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Abstract

We provide a complete characterization of the rate-distortion region for themultistagesuccessive refinement of the

Wyner-Ziv source coding problem with degraded side informations at the decoder. Necessary and sufficient conditions

for a source to be successively refinable along a distortion vector are subsequently derived. A source-channel separation

theorem is provided when the descriptions are sent over independent channels for the multistage case. Furthermore,

we introduce the notion of generalized successive refinability with multiple degraded side informations. This notion

captures whether progressive encoding to satisfy multiple distortion constraints for different side informations is as

good as encoding without progressive requirement. Necessary andsufficient conditions for generalized successive

refinability are given. It is shown that the following two sources are generalized successively refinable: (1) the

Gaussian source with degraded Gaussian side informations, (2) the doubly symmetric binary source when the worse

side information is a constant. Thus for both cases, the failure of being successively refinable is only due to the inherent

uncertainty on which side information will occur at the decoder, but not the progressive encoding requirement.

I. I NTRODUCTION

The notion of successive refinement of information was introduced by Koshelev [1] and by Equitz and Cover [2],

whose interest was to determine whether the requirement of encoding a source progressively necessitates a higher

rate than encoding without the progressive requirement. A source is said to be successively refinable if encoding

in multiple stages incurs no rate loss as compared with optimal rate-distortion encoding at the separate distortion

levels. Rimoldi [3] later provided a complete characterization of the rate-distortion region for this problem.

In another seminal paper, Wyner and Ziv [4] characterized the rate-distortion function for encoding a source when

the decoder alone has access to side information correlatedwith the source. The notion of successive refinement

was combined with the presence of side information by Steinberg and Merhav [5], who formulated the problem

of successive refinement withdegraded side informationsat the decoder. The degradedness roughly means that the

decoder receiving the higher rate bit-stream also has access to the “better quality” side information. More formally,

this means the source and side-informations arranged in thedescending order according to the rate of bitstream form

a Markov chain. The notion of successive refinability with degraded side informations was consequently defined,

which answers the question whether such a progressive encoding causes rate loss as compared with a single stage
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Wyner-Ziv coding. In this context, the main result in [5] wasthe characterization of the rate-distortion region and

the necessary and sufficient conditions for successive refinability for two-stagesystems. The characterization for

more than two stages was left open. An achievable region was indeed given, however, the converse proof was not

found1.

In this work we extend these ideas in several ways. First, thequestion left open by Steinberg and Merhav is

resolved, which is the characterization of the rate-distortion region for the successive refinement under the Wyner-Ziv

setting, for any finite number of degraded side informations. This is accomplished by an alternative representation of

the rate region based on rate-sums. This characterization overcomes the difficulty perhaps encountered by Steinberg

and Merhav, in proving the converse for the general multistage achievable region they found. The achievable region

provided in [5] is then analyzed and shown to be equivalent tothe rate-distortion region. Necessary and sufficient

conditions for a source to be successively refinable are derived.

The notion of successive refinability introduced by Steinberg and Merhav can be quite restrictive. This can be

understood in the context of work of Heegard and Berger [6], as well as Kaspi [7], who studied the problem of

source coding when a correlated side information may or may not be available at the decoder. In particular, it

was shown that when transmission was to multiple decoders with degraded side informations, the rate distortion

function could exceed the Wyner-Ziv rate needed for the decoder with the “stronger” side information, as well

as that needed for the decoder with the “weaker” side information. As such, sources can fail to be successively

refinable (with side information) simply due to this reason.This motivates our definition of generalized successive

refinability of sources when decoders have access to multiple side informations. In this notion we only require

the sum-rate of the progressive encoding to match the Heegard-Berger rate for degraded side informations, instead

of the Wyner-Ziv rate. Necessary and sufficient conditions for a source to have this property are then given. This

notion of generalized successive refinability is applied toGaussian sources with jointly Gaussian side informations

and quadratic distortion measure. It is shown that the Gaussian source is actually successively refinable in the

generalized sense, though it fails to be successively refinable in the strict sense as defined by Steinberg and Merhav

in most cases. An explicit calculation is also given for the doubly symmetric binary source (DSBS) under Hamming

distortion measure, when the worse side information is a constant, which we show is also successively refinable

in the generalized sense. The explicit calculation of the rate-distortion region for the DSBS source in fact gives

the Heegard-Berger rate-distortion function, which was not found as of our knowledge despite several attempts [6],

[8]–[10].

The result can be generalized to the scenario when the descriptions are transmitted overN independent discrete

memoryless channel (DMC). In a more recent work [11], Steinberg and Merhav showed a source-channel separation

result holds for the two-stage case. In light of the our new result, it can be shown that such separation holds for

the multistage case as well.

1In fact, the complete rate-distortion region for multi-stagesystem withidentical side information was given, however this only addresses a

special case in the framework.
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Fig. 1. A three-stage successive refinement system with side informations. The side informations are degraded in the sense that X ↔ Y3 ↔

Y2 ↔ Y1.

The rest of the paper is organized as follows. In Section II wedefine the problem and establish the notation. In

Section III, a characterization is provided for the rate-distortion region with an arbitrary finite number of stages,

therefore the question left open in [5] is resolved. SectionIV begins with the necessary and sufficient conditions for a

source to be successive refinable, then the notion of generalized successive refinability is introduced and investigated.

The Gaussian example is explored in Section V, and the doublysymmetric binary source is investigated in VI.

Section VII concludes this paper with a brief discussion. Proof details are given in the appendices.

II. N OTATION AND PROBLEM STATEMENT

Let X be a finite set and letXn be the set of alln-vectors with components inX . Denote an arbitrary member

of Xn asxn = (x1, x2, ..., xn), or alternatively asx when the dimensionn is clear from the context. Upper case

is used for random variables and vectors. A discrete memoryless source (DMS)(X , PX) is an infinite sequence

{Xi}∞i=1 of independent copies of a random variableX in X with a generic distributionPX

PX(xn) =

n
∏

i=1

PX(xi). (1)

Similarly, let (X ,Y1,Y2, ...,YN , PXY1Y2,...,YN
) be a discrete memoryless multisource with generic distribution

PXY1Y2,...,YN
, whereN is the number of coding stages.

Let X̂ be a finite reconstruction alphabet, and let

d : X × X̂ → [0,∞) (2)

be a distortion measure. For simplicity, we will assume the decoders at all the stages use the same reconstruction

alphabet and have the same distortion measure. The generalization to different distortion measures and reconstruction

alphabets is quite simple. The per-letter distortion of a vector is defined as

d(x, x̂) =
1

n

n
∑

i=1

d(xi, x̂i), ∀x ∈ Xn, x̂ ∈ X̂n. (3)

All the log function in this work is taken to be base 2.
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Fig. 2. The corresponding source channel coding problem forthe source coding system depicted in Fig. 1. .

Definition 1: An (n,M1,M2, ...,MN ,D1,D2, ...,DN ) successive refinement (SR) code for sourceX with side

information(Y1, Y2, ..., YN ) consists ofN encoding functionsφm, m = 1, 2, ..., N , andN decoding functionsψm,

m = 1, 2, ..., N :

φm : Xn → IMm
(4)

ψm : IM1
× IM2

× ...× IMm
× Yn

m → X̂n, (5)

whereIk = {1, 2, ..., k}, such that

Ed(Xn, ψm(φ1(X
n), φ1(X

n), ..., φm(Xn), Y n
m)) ≤ Dm, (6)

whereE is the expectation operation.

Definition 2: A rate vectorR = (R1, R2, ..., RN ) is said to beD = (D1,D2, ...,DN ) achievable, if for every

ǫ > 0 there exists for sufficient largen an (n,M1,M2, ...,MN ,D1 + ǫ,D2 + ǫ, ...,DN + ǫ) code with

Rm + ǫ ≥
1

n
logMm, m = 1, 2, ..., N. (7)

A three-stage example is given in Fig. 1. Denote the collection of all theD achievable rate vectors asR(D),

and this is the region to be characterized. When the side informations have arbitrary dependence among them, the

problem appears to be difficult. As in [5], we consider only the case with a particularly ordered degraded side

informations, which is given by the Markov conditionX ↔ YN ↔ YN−1 ↔ ... ↔ Y1. One of our main results is

the complete characterization of this region, given in the next section.

We can further consider the case when the descriptions are transmitted overN independent discrete memoryless

channel (DMC) (see Fig 2). For simplicity, instead of using the more general model where the channels are cost-

constrained as in [11], we only consider channels without constraints; however, such an extension can be done

without much difficulty.

Definition 3: An (n, n1, n2, ..., nN ,D1,D2, ...,DN ) source-channel SR (SC-SR) code for sourceX with side

information(Y1, Y2, ..., YN ) for independent channels given byPYc,m|Xc,m
, m = 1, 2, ..., N , consists ofN encoding
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functionsφm, m = 1, 2, ..., N , andN decoding functionsψm, m = 1, 2, ..., N :

φm : Xn → Xnm

c,m (8)

ψm : Yn1

c,1 × Yn2

c,2 × ...× Ynm

c,m × Yn
m → X̂n, (9)

such that

Ed(Xn, ψm(Yc,1,Yc,2, ...,Yc,3,Ym)) ≤ Dm. (10)

Definition 4: A distortion vectorD = (D1,D2, ...,DN ) is said to be SC-SR achievable for sourcePXY1Y2,...,YN

and channelsPYc,m|Xc,m
, m = 1, 2, ..., N , under bandwidth expansion factor(ρ1, ρ2, ..., ρN ), if for every ǫ > 0

there exists for sufficient largen an (n, nρ1, nρ2, ..., nρN ,D1 + ǫ,D2 + ǫ, ...,DN + ǫ) SC-SR code. The achievable

SC-SR distortion regionD(ρ1, ρ2, ..., ρN ) is the collection of all the SC-SR achievable distortion vectors under the

given bandwidth expansion factors.

III. T HE CHARACTERIZATION OF THE RATE-DISTORTION REGION WITH DEGRADED SIDE INFORMATION

Define the regionR∗(D) to be the set of all rate vectorsR = (R1, R2, ..., RN ) for which there existsN random

variables(W1,W2, ...,WN ) in finite alphabetsW1,W2, ...,WN such that the following condition are satisfied.

1) (W1,W2, ...,WN ) ↔ X ↔ YN ↔ YN−1 ↔ ...↔ Y1.

2) There exist deterministic mapsfm : Wm × Ym → X̂ such that

Ed(X, fm(Wm, Ym)) ≤ Dm, 1 ≤ m ≤ N. (11)

3) The alphabet sizes satisfies

|W1| ≤ |X | + 2N − 1

|Wm| ≤ |X |
m−1
∏

i=1

|Wi| + 2N − 2m+ 1, m = 2, 3, ..., N. (12)

4) The non-negative rate vectors satisfies:
m

∑

i=1

Ri ≥
m

∑

i=1

I(X;Wm|W1,W2, ...,Wm−1, Ym), 1 ≤ m ≤ N. (13)

where we have used the convention thatW0 = ∅, i.e., the null set.

Remark 1:Because of the conditioning onW1,W2, ...,Wm−1 in the rate expressions, it is clear that the function

fm(Wm, Ym) can also be written asf ′m(W1,W2, ...,Wm, Ym) without essential difference on the definition of the

region; however the alphabet size bounds given above shouldbe modified accordingly. This equivalence will be

used in the explicit calculation of the rate-distortion region in Section V and VI.

