [dB] upper bound for the first effective power allocation intéewd

; 2
Fig. 5.  Minimal average distortion, a comparison of outager@@gh and Fhe lower bound of the seco_nd interval, the value#(xf)s
broadcast approach, fér= 0.5, 1, 2. is exactly the same, as required by (73).

10"

VI. CONCLUSION

gain, which can be defined as the SNR gain of the broadcastWe considered the optimal power/rate allocation in the
approach over the outage approach for the same averageadcast strategy, in order to minimize the expected wigio

distortion value. Thus the benefit of the broadcast approach a quadratic Gaussian source transmitted over a fading
compared to the outage directly depends on the system desigannel. A linear complexity algorithm is proposed, and its
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;f(s)
== =f(s)s“H
; - - PE)

equation is given by

T(s) = ¢ exp{— /; du@Q(u)}

| el [ duw)- / 8 oxpf [ auQ() (©6)

I'(s)

wherecy, co are constants. By substitutin@(u) = Ok the
| expression foff'(s) is simplified as,
| Lo
Ts)=c1—+ —- . 7
> O =agg g [ oD
Following the boundary conditioW’(s — oo) = 0 it is

Fig. 6. Optimal power allocatiod(s) for f(s) given in (90) with the total

power P — 0dB required to set; = 0, and by definitionT’(s) > 0 for every

s > 0, thereforecy, = oo, hence

o0

1 I'(r)
correctness and optimality are proved. Moreover, a déorat T(s) = m : / dr -
for the optimal allocation with a continuum of layers is giye s
using the classical variational method. The above expression is identical to (49), which is verifigd b

another step of of integration in parts, that is

(98)

APPENDIX 1 I(r) e 17 I(r)
T() = I + s [ @9
In this appendix, we derive directly the relation between s
the power allocation and the rate allocation when theretexis 7
: . . _ 1 I(r)y 1
a continuum of users, without relying on the alternative = o) drr—z - - (100)
representation of the Gaussian broadcast channel capattity s

a finite number of users given in [17]. This also provideg is \yorth noting that this formula holds generally regas

naturally the power constraint for the continuous casernive,e number of positive power allocation intervals. In thegt

in (34) and (39). o ~interval case, wher€\(s) is a decreasing function ovy, s,
Denote the complementary power distribution function byng T(s) = P fors < s, andT(s) = 0 for s > ss,

T(s),i.e., T(s)= [ P(r)dr as defined above (49); note thaf(99) becomes the subsidiary condition as given in (39).

5=0 the general case, (99) is equivalent to (56).
without loss of generality we may assurfig0) = P. Then g (99) g (56)

the incremental broadcasting rate is

R(s)ds 1 —sT'(s)ds

2 1+sT(s)" (1)

| [

By using the definition/(s) = exp(2 [ R(u)du) as in (33),
0

we have the following relation

S

(2]

1 €]

/R(u)du = —log(I(s)) (92)
) 2 4]
R(s)ds = ;I/I(Z)ds 93) DI

. _ (6]
In order to express the power constraint as a functioh(sf,

we need to solve the equation obtainable from (91) and (93?7

I'(s)ds  —sT"(s)ds
I(s) 1+sT(s)" (04) i8]
The above simplifies by defining(s) £ 7 into
T'(s) + Q(s)T(s) = —Q(s)/s. (95) o

The solution for the above standard first order differential
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