The following theorem establishes the rate-distortion region, which is one of the main results of the paper.

Theorem1: For any discrete memoryless stochastically degraded source X ↔ YN ↔ YN−1 ↔ ...↔ Y1

R(D) = R∗(D). (14)
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The achievability of the region is quite straightforward. Them-th stage codebook of overall size2n(I(X;Wm|W1,W2,...,Wm−1)+ǫm)

is generated uniform-randomly fromTn
[Wm|w1,w2,...,wm−1]δ, whereTn

[Wm|w1,w2,...,wm−1]δ denotes the set of

δ-typical sequences given lower-hierarchy codewords(w1,w2, ...,wm−1). These codewords are then placed into

2n(I(X;Wm|W1,W2,...,Wm−1,Ym)+2ǫm) bins using a uniform distribution. The decoder block-decodes Wm in the

m-th stage (using the side information), which is conditional on the lower hierarchy codewords; since the side

informations are degraded, each higher hierarchy can always decode the lower-hierarchy codewords. From the

above interpretation, it is seen that the proof of the achievability of the region essentially uses the hierarchy of

random codes as in the proof of the two stage case in [5]. Thus we will focus on the converse part of the proof of

the theorem, which is given in Appendix I.

A source-channel separation result is now stated, and the proof is given in Appendix II.

Theorem2: For any discrete memoryless stochastically degraded source X ↔ YN ↔ YN−1 ↔ ... ↔ Y1,

and N independent discrete memoryless channels given byPYc,m|Xc,m
, m = 1, 2, ..., N , the distortion vector

D = (D1,D2, ...,Dn) is achievable under bandwidth expansion factors(ρ1, ρ2, ..., ρN ), if and only if there exist

random variables(W1,W2, ...,WN ) in finite alphabetsW1,W2, ...,WN satisfying conditions 1), 2), 3) in the

definition ofR∗(D) and furthermore,
m

∑

i=1

ρiCi ≥
m

∑

i=1

I(X;Wm|W1,W2, ...,Wm−1, Ym), 1 ≤ m ≤ N, (15)

whereCi is the channel capacity of channeli.

The rate region given in Theorem 1 is in a different form than the achievable region given in [5]. HereR∗(D)

is given in terms of the sum-rate at each stage, including rates at the previous stages, the sufficiency of which was

formally established in [12]. The achievable region in [5],denoted asR̂∗(D) here, involves(N + 1)N/2 random

variables, and is given in terms of individual rateRm at each stage. It is provided below for ease of comparison:

R̂∗(D) is defined as the set of all rate vectors(R1, R2, ..., RN ) for which there exists a collection of(N + 1)N/2

random variables{Vi,j , 1 ≤ i ≤ N, i ≤ j ≤ N}, whereVi,j is taking values in a finite setVi,j , such that the

following conditions are satisfied.

1) {Vi,j , 1 ≤ i ≤ N, i ≤ j ≤ N} ↔ X ↔ YN ↔ YN−1 ↔ ...↔ Y1.

2) There exist deterministic mapsfm : Vm,m × Ym → X̂ such that

Ed(X, fm(Vm,m, Ym)) ≤ Dm, 1 ≤ m ≤ N. (16)

3) The rate vectors satisfies:

R1 ≥ I(X;V1,1|Y1) +
N

∑

k=2

I(X;V1,k|V1,1, V1,2, ..., V1,k−1, Yk) (17)

Rm ≥ I(X;Vm,m|{Vi,j , 1 ≤ i < m, i ≤ j ≤ m}, Ym)

+
N

∑

k=m+1

I(X;Vm,k|{Vi,j , 1 ≤ i ≤ m, i ≤ j ≤ k − 1}, Yk), 2 ≤ m ≤ N. (18)
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Fig. 3. An example when the achievability of the two regions are equivalent, but the two regions are not the same. One region is singleton

point labeled using the star, the other region is the shaded region including this singleton point.

It is clear that the characterizationR∗(D) given in Theorem 1 is more concise. However, it can indeed be shown

that these two regions are equivalent, and we establish thisequivalence as a theorem.

Theorem3: For any discrete memoryless stochastically degraded source X ↔ YN ↔ YN−1 ↔ ...↔ Y1

R̂∗(D) = R∗(D) = R(D). (19)

The second equality obviously follows from Theorem 1. Theorem 3 is proved in Appendix III, which might

be of interest for the following reason. In [5], a proof for a similar but different claim was given for the special

case ofN = 2, which showed that theachievability of R̂∗(D) and R∗(D) are equivalent. However, this does

not directly imply that the two regions are equivalent; see Fig. 3 for such an example. In our proof, the fact that

R∗(D) = R(D) is used; and sincêR∗(D) is an achievable region, we have triviallyR∗(D) ⊇ R̂∗(D). However,

without invokingR∗(D) = R(D), it appears difficult to prove this inclusion. Interestingly, for N = 2, it is indeed

possible to prove Theorem 2 without invokingR∗(D) = R(D), and this alternative proof is also included in

Appendix III.

The following observation might shed some light on why a direct proof of R̂∗(D) = R(D) might be difficult,

and it also provides the necessary intuition in proving Theorem 3. Consider the caseN = 3, the random variable

V1,3 is the information that the first stage encoded for the third stage. However, if the second stage still has to

encodeV2,2 with a nonzero rate, then the encoder can not encodeV2,2 conditioned onV1,3, since the second

stage decoder will not be able to decodeV1,3. FurthermoreV1,3 does not help in the second stage decoder either.

As such the encoder might as well encodeV1,3 after V2,2 is encoded, which can then be conditioned onV2,2 to

reduce the rate. Thus the optimal scheme is to encode the firststage random variableV1,1; if there is additional

bit budget left in the first stage, then adjust and encodeV1,2 conditioned onV1,1 until V1,2 = V2,2; and if there

is still additional bit budget left, then adjust and encodeV1,3 conditioned on(V1,1, V2,2) until V1,3 = V3,3, etc.;

this process carries for each stage sequentially. Thus the majority of theN(N + 1)/2 random variables are in fact

null random variables, which reflect the change of the codingstrategy at boundary points. This inherent change of
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encoding strategy appears to pose difficulty in proving the converse usingR̂∗(D).

The example in Fig. 3 can also be explained by introducing thefollowing useful property.

Property1: A regionK is said to besum-incremental, if the following is true: ifR ∈ K, then for any non-negative

rate vectorR′ that satisfies
∑m

i=1R
′
i ≥

∑m
i=1Ri for all 1 ≤ m ≤ N , R

′ ∈ K.

It was shown in [12] that for successive refinement coding without side information, the rate region is sum-

incremental. Using the same method, it can be shown that it isalso true for the rate-distortion regionR(D) of

successive refinement coding in the Wyner-Ziv setting. Intuitively, this property states that “it does not matter how

you divide up the rate between layers of the (successively refining) descriptions, as long as the sum-rate of firstm

layers is sufficiently high for eachm = 1, 2, ..., N ” [12]: we can simply move the rate in higher stages into lower

stages to form new codes. The shaded region in Fig. 3 is sum-incremental, well the singleton point labeled by the

star is not. Thus the shaded region can be a valid rate-distortion region for the successive refinement problem, while

the singleton point is not, though the two regions imply the same achievability result. Now notice that it is quite

difficult to prove (even if not impossible)̂R∗(D) is sum-incremental, which suggests it will be difficult to prove

R̂∗(D) = R(D) directly.

IV. STRICTLY AND GENERALIZED SUCCESSIVEREFINABILITY

Extending the definition of successive refinability given in[5] to anN -stage system, means the following.

Definition 5: A sourceX is said to beN -step successively refinablealong the distortion vectorD = (D1,D2, ...,DN ),

with side informations(Y1, Y2, ..., YN ) if

(R∗
X|Y1

(D1), R
∗
X|Y2

(D2) −R∗
X|Y1

(D1), ..., R
∗
X|YN

(DN ) −R∗
X|YN−1

(DN−1)) ∈ R(D) (20)

whereR∗
X|Y (·) denotes the Wyner-Ziv rate distortion function for sourceX with side informationY at the decoder.

This definition of successive refinability will be referred to asstrictly successive refinability, for reasons that will

become clear shortly. The following theorem provides the conditions forN -stage strictly successive refinability.

Theorem4: A discrete memoryless stochastically degraded sourceX ↔ YN ↔ YN−1 ↔ ... ↔ Y1 is N -step

strictly successively refinable along distortion vector(D1,D2, ...,DN ), if and only if there exist random variables

(W1,W2, ...,WN ) and deterministic functionsfm : Wm × Ym → X̂ for m = 1, 2..., N such that the following

conditions hold:

1) R∗
X|Ym

(Dm) = I(X;Wm|Ym) andEd(X, fm(Wm, Ym)) ≤ Dm, 1 ≤ m ≤ N ;

2) (W1,W2, ...,WN ) ↔ X ↔ YN ↔ YN−1 ↔ ...↔ Y1;

3) (W1,W2, ...,Wm−1) ↔ (Wm, Ym) ↔ X, 2 ≤ m ≤ N ;

4) I(Wi;Ym|W1,W2, ...,Wi−1, Yi) = 0, 1 ≤ i ≤ m− 1, 2 ≤ m ≤ N .

The conditions reduce to the corresponding conditions for the two stage cases in [5]. Note that there are in fact

a total ofN(N − 1)/2 equalities specified by condition 4).

Proof of Theorem 4
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For the necessity, assume (20) holds. By Theorem 1, there exists random variables(W1,W2, ...,WN ) and maps

fm : Wm × Ym → X̂ , such that(W1,W2, ...,WN ) ↔ X ↔ YN ↔ YN−1 ↔ ... ↔ Y1, and since (20) holds, due

to (13) we have,

R∗
X|Ym

(Dm) ≥
m

∑

i=1

I(X;Wi|W1,W2, ...,Wi−1, Yi), 1 ≤ m ≤ N, (21)

andEd(X, fm(Wm, Ym)) ≤ Dm, 1 ≤ m ≤ N . From (21), it follows that

R∗
X|Ym

(Dm) ≥
m

∑

i=1

I(X;Wi|W1,W2, ...,Wi−1, Yi)

(a)
= [I(X;Wm|W1,W2, ...,Wm−1, Ym) +

m−1
∑

i=1

I(X;Wi|W1,W2, ...,Wi−1, Yi)]

+[

m−1
∑

i=1

I(X;Wi|W1,W2, ...,Wi−1, Ym) −
m−1
∑

i=1

I(X;Wi|W1,W2, ...,Wi−1, Ym)]

(b)
= I(X;W1,W2, ...,Wm|Ym) +

m−1
∑

i=1

[H(Wi|W1,W2, ...,Wi−1, Yi) −H(Wi|W1,W2, ...,Wi−1, Yi,X)

−H(Wi|W1,W2, ...,Wi−1, Ym) +H(Wi|W1,W2, ...,Wi−1, Ym,X)]

(c)
= I(X;W1,W2, ...,Wm|Ym) +

m−1
∑

i=1

[H(Wi|W1,W2, ...,Wi−1, Yi) −H(Wi|W1,W2, ...,Wi−1, Ym)] (22)

(d)
= I(X;W1,W2, ...,Wm|Ym) +

m−1
∑

i=1

I(Wi;Ym|W1,W2, ...,Wi−1, Yi)

= I(X;Wm|Ym) + I(X;W1,W2, ...,Wm−1|Ym,Wm) +

m−1
∑

i=1

I(Wi;Ym|W1,W2, ...,Wi−1, Yi)

≥ R∗
X|Ym

(Dm) +
m−1
∑

i=1

I(Wi;Ym|W1,W2, ...,Wi−1, Yi) (23)

≥ R∗
X|Ym

(Dm) (24)

where(a) is by chain rule and adding and subtracting the same term, (b)follows by combining the first and third

terms,(c) is due to the Markov chain relationship(W1,W2, ...,WN ) ↔ X ↔ YN ↔ YN−1 ↔ ... ↔ Y1; (d) is

also due to the same Markov chain relationship which implieswe can further condition the last term in(22) with

Yi. Next, inequality (23) is due to the fact that(Wm, Ym) is sufficient to decode to a distortionDm while at the

same time satisfying the Markov conditionWm ↔ X ↔ Ym. Because the beginning and the end of this chain of

inequalities are equal, all the inequalities must be equalities. For (23), the following two conditions must be true

I(X;Wm|Ym) = R∗
X|Ym

(Dm), I(X;W1,W2, ...,Wm−1|Ym,Wm) = 0 (25)

which implies (W1,W2, ...,Wm−1) ↔ (Wm, Ym) ↔ X for 2 ≤ m ≤ N . For (24), it must be true that for

2 ≤ m ≤ N

I(Wi;Ym|W1,W2, ...,Wi−1, Yi) = 0, 1 ≤ i ≤ m− 1. (26)

This establishes the necessity. The sufficiency is of coursetrivial. The proof is completed.
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Remark 3: : Following the Remark 1 made after the definition ofR∗(D), we note that if the function

fm(Wm, Ym) is indeed given instead asf ′m(W1,W2, ...,Wm, Ym), then the third condition in Theorem 4 will not ap-

pear in this set of conditions, and the first condition shouldbe modified as:R∗
X|Ym

(Dm) = I(X;W1,W2, ...,Wm|Ym)

andEd(X, f ′m(W1,W2, ...,Wm, Ym)) ≤ Dm, 1 ≤ m ≤ N .

In order to introduce the notion of generalized successive refinability, we note that the problem considered in

[6],[7] can be understood in the framework being treated as the projection of rate vectorR(D) on the sum-rate
∑N

i=1Ri and ignoring the individual rate; i.e., it is a relaxed version of the current problem. Let us denote the

sum-rate-distortion function to satisfy distortion constraint vector(D1,D2, ...,Dm) with degraded side information

(Y1, Y2, ..., Ym) as RHB(D1,D2, ...,Dm), which was given in [6]. SinceRHB(D1,D2, ...,Dm) degenerates to

R∗
X|Ym

(Dm) when all the other distortion constraints(D1,D2, ...,Dm−1) are set to be infinite, it is seen that

RHB(D1,D2, ...,Dm) ≥ R∗
X|Ym

(Dm). BecauseRHB(D1,D2, ...,Dm) is a lower bound for the sum-rate of
∑m

i=1Ri, if RHB(D1,D2, ...,Dm) > R∗
X|Ym

(Dm) for any m ∈ IN , then the source is trivially not strictly

successively refinable.

From the above discussion, it is seen that for a source to be strictly successively refinable, two conditions are neces-

sary. The first is thatRHB(D1,D2, ...,Dm) = R∗
X|Ym

(Dm); and the second is that in achieving(D1,D2, ...,Dm)

for side information(Y1, Y2, ..., Ym), the encoding can be performed progressively without rate loss. The first

condition in fact provides a simple necessary condition to check whether a source is successive refinable without

directly testing the conditions in Theorem 4, which can be quite difficult because of the involvement of random

variablesWi.

Theorem5: A necessary condition for a discrete memoryless stochastically degraded sourceX ↔ YN ↔

YN−1 ↔ ... ↔ Y1 to beN -step strictly successively refinable along distortion vector (D1,D2, ...,DN ), is that

RHB(D1,D2, ...,Dm) = R∗
X|Ym

(Dm) for each1 ≤ m ≤ N .

This condition is in fact extremely strict, and it is not satisfied for the following two familiar sources in the two

stage case.

• The Gaussian source when the two side informations are not statistically identical. This example is treated in

more detail in the next section.

• Doubly-symmetric binary source (DSBS) with Hamming distortion measure, when the first stage does not have

side information. An explicit calculation is given in Section VI.

A natural question arises as whether the aforementioned second condition can be satisfied separately, and for this

purpose the notion of generalized successively refinable with side information is defined. This notion can be used

to delineate these two conditions which result in the failure of a source being successively refinable.

Definition 6: A sourceX is said to beN -step generalized successively refinablewith degraded side informations,

i.e.,X ↔ YN ↔ YN−1 ↔ ...↔ Y1, along the distortion vectorD = (D1,D2, ...,DN ), if

(RHB(D1), RHB(D1,D2) −RHB(D1), ..., RHB(D1,D2, ...,DN ) −RHB(D1,D2, ...,DN−1))

∈ R(D).
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The definition is limited to the degraded side information case, becauseRHB(D1,D2, ...,DN ) is known under

this condition. The notion of generalized successive refinability only considers whether in order to achieve distortion

(D1,D2, ...,DN ) with side informations(Y1, Y2, ..., YN ), a progressive encoder is as good as an arbitrary encoder,

but ignores whetherR∗
X|Ym

(Dm) = RHB(D1,D2, ...,Dm) is true.

The following theorem makes explicit the connection between strictly successive refinability and the generalized

version.

Theorem6: A sourceX isN -step strictly successively refinable with degraded side information along the distor-

tion vectorD = (D1,D2, ...,DN ), if and only if it isN -step generalized successively refinable, andRHB(D1,D2, ...,Dm) =

R∗
X|Ym

(Dm) for each1 ≤ m ≤ N .

Proof of Theorem 6

The sufficiency is trivial, and we only prove the necessity. By definition, we have

r
∗ = (R∗

X|Y1
(D1), R

∗
X|Y2

(D2) −R∗
X|Y1

(D1), ..., R
∗
X|YN

(DN ) −R∗
X|YN−1

(DN−1)) ∈ R(D). (27)

Sincer
∗ is achievable, it must satisfy the following lower bound:

m
∑

i=1

r∗i ≥ RHB(D1,D2, ...,Dm), 1 ≤ m ≤ N. (28)

Define the rate vector

r = (RHB(D1), RHB(D1,D2) −RHB(D1), ..., RHB(D1,D2, ...,DN ) −RHB(D1,D2, ...,DN−1)) (29)

then it follows
m

∑

i=1

ri = RHB(D1,D2, ...,Dm) ≥ R∗
X|Ym

(Dm) =

m
∑

i=1

r∗i ≥ RHB(D1,D2, ...,Dm), 1 ≤ m ≤ N. (30)

Thus the inequalities must be equality which givesRHB(D1,D2, ...,Dm) = R∗
X|Ym

(Dm) for 1 ≤ m ≤ N . The

sum-incremental property of the rate-distortion regionR(D) further implies thatr ∈ R(D), which completes the

proof.

The next theorem is also straightforward as a consequence ofTheorem 1 and the definition of generalized

successive refinability, thus the proof is omitted.

Theorem7: A discrete memoryless stochastically degraded sourceX ↔ YN ↔ YN−1 ↔ ... ↔ Y1 is N -

step generalized successively refinable if and only if thereexist random variables(W1,W2, ...,WN ) satisfying the

conditions given forR∗(D1,D2, ...,DN ) with

RHB(D1,D2, ...,Dm) =

m
∑

i=1

I(X;Wi|W1,W2, ...,Wi−1, Yi), 1 ≤ m ≤ N. (31)

Different from strictly successive refinability with degraded side information in [5] or the conventional successive

refinability without side information [2], there is no Markov condition involved. Though somewhat surprising at the

first sight, it is actually straightforward, because for degraded side informations, the optimal coding scheme naturally

employs a progressive order. However, an arbitrary source is not necessarily generalized successively refinable along

a distortion vector (pair), because a random variableW ∗
1 optimal for the first stage, is not necessarily optimal together
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with anyW2 for the first two stages. An example is that any source that is not successively refinable without side

information, is not generalized successively refinable if we take both the side informationY1 andY2 as constant.

With the definitions above, we will show in the next section that though Gaussian source with different but

degraded side informations is not strictly successively refinable, it is indeed generalized successively refinable. The

reason for it to be not strictly successively refinable is thus only due to the factRHB(D1,D2, ...,Dj) > R∗
X|Yj

in these cases. Furthermore, we will show that the same is true for the DSBS source. Unlike the conventional

successive refinability without side information, when side information is involved, many familiar sources are very

likely to be not strictly successively refinable unless the side information is identical at all the stages; however,

they are quite likely to be generalized successively refinable.

V. GAUSSIAN SOURCE WITH DIFFERENTSIDE INFORMATIONS

We explore the Gaussian source with mean squared error distortion measure in this section. The calculation will

be focused on the two-stage system, which is sufficient for the purpose of illustrating the two kinds of successive

refinability; however, it can be generalized to any finite stages. We emphasize that this derivation isnot a trivial

extension of the one in [6] whenY1 is a constant, and thus more details are included in AppendixIV. Though

all the discussions in the previous sections are for discrete sources, the result can be generalized to the Gaussian

source using the techniques in [13][14].

We first recall the result in [6] for the two stage case,

RHB(D1,D2) = min
p(D1,D2)

[I(X;W1|Y1) + I(X;W2|W1, Y2)], (32)

wherep(D1,D2) is the set of all random variable(W1,W2) ∈ W1×W2 jointly distributed with the generic random

variables(X,Y1, Y2), such that the following conditions are satisfied: (1)(W1,W2) ↔ X ↔ Y2 ↔ Y1 is a Markov

string; (2) there exist deterministic functionsf1 andf2 such that

Ed(X, f(W1, Y1)) ≤ D1, Ed(X, f(W1,W2, Y2)) ≤ D2.

The source in question isX ∼ N (0, σ2
x), i.e., a zero mean normal random variable with varianceσ2

x. Let

Y1 = X +N1 +N2 andY2 = X +N2, whereN1 ∼ N (0, σ2
1), N2 ∼ N (0, σ2

2), andX, N1 andN2 are mutually

independent and Gaussian; further assume thatσ2
1 , σ

2
2 > 0. To facilitate the discussions, we partition the distortion

regions into the following subregions2, as illustrated in Fig. 4, whereD∗
1 , D∗

2 andγ are defined as

D∗
1

∆
=

σ2
x(σ2

1 + σ2
2)

σ2
x + σ2

1 + σ2
2

, D∗
2

∆
=

σ2
xσ

2
2

σ2
x + σ2

2

, γ
∆
=

σ2
2

σ2
1 + σ2

2

,

where it is clear thatD∗
1 andD∗

2 are the variance of the best MMSE linear estimator ofX given Y1 and Y2,

respectively.

The regions can be understood as follows

2To make the definition of the regions to be consistent with those in [8], we label the horizontal axis asD2. This convention is also used in

the next section.
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Fig. 4. Partition of distortion region for the quadratic Gaussian source.

• Region I:0 < D1 ≤ D∗
1 , 0 < D2 ≤ D∗

2 andD1 ≥ γσ2

1
D2

γσ2

1
−(1−γ)2D2

. In this region both constraints are effective.

• Region II:D1 > D∗
1 , 0 < D2 < D∗

2 . In this region, the first stage does not have to encode, and the problem

degenerates to Wyner-Ziv coding only for the second stage, i.e.,R1 ≥ 0 andR1 +R2 ≥ R∗
X|Y2

(D2).

• Region III:D1 ≤ D∗
1 and0 < D1 <

γσ2

1
D2

γσ2

1
−(1−γ)2D2

. In this region, the second stage does not have to encode,

and the problem degenerates to Wyner-Ziv coding only for thefirst stage, i.e.,R1 ≥ R∗
X|Y1

(D1) andR2 ≥ 0.

• Region IV: D1 > D∗
1 andD2 > D∗

2 . This can be achieved with zero rate, since the side-informations are

enough to satisfy the distortion constraints.

Region I is the only non-degenerate case among the four. In fact, for any distortion pairs(D1,D2) in Region II,

III or IV, there is a distortion pair(D′
1,D

′
2) on the boundary of Region I that strictly improves over(D1,D2), and

is achievable using the same rates; i.e.,R(D1,D2) = R(D′
1,D

′
2), andD1 ≥ D′

1, D2 ≥ D′
2, where at least one of

inequalities holds strictly. Since Region I is the only non-degenerate case, it will be our focus. For the first stage,

an obvious lower bound is the Wyner-Ziv rate distortion function, which gives

R1 ≥
1

2
log

σ2
x(σ2

1 + σ2
2)

D1(σ2
x + σ2

1 + σ2
2)
. (33)

UsingRHB(D1,D2) as the lower bound on the sum rate, we have

R1 +R2 ≥ RHB(D1,D2) =
1

2
log

σ2
xσ

2
1σ

2
2

D2(σ2
x + σ2

1 + σ2
2)((1 − γ)2D1 + γσ2

1)
(34)

for which the rate distortion functionRHB(D1,D2) is proved in Appendix IV.

Not surprisingly, the following pair of random variables actually achieve the lower bounds onR1 andR1 +R2

simultaneously in Region I:

W1 = X + Z1 + Z2, W2 = X + Z2

whereZ1, Z2 are mutually independent zero-mean Gaussian random variable, and independent of(X,N1, N2),

with proper choice of variances determined byD1,D2, σ
2
1 , σ

2
2 , σ

2
x. Alternatively, it is obvious that this choice of

W1 andW2 makes all the inequalities in the lower bounding derivationsatisfied with equality, thus achieves the

lower bound.

DRAFT



14

From the above discussion, it is clear that this choice ofW1 andW2 satisfies the condition of Theorem 7, and thus

Gaussian source is indeed generalized successively refinable. However, in the interior of Region I,RHB(D1,D2)

is strictly larger thanR∗
X|Y2

(D2), which implies Gaussian source is not successively refinable in the strict sense for

these distortion pairs by Theorem 6. On the boundary betweenRegion I and II, as well in Region II,RHB(D1,D2) =

R∗
X|Y2

(D2), thus it is indeed successively refinable in the strict sensefor these distortion pairs; however, this

degenerate case is less interesting.

VI. T HE DOUBLY-SYMMETRIC BINARY SOURCE

In this section we consider the following special case:X is a DMS with alphabet in{0, 1}, andP (X = 0) =

P (X = 1) = 0.5. Side informationY2 = Y = X ⊕ N , whereN is a Bernoulli random variable independent of

everything else withP (N = 1) = p < 0.5 and⊕ stands for modulo 2 addition; alternatively,Y can be taken as

the output of a binary symmetric channel with inputX, and crossover probabilityp. Y1 is a constant, i.e., there is

no side information at the first stage. The distortion measure is the Hamming distortiond(x, x̂) = x⊕ x̂, where⊕

is modulo 2 summation.

As in the Gaussian case, the functionRHB(D1,D2) plays a significant role for this source. We digress here to

give a brief review of this particular problem. The DSBS source, which is probably the simplest discrete source in

the side information scenario, provided considerable insight into the Wyner-Ziv problem [4]. Somewhat surprisingly,

an explicit calculation ofRHB(D1,D2) was not found for this source. Heegard and Berger postulateda forward

test channel in [6], which was later shown to be not optimal byKerpez [8]. Kerpez provided upper and lower

bounds, neither of which are tight. Fleming and Effros [9] also contributed to this problem by considering it as a

rate distortion problem with mixed types of side information. An algorithm to compute the rate-distortion function

numerically was further devised in [10]. However an explicit expression of the rate distortion function for this

source, and more importantly the corresponding optimal forward test channel structure have not been given in

the literature. In the process of considering our problem for the DSBS case, we give an explicit solution to the

Heegard-Berger problem as well.

In this section we first explicitly calculateRHB(D1,D2), and then apply the result to the successive refinement

coding case, where it will be shown that the DSBS is indeed generalized successively refinable.

A. RHB(D1,D2) for the DSBS source

As in the Gaussian case considered in Section V, it was shown in [8]3 that the rate distortion region can be

partitioned into four subregions, three of which are degenerate (see Fig. 5).

• Region I:0 ≤ D1 < 0.5 and0 ≤ D2 < min(D1, p). In this regionR(D1,D2) is a function of bothD1 and

D2, and it is the only non-degenerate case;

3Note that the constraintsD1 and D2, which are the first and second stage distortions here, correspond toD2 and D1 defined in [8]

respectively.
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Fig. 5. The four parts of the rate-distortion regions.dc is the critical distortion defined in [4]

• Region II:D1 ≥ 0.5 and0 ≤ D2 ≤ p. Here the first stage does not have to encode and therefore theproblem

degenerates to Wyner-Ziv encoding for the second stage.

• Region III: 0 ≤ D1 ≤ 0.5 andD2 ≥ min(D1, p). Here the second stage does not have to encode and hence

the problem degenerates to the rate-distortion encoding for the first stage.

• Region IV:D1 > 0.5 andD2 > p. Clearly the rate is zero since the distortion constraints are trivially met.

We will need the following function from [4], defined on the domain 0 ≤ u ≤ 1,

G(u) = h(p ∗ u) − h(u),

whereh(u) is the binary entropy functionh(u) = −u log u− (1−u) log(1−u) andu ∗ v is the binary convolution

for 0 ≤ u, v ≤ 1 andu ∗ v = u(1 − v) + v(1 − u). We will be interested only in the case0 ≤ p < 0.5. It was

shown in [4] thatG(u) is (strictly) convex; furthermore, it is easy to show thatG(u) is symmetric about 0.5, and

is monotonically decreasing for0 ≤ u ≤ 0.5; the minimum ofG(u) is zero whenu = 0.5. It was also shown4 in

[4] that for 0 ≤ D < p

R∗
X|Y (D) = min

(β,θ):0≤θ≤1,0≤β≤p,D=θβ+(1−θ)p
[θG(β)]. (35)

We next define the following function

SD1
(α, β, θ, θ1) = 1 − h(D1 ∗ p) + (θ − θ1)G(α) + θ1G(β) + (1 − θ)G(γ)

where

γ =







D1−(θ−θ1)(1−α)−θ1β

1−θ
θ 6= 1

0.5 θ = 1

4In [4], the minimization was given instead as an infimum with the feasible range of0 ≤ β′ < p, but it can be shown that forD2 < p,

these two forms are equivalent.
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Fig. 6. The optimal forward test channel in Region I-B. The crossover probability for the BSC betweenX andW2 is D2, while the crossover

probability η for the BSC betweenW2 andW1 is such thatD2 ∗ η = D1.

on the domain

0 ≤ θ1 ≤ θ ≤ 1, 0 ≤ α, β ≤ p, p ≤ γ ≤ 1 − p.

Notice thatSD1
(·) is continuous atθ = 1.

The following theorem characterizes the rate distortion functionRHB(D1,D2) in Region I.

Theorem8: For distortion pairs(D1,D2) in Region I:

RHB(D1,D2) = minSD1
(α, β, θ, θ1)

∆
= S∗(D1,D2),

where the minimization is over the domain ofSD1
(α, β, θ, θ1), subject to the constraint

(θ − θ1)α+ θ1β + (1 − θ)p = D2.

This theorem is proved in Appendix V. One notable consequence in the proof of the forward part of this theorem,

is thatW1 can always be taken as the output of a BSC with crossover probability D1 and input X. This observation

is important to determine whether this source is generalized successively refinable.

The following two corollaries are useful, and are straightforward given Theorem 8, which are also proved in

Appendix V. The first corollary provides a lower bound forRHB(D1,D2), which is easy to compute and usually

tighter than the one given in [8].

Corollary 1: For distortion pairs(D1,D2) in Region I:

RHB(D1,D2) ≥ 1 − h(D1 ∗ p) +R∗
X|Y (D2).

Next recall the definition of the critical distortiondc in the Wyner-Ziv problem for the DSBS source, where

G(dc)

dc − p
= G′(dc).

We have the following corollary which specifies a simple forward test channel structure for the caseD2 ≤ dc.

Corollary 2: For distortion pairs(D1,D2) such thatD1 ≤ 0.5 andD2 ≤ min(dc,D1) (i.e., Region I-B),

RHB(D1,D2) = 1 − h(D1 ∗ p) +G(D2).

From the proof of Corollary 2, it is seen that the optimal forward test channel for this case is in fact a cascade of

two BSC channels depicted in Fig. 6.

B. Successive Refinability for the DSBS Source

From Corollary 1, it is evident thatRHB(D1,D2) > R∗
X|Y (D2) unlessD1 = 0.5, which implies that the DSBS

is not strictly successively refinable; however, it is generalized successively refinable. This is true because Theorem
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8 and its proof imply thatW1 can always be taken as the output of a BSC with crossover probability of D2 and input

X. ThisW1 and the optimalW2 clearly satisfy the condition in Theorem 7, thus the DSBS is indeed generalized

successively refinable.

VII. C ONCLUSION

We provided a characterization of the rate-distortion region for the multistage successive refinement of Wyner-Ziv

problem with degraded side information, which was left openin [5]. A systematical comparison with the achievable

region given in [5] was provided, and the equivalence is established precisely. We also established a source-

channel separation theorem when descriptions are transmitted over independent channels. Conditions for (strictly)

successively refinable are accordingly derived. The notionof generalized successively refinable was introduced, in

order to delineate the two obvious factors which result in the failure of a source being successively refinable. We

showed that the Gaussian source with multiple side informations, as well as the doubly symmetric binary source

when the first stage does not have side information, are in fact generalized successively refinable, but not strictly

successively refinable. As such, their being not successively refinable is only due to the uncertainty on which side

information will occur, but not the progressive encoding requirement.

APPENDIX I

PROOF OF THECONVERSE OFTHEOREM 1

There are a total ofN rate constraint inequalities. We consider bounding the rate sum
∑m

i=1Ri for a givenm,

where1 ≤ m ≤ N . Assume the existence of(n,M1,M2, ...,MN ,D1,D2, ...,DN ) SR code, there exist encoding

and decoding functionsφi andψi for 1 ≤ i ≤ N . Denoteφi(X
n) asTi. We will use the notationT j

i to denote the

vector (Ti, Ti+1, ..., Tj) when i ≤ j; if i > j, we take the convention thatT j
i is the empty set∅. (X1,X2, ...,Xn)

will be denoted asX and(Yj,1, Yj,2, ..., Yj,n) asYj . X
−
k will be used to denote the vector(X1,X2, ...,Xk−1) and

X
+
k to denote(Xk+1,Xk+2, ...,Xn). For a collection of side informations, denote((Yi)

+
k , (Yi+1)+k , ..., (Yj)

+
k ) as

(Y j
i )+k , and similarly for(Y j

i )−k ; they will be combined when necessary and denoted as(Y j
i )±k . The subscript

k will be dropped when it is obvious from the context.(Y j
i )k is understood as the vector(Yi,k, Yi+1,k, ..., Yj,k).

We will assumem > 2 such that the quantities exist in the following proof, but itis straightforward to verify for

m = 1, 2, that the derivation degenerates in the correct way.
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The following chain of inequalities is straightforward

n
m

∑

i=1

Ri ≥ H(Tm
1 )

≥ H(Tm
1 |Y1)

(a)
= H(Tm

1 |Y1) −H(Tm
1 |Y1,X)

= I(X;Tm
1 |Y1) (36)

= I(X;Tm
1 Y

m
2

|Y1) −
m

∑

j=2

I(X;Yj |T
m
1 Y

j−1

1 ) (37)

=

n
∑

k=1

[I(Xk;Tm
1 Y

m
2

|Y1X
−
k ) −

m
∑

j=2

I(X;Yj,k|T
m
1 Y

j−1

1 (Yj)
−
k )] (38)

where(a) is because the index is a function of the source, and the last two equalities follow from the chain rule

for mutual information. Define the term in the outer summation of (38) asΓk, i.e.,

Γk = I(Xk;Tm
1 Y

m
2

|Y1X
−
k ) −

m
∑

j=2

I(X;Yj,k|T
m
1 Y

j−1

1 (Yj)
−
k ) (39)

For simplicity, from here on we will drop the subscriptk when we refer to the sequences,e.g.,we will denoteX
−
k

by X
− and (Yj)

−
k by Yj

−. We will work primarily with Γk until the very end of the proof. For the first term in

Γk

I(Xk;Tm
1 Y

m
2

|Y1X
−)

(a)
= I(Xk;Tm

1 Y
m
2

Y
±
1 X

−|Y1,k) ≥ I(Xk;Tm
1 Y

m
2

Y
±
1 |Y1,k) (40)

where (a) follows from the fact that(Xk, Y1,k) is independent of(X−,Y ±
1 ). Because of the Markov string

Yj,k ↔ (Xk, (Y
j−1
1 )k) ↔ (Tm

1 X
±(Y j−1

1 )±Yj
−), for each term in the negative summation inΓk, we have

I(X;Yj,k|T
m
1 Y

j−1

1 Y
−

j ) = I(Xk;Yj,k|T
m
1 Y

j−1

1 Y
−

j ) (41)

Combining (40) and (41), it follows

Γk ≥ I(Xk;Tm
1 Y

m
2

Y
±
1 |Y1,k) −

m
∑

j=2

I(Xk;Yj,k|T
m
1 Y

j−1

1 Y
−

j ) (42)

Applying the chain rule for the positive term in the right hand side of (42), we have

I(Xk;Tm
1 Y

m
2

Y
±
1 |Y1,k) = I(Xk;Tm

1 Y
±
1 Y

−
2 |Y1,k) + I(Xk;Y2,kY

+
2 Y

m
3

|Tm
1 Y1Y

−
2 ) (43)

For the second term in Eqn. (43), we have

I(Xk;Y2,kY
+
2 Y

m
3

|Tm
1 Y1Y

−
2 ) = I(Xk;Y2,k|T

m
1 Y1Y

−
2 ) + I(Xk;Y +

2 Y
m
3

|Tm
1 Y1Y

−
2 Y2,k)

= I(Xk;Y2,k|T
m
1 Y1Y

−
2 ) + I(Xk;Y +

2 Y
−
3 |Tm

1 Y1Y
−
2 Y2,k) + I(Xk;Y3,kY

+
3 Y

m
4

|Tm
1 Y

2
1

Y
−
3 )

= I(Xk;Y2,k|T
m
1 Y1Y

−
2 ) + I(Xk;Y +

2 Y
−
3 |Tm

1 Y1Y
−
2 Y2,k)

+ I(Xk;Y3,k|T
m
1 Y

2
1

Y
−
3 ) + I(Xk;Y +

3 Y
m
4

|Tm
1 Y

2
1

Y
−
3 Y3,k). (44)
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Continuing this decomposition, it finally gives

I(Xk;Y2,kY
+
2 Y

m
3

|Tm
1 Y1Y

−
2 ) =

m
∑

j=2

I(Xk;Yj,k|T
m
1 Y

j−1

1 Y
−

j )

+

m−1
∑

j=2

I(Xk;Yj
+
Y

−

j+1|T
m
1 Y

j−1

1 Y
−

j Yj,k) + I(Xk;Y +
m |Tm

1 Y
m−1
1 Y

−
m Ym,k). (45)

Substituting this in (43), we get

I(Xk;Tm
1 Y

m
2

Y
±
1 |Y1,k) = I(Xk;Tm

1 Y
±
1 Y

−
2 |Y1,k) +

m
∑

j=2

I(Xk;Yj,k|T
m
1 Y

j−1

1 Y
−

j )

+
m−1
∑

j=2

I(Xk;Yj
+
Y

−

j+1|T
m
1 Y

j−1

1 Y
−

j Yj,k) + I(Xk;Y +
m |Tm

1 Y
m−1
1 Y

−
m Ym,k). (46)

Therefore, substituting (46) into (42) we see that the negative term in (42) cancels out the second term on the RHS

of (46), which gives

Γk ≥ I(Xk;Tm
1 Y1

±
Y

−
2 |Y1,k)

+

m−1
∑

j=2

I(Xk;Y +

j Y
−

j+1|T
m
1 Y

j−1

1 Y
−

j Yj,k) + I(Xk;Y +
m |Tm

1 Y
m−1
1 Y

−
m Ym,k). (47)

For the first term in (47), we have

I(Xk;Tm
1 Y

±
1 Y

−
2 |Y1,k) = I(Xk;T1Y

±
1 |Y1,k) + I(Xk;Tm

2 Y
−
2 |T1Y1). (48)

We claim that

I(Xk;Tm
2 Y

−
2 |T1Y1) ≥ I(Xk;Tm

2 Y
−
2 |T1Y1Y2,k) (49)

and more generally for2 ≤ j ≤ m

I(Xk;Tm
j Y

−

j |T j−1
1 Y

j−1

1 ) ≥ I(Xk;Tm
j Y

−

j |T j−1
1 Y

j−1

1 Yj,k) (50)

which can be justified as follows

I(Xk;Tm
j Y

−

j |T j−1
1 Y

j−1

1 ) − I(Xk;Tm
j Y

−

j |T j−1
1 Y

j−1

1 Yj,k)

= H(Xk|T
j−1
1 Y

j−1

1 ) −H(Xk|T
m
1 Y

j−1

1 Y
−

j )

−H(Xk|T
j−1
1 Y

j−1

1 Yj,k) +H(Xk|T
m
1 Y

j−1

1 Y
−

j Yj,k)

= I(Xk;Yj,k|T
j−1
1 Y

j−1

1 ) − I(Xk;Yj,k|T
m
1 Y

−

j Y
j−1

1 )

= H(Yj,k|T
j−1
1 Y

j−1

1 ) −H(Yj,k|XkT
j−1
1 Y

j−1

1 )

−H(Yj,k|T
m
1 Y

−

j Y
j−1

1 ) +H(Yj,k|XkT
m
1 Y

−

j Y
j−1

1 )

(a)
= I(Yj,k;Tm

j Y
−

j |T j−1
1 Y

j−1

1 ) ≥ 0 (51)

where (a) is due to the Markov conditionYj,k ↔ (Xk, (Y
j−1
1 )k) ↔ (Tm

1 Y
−

j (Y j−1

1 )±X
±) implies the reduced

Markov conditionYj,k ↔ (Xk, (Y
j−1
1 )k) ↔ (Tm

1 Y
−

j (Y j−1

1 )±). Assume for nowm > 2, and consider the
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following summation of the second term in (48) and the secondterm in (47)

I(Xk;Tm
2 Y

−
2 |T1Y1) +

m−1
∑

j=2

I(Xk;Y +

j Y
−

j+1|T
m
1 Y

j−1

1 Y
−

j Yj,k)

(a)

≥ I(Xk;Tm
2 Y

−
2 |T1Y1Y2,k) +

m−1
∑

j=2

I(Xk;Y +

j Y
−

j+1|T
m
1 Y

j−1

1 Y
−

j Yj,k)

= I(Xk;Tm
2 Y

−
2 |T1Y1Y2,k) + I(Xk;Y2

+
Y

−
3 |Tm

1 Y1Y
−
2 Y2,k)

+

m−1
∑

j=3

I(Xk;Y +

j Y
−

j+1|T
m
1 Y

j−1

1 Y
−

j Yj,k)

(b)
= I(Xk;Tm

2 Y2
±

Y
−
3 |T1Y1Y2,k) +

m−1
∑

j=3

I(Xk;Yj
+
Y

−

j+1|T
m
1 Y

j−1

1 Y
−

j Yj,k)

= I(Xk;T2Y2
±|T1Y1Y2,k) + I(Xk;Tm

3 Y
−
3 |T 2

1 Y
2
1

) +
m−1
∑

j=3

I(Xk;Y +

j Y
−

j+1|T
m
1 Y

j−1

1 Y
−

j Yj,k),

(52)

where(a) follows because of (50) and(b) follows due to chain rule. Notice for the second term in (52),we can

again apply inequality (50), and continue sequentially along this way, which finally gives

I(Xk;Tm
2 Y

−
2 |T1Y1) +

m−1
∑

j=2

I(Xk;Y +

j Y
−

j+1|T
m
1 Y

j−1

1 Y
−

j Yj,k)

≥
m−1
∑

j=2

I(Xk;TjY
±

j |T j−1
1 Y

j−1

1 Yj,k) + I(Xk;TmY
−

m |Tm−1
1 Y

m−1
1 ) (53)

Combining (47), (48) and (53) gives

Γk ≥ I(Xk;T1Y
±
1 |Y1,k) +

m−1
∑

j=2

I(Xk;TjY
±

j |T j−1
1 Y

j−1

1 Yj,k)

+I(Xk;TmY
−

m |Tm−1
1 Y

m−1
1 ) + I(Xk;Y +

m |Tm
1 Y

m−1
1 Y

−
m Ym,k) (54)

≥
m

∑

j=1

I(Xk;TjY
±

j |T j−1
1 Y

j−1

1 Yj,k). (55)

where inequality (50) is applied on the third term in (54). Itis straightforward to verify that inequality (55) is still

valid if m = 1 or m = 2, when the proper convention of empty set is taken.

In (55), the conditioning on(Y j−1
1 )k has to be removed to reach the desired form, which can indeed be done

due to the degradedness of the side informations. More precisely, for 2 ≤ j ≤ m

I(Xk;TjY
±

j |T j−1
1 Y

j−1

1 Yj,k) − I(Xk;TjY
±

j |T j−1
1 (Y j−1

1 )±Yj,k)

= H(Xk|T
j−1
1 Y

j−1

1 Yj,k) −H(Xk|T
j
1 Y

j
1 ) −H(Xk|T

j−1
1 (Y j−1

1 )±Yj,k) +H(Xk|T
j
1 (Y j

1 )±Yj,k)

= −I(Xk; (Y j−1
1 )k|T

j−1
1 (Y j−1

1 )±Yj,k) + I(Xk; (Y j−1
1 )k|T

j
1 (Y j

1 )±Yj,k) = 0 (56)

where in fact both the terms in the (56) are zero, due to the Markov condition(Y j−1
1 )k ↔ Yj,k ↔ (XTm

1 (Y m
1

)±)
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implies the reduced Markov condition(Y j−1
1 )k ↔ Yj,k ↔ (XkT

j
1 (Y j

1 )±). Thus we reach the form

Γk ≥
m

∑

j=1

I(Xk;TjYj
±|T j−1

1 (Y j−1

1 )±Yj,k) =
m

∑

j=1

I(Xk;T j
1 Yj

±|T j−1
1 (Y j−1

1 )±Yj,k). (57)

DefineWj,k = (T j
1 , (Y j)

±
k ) and by substituting (57) into (38) we have for1 ≤ m ≤ N ,

n

m
∑

i=1

Ri ≥
n

∑

k=1

m
∑

j=1

I(Xk;Wj,k|(W
j−1
1 )k, Yj,k) (58)

Therefore the Markov condition(W1,k,W2,k, ...,WN,k) ↔ Xk ↔ YN,k ↔ YN−1,k ↔ ... ↔ Y1,k is true. Next

introduce the time sharing random variableQ, which is independent of the multisource, and uniformly distributed

over In. DefineWj = (Wj,Q, Q). The existence of functionfj follows by defining

fj(Wj , Yj) = ψj,Q(φ1(X), φ2(X), ..., φj(X),Yj) (59)

becauseWj includesT j
1 Yj

±, which leads to the fulfillment of the distortion constraint

Ed(X, fj(Wj , Yj)) =
1

n

n
∑

i=1

Ed(Xi, ψj,i(φ1(X), φ2(X), ..., φj(X),Yj)) ≤ Dj , 1 ≤ j ≤ N

(60)

and the Markov condition(W1,W2, ...,WN ) ↔ X ↔ YN ↔ YN−1 ↔ ... ↔ Y1 is still true. It only remains to

show the bound (58) can be writen in single letter form inWj , but this is straightforward following the approach

on pg. 435 of [15] (see also [5]). The bounds on the alphabet size is by applying conventional argument (see [16]).

This completes the proof.

APPENDIX II

PROOF OFTHEOREM 2

The forward part is trivially implied by Theorem 1 and the conventional channel coding theorem, and thus we

only give an outline of the converse part.

By Lemma 8.9.2 in [15], we have

n

m
∑

i=1

ρiCi ≥
m

∑

i=1

I(Xni

c,i;Y
ni

c,i ) (61)

whereni = nρi, andρi is the number of channel use per source symbol for thei-th channel. Notice that

I(Xn1

c,1X
n2

c,2, ...,X
nm

c,m;Y n1

c,1Y
n2

c,2 , ..., Y
nm

c,m )

(a)
= I(Xn1

c,1X
n2

c,2, ...,X
nm

c,m;Y n1

c,1 ) + I(Xn1

c,1X
n2

c,2, ...,X
nm

c,m;Y n2

c,2Y
n3

c,3 , ..., Y
nm

c,m |Y n1

c,1 )

(b)
= I(Xn1

c,1;Y
n1

c,1 ) + I(Xn1

c,1X
n2

c,2, ...,X
nm

c,m;Y n2

c,2Y
n3

c,3 , ..., Y
nm

c,m |Y n1

c,1 )

= I(Xn1

c,1;Y
n1

c,1 ) +H(Y n2

c,2Y
n3

c,3 , ..., Y
nm

c,m |Y n1

c,1 ) −H(Y n2

c,2Y
n3

c,3 , ..., Y
nm

c,m |Y n1

c,1X
n1

c,1X
n2

c,2, ...,X
nm

c,m)

(c)
= I(Xn1

c,1;Y
n1

c,1 ) +H(Y n2

c,2Y
n3

c,3 , ..., Y
nm

c,m |Y n1

c,1 ) −H(Y n2

c,2Y
n3

c,3 , ..., Y
nm

c,m |Xn2

c,2, ...,X
nm

c,m)

(d)

≤ I(Xn1

c,1;Y
n1

c,1 ) +H(Y n2

c,2Y
n3

c,3 , ..., Y
nm

c,m ) −H(Y n2

c,2Y
n3

c,3 , ..., Y
nm

c,m |Xn2

c,2, ...,X
nm

c,m)

= I(Xn1

c,1;Y
n1

c,1 ) + I(Y n2

c,2Y
n3

c,3 , ..., Y
nm

c,m ;Xn2

c,2, ...,X
nm

c,m) (62)
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where (a) is by chain rule, and (b) and (c) are because the channels are independent, i.e.,

PYc,1Yc,2,...,Yc,m|Xc,1Xc,2,...,Xc,m
= PYc,1|Xc,1

PYc,2|Xc,2
...PYc,m|Xc,m

(63)

which implies the Markov conditions{Xc,j}j 6=i ↔ Xc,i ↔ Yc,i and{Yc,j}j 6=i ↔ {Xc,j}j 6=i ↔ (Xc,i, Yc,i); (d) is

because conditioning reduces entropy.

Continue this decomposition and combine it with (61), we have

n

m
∑

i=1

ρiCi ≥
m

∑

i=1

I(Xni

c,i;Y
ni

c,i ) ≥ I(Xn1

c,1X
n2

c,2, ...,X
nm

c,m;Y n1

c,1Y
n2

c,2 , ..., Y
nm

c,m )

(a)

≥ I(Xn;Y n1

c,1Y
n2

c,2 , ..., Y
nm

c,m )

(b)
= I(XnY n

1 ;Y n1

c,1Y
n2

c,2 , ..., Y
nm

c,m )

= I(Y n
1 ;Y n1

c,1Y
n2

c,2 , ..., Y
nm

c,m ) + I(Xn;Y n1

c,1Y
n2

c,2 , ..., Y
nm

c,m |Y n
1 )

≥ I(Xn;Y n1

c,1Y
n2

c,2 , ..., Y
nm

c,m |Y n
1 ) (64)

where (a) is due to data processing inequality, and (b) because the Markov chainY1 ↔ X ↔ Yc,i. At this point

the similarity between (64) and (36) is quite clear. Using the same steps as in the derivation as in the proof of

Theorem 1, the converse of Theorem 2 is proved.

APPENDIX III

PROOF OFTHEOREM 3

We first prove for the special caseN = 2 without invoking Theorem 1 thatR∗(D) = R(D). The proof of

Theorem 3 then follows from invoking Theorem 1 for one direction and extending the proof ofN = 2 for the other

direction.

Proof for the case ofN = 2

We first prove thatR̂∗
2(D) ⊆ R∗

2(D), where the subscript 2 stands forN = 2. For an arbitrary rate pair(r1, r2) ∈

R̂∗
2(D1,D2), there exist3 random variablesV1,1, V1,2 andV2,2, and the corresponding functionsf1(V1,1, Y1) and

f2(V2,2, Y2), such that

r1 ≥ I(X;V1,1|Y1) + I(X;V1,2|V1,1, Y2) (65)

r2 ≥ I(X;V2,2|V1,1, V1,2, Y2) (66)

and the distortion constraints are satisfied. Inequalities(65) and (66) imply that

r1 ≥ I(X;V1,1|Y1)

r1 + r2 ≥ I(X;V1,1|Y1) + I(X;V1,2|V1,1, Y2) + I(X;V2,2|V1,1, V1,2, Y2)

= I(X;V1,1|Y1) + I(X;V1,2, V2,2|V1,1, Y2)
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Now defineW1 = V1,1 andW2 = (V1,2, V2,2), and it follows that

r1 ≥ I(X;W1|Y1)

r1 + r2 ≥ I(X;W1|Y1) + I(X;W2|W1, Y2)

and(W1,W2) is a pair of random variables satisfying the condition forR∗
2(D1,D2) and thus(r1, r2) ∈ R∗

2(D1,D2),

which shows thatR̂∗
2(D) ⊆ R∗

2(D) since trivially the distortion constraints are also met.

To prove the other direction, i.e.,̂R∗
2(D1,D2) ⊇ R∗

2(D1,D2), assume(r1, r2) ∈ R∗
2(D1,D2). There exist

random variablesW1 andW2, and two corresponding functionsf1(W1, Y1) andf2(W2, Y2), such that

r1 ≥ I(X;W1|Y1) (67)

r1 + r2 ≥ I(X;W1|Y1) + I(X;W2|W1, Y2) (68)

and the distortion constraints are met. Let∆r1 = r1 − I(X;W1|Y1). We claim that for any0 ≤ ∆r1 ≤

I(X;W2|W1, Y2), there exists a random variableV , such that

∆r1 = I(X;V |W1, Y2) (69)

I(X;V |W1, Y2) + I(X;W2|W1, V, Y2) = I(X;W2|W1, Y2). (70)

There are many ways to constructV , for example we can constructV = (W2(J), J), whereJ is a Bernoulli

random variable independent of everything else withp(J = 1) = u; whenJ = 1, W2(J) = W2 andW2(J) is a

fixed constant otherwise;I(X;V |W1, Y2) can be any real value in the interval[0, I(X;W2|W1, Y2)] by choosingu

appropriately. For a more thorough treatment on this topic in the context of rate splitting in multiple access channel,

see [17]. It follows that for this case

r1 = I(X;W1|Y1) + I(X;V |W1, Y2) (71)

r2 ≥ I(X;W1|Y1) + I(X;W2|W1, Y2) − r1

= I(X;W2|W1, V, Y ). (72)

Now defineV1,1 = W1, V1,2 = V and V2,2 = W2. The random variables(V1,1, V1,2, V2,2) clearly satisfy the

definition given forR̂∗(D1,D2), and thus(r1, r2) ∈ R̂∗(D1,D2) for this case. On the other hand, if∆r1 ≥

I(X;W2|W1, Y2), then definesV1,1 = W1, V1,2 = W2 andV2,2 = W2. The non-negativity conditionr2 ≥ 0 implies

r2 ≥ I(X;V2,2|V1,1, V1,2, Y2). Since the reconstruction functionsf1(W1, Y1) = f1(V1,1, Y1) and f2(W2, Y2) =

f2(V2,2, Y2) satisfy the distortion constraints, the proof is completed.

Proof of Theorem 3

Since R̂∗(D) is an achievable region, we have triviallŷR∗(D) ⊆ R(D) = R∗(D) due to Theorem 1. For

the inclusion of the other direction, the proof for the caseN = 2 can clearly be extended straightforwardly, by

sequentially constructing random variable correspondingto {Vi,j}, j ≥ i. This completes the proof for Theorem 3.
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APPENDIX IV

LOWER BOUND ON THE SUM-RATE FOR THEGAUSSIAN SOURCE

To lower bound the sum-rate to achieve(D1,D2) with side information(Y1, Y2), consider the following quantity,

I(X;W1|Y1) + I(X;W2|W1, Y2)

= H(X|Y1) −H(X|W1, Y1) +H(X|W1, Y2) −H(X|W1,W2, Y2)

(a)
= H(X|Y1) −H(X|W1,W2, Y2) − I(X;Y2|W1, Y1) (73)

(b)
= H(X|Y1) −H(X|W1,W2, Y2) −H(Y2|W1, Y1) +H(Y2|X,Y1) (74)

where we can see(a) follows sinceI(W1,X;Y1|Y2) = I(W1;Y1|Y2) + I(X;Y1|W1, Y2) = 0 due to the Markov

conditionW1 ↔ X ↔ Y2 ↔ Y1, which implies thatI(X;Y1|W1, Y2) = H(X|W1, Y2) −H(X|W1, Y2, Y1) = 0.

In an identical manner(b) is due to,I(W1;Y2|X,Y1) = H(Y2|X,Y1) − H(Y2|X,Y1,W1) = 0. The quantities

H(X|Y1) andH(Y2|X,Y1) are only dependent on the multi-source. We bound the second term in (74) as follows

H(X|W1,W2, Y2) = H(X − E(X|W1,W2, Y2)|W1,W2, Y2)

≤ H(X − E(X|W1,W2, Y2))

≤ H(N (0,E(X − E(X|W1,W2, Y2))
2)) (75)

≤
1

2
log(2πeD2) (76)

where in (75) we use the fact that normal distribution maximizes the entropy for a given second moment, and in (76)

the fact that the variance ofE(X−E(X|W1,W2, Y2))
2 ≤ D2 because of the existence of functionf2(W1,W2, Y2)

to reconstructX with distortionD2.

To bound the third term in (74), writeY2 = X +N2 as follows

X +N2 = X +N2 +
σ2

2

σ2
1 + σ2

2

(N1 +N2) −
σ2

2

σ2
1 + σ2

2

(N1 +N2)

=
σ2

2

σ2
1 + σ2

2

(X +N1 +N2) +
σ2

1

σ2
1 + σ2

2

X + [N2 −
σ2

2

σ2
1 + σ2

2

(N1 +N2)]

= γY1 + (1 − γ)X + [(1 − γ)N2 − γN1],

whereγ =
σ2

2

σ2

1
+σ2

2

as in Section V. It can be seen that[(1 − γ)N2 − γN1] is independent ofY1, by checking the

fact E(Y1[(1 − γ)N2 − γN1]) = 0 and recalling that they are jointly zero-mean Gaussian. Further noticeX is
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independent of(N1, N2), which implies[(1 − γ)N2 − γN1] is also independent ofW1. Thus we have

H(Y2|W1, Y1) = H(γY1 + (1 − γ)X + [(1 − γ)N2 − γN1]|W1, Y1)

= H((1 − γ)X + [(1 − γ)N2 − γN1]|W1, Y1)

= H((1 − γ)[X − E(X|W1, Y1)] + [(1 − γ)N2 − γN1]|W1, Y1)

≤ H((1 − γ)[X − E(X|W1, Y1)] + [(1 − γ)N2 − γN1])

≤ H(N (0,E{(1 − γ)[X − E(X|W1, Y1)] + [(1 − γ)N2 − γN1]}
2)) (77)

≤ H(N (0, (1 − γ)2D1 + (1 − γ)2σ2
2 + γ2σ2

1)) (78)

=
1

2
log[2πe((1 − γ)2D1 + (1 − γ)2σ2

2 + γ2σ2
1))]

=
1

2
log[2πe((1 − γ)2D1 + γσ2

1))] (79)

where in (78), we used the fact that[X −E(X|W1, Y1)] is independent of[(1− γ)N2 − γN1]. Using (76) and (79)

in (74) gives

R1 +R2 ≥
1

2
log

σ2
xσ

2
1σ

2
2

D2(σ2
x + σ2

1 + σ2
2)((1 − γ)2D1 + γσ2

1)
(80)

Note that this lower bound is only tight and achievable when bothD1 andD2 are effective, i.e., in Region I. When

D2 is not effective, the bound that

R1 +R2 ≥ R1 ≥
1

2
log(

σ2
x(σ2

1 + σ2
2)

D1(σ2
x + σ2

1 + σ2
2)

)

is in fact achievable with equality. By comparing the above two bounds, it can be seen that this corresponds to the

conditionD2 ≤ γD1σ2

1

(1−γ)2D1+γσ2

1

or equivalentlyD1 ≥ γσ2

1
D2

γσ2

1
−(1−γ)2D2

whenD2 ≤ D∗
2 .

APPENDIX V

PROOF OF THETHEOREM AND COROLLARIES FOR THEDSBS

A. Proof of Theorem 8

We will need the following lemma from [8] to simplify the calculation.

Lemma1: For (W1,W2) ∈ p(D1,D2)

I(X;W1) + I(X;W2|YW1) = H(X) −H(Y |W1) +H(Y |W1W2) −H(X|W1W2). (81)

The lower bound

Let (W1,W2) ∈ P (D1,D2) define a joint distribution with(X,Y ). Furthermore, assume the functionsf1 andf2

are optimal for these random variables, i.e., there do not exist f ′1 (or f ′2), such thatEd(X, f ′1(W1)) < Ed(X, f1(W1))

(or Ed(X, f ′2(W1,W2, Y )) < Ed(X, f2(W1,W2, Y ))), because otherwise we can consider the alternative functions

f ′1 (or f ′2) without loss of optimality. Our goal is to show thatI(X;W1) + I(X;W2|YW1) ≥ S∗(D1,D2), then

invoke the rate distortion theorem, by which the lower boundcan be established.
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Similar as in [4][8], define the following set

A = {(w1, w2) : f2(w1, w2, 0) = f2(w1, w2, 1)}, (82)

which defines its complement as,

Ac = W1 ×W2 −A = {(w1, w2) : f2(w1, w2, 0) 6= f2(w1, w2, 1)}. (83)

For eachw1 ∈ W1, define the following two sets

B(w1) = {w2 ∈ W2 : (w1, w2) ∈ A, f1(w1) = f2(w1, w2, 0)},

B∗(w1) = {w2 ∈ W2 : (w1, w2) ∈ A, f1(w1) 6= f2(w1, w2, 0)}.

Notice that for each fixedw∗
1 ∈ W1, we haveW2 = B(w∗

1) ∪B∗(w∗
1) ∪ {w2 : (w∗

1 , w2) ∈ Ac}, and the three sets

are disjoint. To simplify the notations, writeP{(W1W2) = (w1w2)} asPw1w2
, andP{W1 = w1} asPw1

. Define

the following quantity for eachw1 ∈ W1

D1,w1

∆
= E[d(X, X̂1)|W1 = w1] = P{X 6= f1(w1)|W1 = w1}

and define the following quantity for each(w1, w2) ∈ A,

D2,w1w2

∆
= E[d(X, X̂2)|(W1,W2) = (w1, w2)] = P{X 6= f2(w1, w2, 0)|(W1,W2) = (w1, w2)}.

By the Markov stringY ↔ X ↔ (W1,W2), it follows that for eachw1 ∈ W1

H(X|W1 = w1) = h(D1,w1
), H(Y |W1 = w1) = h(p ∗D1,w1

), (84)

where as beforeu ∗ v
def
= u(1 − v) + v(1 − u). For each(w1, w2) ∈ A, we have

H[X|(W1,W2 = w1, w2)] = h(D2,w1w2
), H[Y |(W1,W2) = (w1, w2)] = h(p ∗D2,w1w2

). (85)

And furthermore, for each(w1, w2) ∈ Ac, we have

H[X|(W1,W2 = w1, w2)] = h(P{X 6= f1(w1)|W1 = w1,W2 = w2})

H[Y |(W1,W2) = (w1, w2)] = h(p ∗ P{X 6= f1(w1)|W1 = w1,W2 = w2}). (86)

We will also need the following quantities

θ
∆
= P{(W1,W2) ∈ A}, θ1

∆
= P{(W1,W2) ∈ {(w1, w2) : w2 ∈ B(w1)}}. (87)

Clearly, we have

H(X) −H(Y |W1) = 1 −
∑

w1∈W1

Pw1
H(Y |W1 = w1)

= 1 −
∑

w1∈W1

Pw1
h(p ∗D1,w1

)

≥ 1 − h(p ∗D′
1) (88)
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where we have used the concavity of functionh(p ∗ u) in the last step and

D′
1

∆
=

∑

w1∈W1

Pw1
D1,w1

.

Furthermore we have

H(Y |W1W2) −H(X|W1W2)

=
∑

(w1,w2)∈A

Pw1,w2
[H(Y |(W1,W2) = (w1, w2)) −H(X|(W1,W2) = (w1, w2))]

+
∑

(w1,w2)∈Ac

Pw1,w2
[H(Y |(W1,W2) = (w1, w2)) −H(X|(W1,W2) = (w1, w2))]

The first term can be bounded as follows

∑

(w1,w2)∈A

Pw1,w2
[H(Y |(W1,W2) = (w1, w2)) −H(X|(W1,W2) = (w1, w2))]

=
∑

w1

∑

w2∈B(w1)

Pw1,w2
[h(p ∗D2,w1w2

) − h(D2,w1w2
)]

+
∑

w1

∑

w2∈B∗(w1)

Pw1,w2
[h(p ∗D2,w1w2

) − h(D2,w1w2
)]

≥ θ1G(β) + (θ − θ1)G(α), (89)

where as beforeG(u)
∆
= h(p ∗ u) − h(u), and

α
∆
=

∑

w1

∑

w2∈B∗(w1)

Pw1w2

θ − θ1
D2,w1w2

, β
∆
=

∑

w1

∑

w2∈B(w1)

Pw1w2

θ1
D2,w1w2

, (90)

and the convexity of functionG(u) is used in the last step. Next, notice the identity that for each w1 ∈ W1

Pw1
D1,w1

= P{X 6= f1(w1),W1 = w1}

=
∑

w2∈B(w1)

P{X 6= f2(w1, w2, 0),W1 = w1,W2 = w2}

+
∑

w2∈B∗(w1)

P{X = f2(w1, w2, 0),W1 = w1,W2 = w2}

+
∑

w2:(w1,w2)∈Ac

P{X 6= f1(w1),W1 = w1,W2 = w2}

=
∑

w2∈B(w1)

Pw1w2
D2,w1w2

+
∑

w2∈B∗(w1)

Pw1w2
(1 −D2,w1w2

)

+
∑

w2:(w1,w2)∈Ac

Pw1w2
P{X 6= f1(w1)|W1 = w1,W2 = w2}. (91)

It follows that

∑

(w1,w2)∈Ac

Pw1,w2
[H(Y |(W1,W2) = (w1, w2)) −H(X|(W1,W2) = (w1, w2))]

=
∑

w1

∑

w2:(w1,w2)∈Ac

Pw1,w2
G[P{X 6= f1(w1)|(W1,W2) = (w1, w2)}]

≥ (1 − θ)G(γ), (92)
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where again the convexity of functionG(u) is used, and because of the identity (91), we have

γ =
∑

w1

∑

w2:(w1,w2)∈Ac

Pw1w2

1 − θ
P{X 6= f1(w1)|W1 = w1,W2 = w2}

=
D′

1 − θ1β − (θ − θ1)(1 − α)

1 − θ
. (93)

It was shown in [8], by a straightforward generalization of the argument in [4], that

E[d(X, X̂2)|(W1,W2) ∈ Ac] ≥ p. (94)

By the hypothesis

D′
2

∆
= θ1β + (θ − θ1)α+ (1 − θ)p ≤ D2

D′
1 ≤ D1.

Notice that for each(w1, w2) ∈ A, D2,w1w2
≤ p, because otherwise for this(w1, w2) pair, makingf2(w1, w2, Y ) =

Y will in fact reduce the distortion, which contradicts with the optimality of the decoding function. Thus0 ≤ α, β ≤

p. Similarly, p ≤ γ ≤ 1− p, becausep ≤ P{X 6= f1(w1)|W1 = w1,W2 = w2} ≤ 1− p, otherwise we can modify

the decoder functionf2 to reduce the distortion. Clearly,0 ≤ θ1 ≤ θ ≤ 1 by definition.

Summarizing the bounds, we have shown that

RHB(D1,D2) ≥ min
(α,β,θ,θ1,D′

1
)∈Q≥

[1 − h(D′
1 ∗ p) + (1 − θ)G(γ) + θ1G(β) + (θ − θ1)G(α)], (95)

where the minimization is within the following set

Q≤ = {(α, β, θ, θ1,D
′
1) : (1 − θ)p ≤ D′

1 − (θ − θ1)(1 − α) − θ1β ≤ (1 − θ)(1 − p),

0 ≤ θ1 ≤ θ ≤ 1, 0 ≤ α, β ≤ p, (θ − θ1)α+ θ1β + (1 − θ)p ≤ D2, D′
1 ≤ D1}.

This is not yet the function given in Theorem 8, because the minimization given there is within the set

Q= = {(α, β, θ, θ1,D
′
1) : (1 − θ)p ≤ D′

1 − (θ − θ1)(1 − α) − θ1β ≤ (1 − θ)(1 − p),

0 ≤ θ1 ≤ θ ≤ 1, 0 ≤ α, β ≤ p, (θ − θ1)α+ θ1β + (1 − θ)p = D2, D′
1 = D1}.

This gap will be closed after we give the forward test channelstructure.

The upper bound

We explicitly construct the random variables with joint pmfgiven in Table I. It is straightforward to verify

that it is a valid pmf, given the conditions in the definition of SD1
(α, β, θ, θ1). Furthermore, the rateI(X;W1) +

I(X;W2|W1Y ) is exactlySD1
(α, β, θ, θ1). The decoding functions aref1(W1) = W1 andf2(W1,W2, Y ) = W2

if W2 6= 2, otherwisef2(W1,W2, Y ) = Y . This establishes the upper bound.

Now we show that the gap aforementioned in the proof of the lower bound can be closed. Suppose that the

parameters that minimize the right hand side of (95) are(α, β, θ, θ1,D
′
1), and furthermoreD′

1 < D1. The set
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w1 = 0 w1 = 1

x = 0 x = 1 x = 0 x = 1

w2 = 0 0.5θ1(1 − β) 0.5θ1β 0.5(θ − θ1)(1 − α) 0.5(θ − θ1)α

w2 = 1 0.5(θ − θ1)α 0.5(θ − θ1)(1 − α) 0.5θ1β 0.5θ1(1 − β)

w2 = 2 0.5(1 − θ)(1 − γ) 0.5(1 − θ)γ 0.5(1 − θ)γ 0.5(1 − θ)(1 − γ)

p(x, w1) 0.5(1 − D1) 0.5D1 0.5D1 0.5(1 − D1)

TABLE I

JOINT DISTRIBUTION p(x, w1, w2) AND THE MARGINAL p(x, w1).

of random variablesW ′
1,W

′
2 can be constructed as given in Table I withD′

1 replacingD1. By the lower bound

established above, we have

RHB(D1,D2) ≥ I(X;W ′
1) + (X;W ′

2|W
′
1Y ). (96)

Consider a random variableW ′′
1 = W ′

1⊕N , whereN is a Bernoulli random variable independent of everything else

with P (N = 1) = η such thatη ∗D′
1 = D1 = D′′

1 , which is valid sincemax{D1,D
′
1} ≤ 1

2 . Let W ′′
2 = (W ′

1,W
′
2),

and we have(W ′′
1 ,W

′′
2 ) ∈ P (D1,D2). Clearly,W ′′

1 ↔ W ′
1 ↔ X ↔ Y , andW ′′

1 ↔ W ′
1 ↔ W ′

2. Thus by the rate

distortion theorem for this problem

I(X;W ′′
1 ) + I(X;W ′′

2 |W
′′
1 Y ) ≥ RHB(D1,D2). (97)

Notice that

I(X;W ′
1) + I(X;W ′

2|W
′
1Y )

(a)
= I(X;W ′

1,W
′′
1 ) + I(X;W ′′

1 ,W
′
2|W

′
1Y )

= I(X;W ′′
1 ) + I(X;W ′

1|W
′′
1 ) + I(X;W ′

2|W
′
1W

′′
1 Y )

(b)
= I(X;W ′′

1 ) + I(X;W ′
1|W

′′
1 ) + I(X;W ′

1W
′
2|W

′′
1 Y ) − I(X;W ′

1|W
′′
1 Y )

(c)
= I(X;W ′′

1 ) + I(X;W ′
1W

′
2|W

′′
1 Y ) + I(Y ;W ′

1|W
′′
1 )

= I(X;W ′′
1 ) + I(X;W ′

1W
′
2|W

′′
1 Y ) + h(p ∗D′′

1 ) − h(p ∗D′
1)

> I(X;W ′′
1 ) + I(X;W ′

1W
′
2|W

′′
1 Y )

where(a) and (c) follow because of the Markov chainW ′′
1 ↔ W ′

1 ↔ X ↔ Y , (b) is by applying chain rule to

the last term in the previous line, and the last step is because p < 0.5 andD′
1 < D1 = D′′

1 ≤ 0.5. However, this

implies

I(X;W ′′
1 ) + I(X;W ′

1W
′
2|W

′′
1 Y ) ≥ RHB(D1,D2)

≥ I(X;W ′
1) + (X;W ′

2|W
′
1Y ) > I(X;W ′′

1 ) + I(X;W ′
1W

′
2|W

′′
1 Y )

which is a contradiction. Thus we conclude that the minimum must be achieved withD′
1 = D1.

DRAFT



30

Next we show that the constraint(θ − θ1)α + θ1β + (1 − θ)p ≤ D2 can be met with equality without loss of

optimality; i.e.,

min
(α,β,θ,θ1,D′

1
)∈Q≥

[1 − h(D′
1 ∗ p) + (1 − θ)G(γ) + θ1G(β) + (θ − θ1)G(α)]

= min
(α,β,θ,θ1,D′

1
)∈Q=

[1 − h(D′
1 ∗ p) + (1 − θ)G(γ) + θ1G(β) + (θ − θ1)G(α)]. (98)

Suppose otherwise, such that the parameters(α, β, θ, θ1,D1) minimizing the right hand side of Eqn. (95) satisfy

(θ − θ1)α + θ1β + (1 − θ)p < D2. parameters(α, β, θ, θ1,D1) ∈ Q= will result in a strict increase in the rate.

If θ = 0, the contradiction is trivial: eitherα or β can be increase to reduce the rate. Whenθ < 1, but α, β < p,

γ ∈ (p, 0.5)∪(0.5, 1−p) and0 < θ1 < θ, it is also trivial to construct such parameters, by disturbing (incrementally)

α or β. Thus the only remaining cases are the follows, and we will ignore the term1 − h(p ∗D1) in the sequel:

• p ≤ γ ≤ 0.5, α = p andθ1 < θ. In this case, notice that

(1 − θ)G(γ) + θ1G(β) + (θ − θ1)G(α) = (1 − θ)G(γ) + θ1G(β) + (θ − θ1)G(1 − α)

> (1 − θ1)G(
D1 − θ1β

1 − θ1
) + θ1G(β),

where the inequality is due to the strict convexity ofG(u). Furthermore, notice thatp ≤ D1−θ1β
1−θ1

≤ 1 − p,

since it is a convex combination ofγ and 1 − p. However, this implies the set of parameters(p, β, θ1, θ1)

strictly improves over the minimum, which is a contradiction.

• p ≤ γ ≤ 0.5 and θ = θ1. Let ǫ be a small positive quantity to be specified later. First notice the condition

implies thatβ < p for anyD2 < p, then

(1 − θ)G(γ) + θG(β) = (1 − θ − ǫ)G(γ) + ǫG(γ) + θG(β)

> (1 − θ − ǫ)G(γ) + (θ + ǫ)G(β′),

where the inequality is due to the strictly convexity ofG(u) and

β′ ∆
=

ǫ(D1 − θβ)

(ǫ+ θ)(1 − θ)
+

θβ

ǫ+ θ
. (99)

Notice further that

γ =
D1 − θβ

1 − θ
=
D1 − (θ + ǫ)β′

1 − θ − ǫ
(100)

thus by choosing a sufficient smallǫ > 0, the following two conditions can be satisfied simultaneously,

(θ + ǫ)β′ + (1 − θ − ǫ)p = θβ + (1 − θ − ǫ)p+ ǫ(γ − p) ≤ D2, β′ ≤ p. (101)

This implies that(p, β′, θ + ǫ, θ + ǫ) strictly improves over the minimum, which is a contradiction.

• 0.5 ≤ γ ≤ 1 − p, β = p andθ1 > 0. The contradiction is similarly constructed as the first case.

• 0.5 ≤ γ ≤ 1 − p andθ1 = 0. This is an impossible case, sinceα ≤ p andD1 ≤ 0.5.

• λ = 0.5 and 0 < θ1 < θ, 0 ≤ α, β < p. In this case, perturbingα, β together incrementally gives a

contradiction.

Thus there is no loss of optimality by replacing the optimization setQ≤ with Q=, and this completes the proof.
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B. Proof of Corollary 1

Notice that for any(α, β, θ, θ1),

SD1
(α, β, θ, θ1) ≥ 1 − h(D1 ∗ p) + (θ − θ1)G(α) + θ1G(β)

≥ 1 − h(D1 ∗ p) + θG(β′)

whereβ′ ∆
= (θ−θ1)α+θ1β

θ
, and the first inequality is due to the non-negativity of function G(u), while the second

inequality is due to its convexity. Furthermore, the constraint is satisfied with

D2 = (θ − θ1)α+ θ1β + (1 − θ)p = θβ′ + (1 − θ)p.

Let (α, β, θ, θ1) be the set of parameters achieving the minimum. Then by Theorem 8, we have

RHB(D1,D2) = SD1
(α, β, θ, θ1) ≥ [1 − h(D1 ∗ p) + θG(β′)],

whereD2 = θβ′ + (1 − θ)p. Moreover0 ≤ β′ ≤ p, because bothα andβ are in this range, andβ′ is the convex

combination of them. Thus

RHB(D1,D2) ≥ 1 − h(D1 ∗ p) + min
D2=θβ′+(1−θ)p

[θG(β′)],

with the minimization range0 ≤ β′ ≤ p and0 ≤ θ ≤ 1. Comparing it with the rate distortion functionR∗
X|Y (D)

of (35) establishes the claim.

C. Proof of Corollary 2

In [4], it was proved that whenD2 ≤ dc, R∗
X|Y (D2) = G(D2), and by Corollary 1,RHB(D1,D2) ≥ 1−h(D1 ∗

p) +G(D2) for this case. To showRHB(D1,D2) ≤ 1 − h(D1 ∗ p) +G(D2), consider the following test channel.

Let W2 be the output of a binary symmetric channel (BSC) with crossover probabilityD2 and inputX, let W1

be the (cascade) output of a BSC with crossover probabilityη with input W2, such thatη ∗D2 = D1; such anη

always exists becauseD2 ≤ D1. It can then be easily verified that

I(X;W1) + I(X;W2|W1, Y ) = 1 − h(D1 ∗ p) +G(D2) (102)

and the distortion isD1 andD2 by takingf1(W1) = W1 andf2(W1,W2, Y ) = W2. The rate distortion theorem

for this problem implies thatRHB(D1,D2) ≤ 1 − h(D1 ∗ p) +G(D2), which completes the proof.
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