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Abstract

We provide a complete characterization of the rate-distortion region fanthistagesuccessive refinement of the
Wyner-Ziv source coding problem with degraded side informationseatiitoder. Necessary and sufficient conditions
for a source to be successively refinable along a distortion vectoubseguently derived. A source-channel separation
theorem is provided when the descriptions are sent over indepenuemieals for the multistage case. Furthermore,
we introduce the notion of generalized successive refinability with multipeadied side informations. This notion
captures whether progressive encoding to satisfy multiple distortiortraants for different side informations is as
good as encoding without progressive requirement. Necessargudfident conditions for generalized successive
refinability are given. It is shown that the following two sources are gdized successively refinable: (1) the
Gaussian source with degraded Gaussian side informations, (2) théy dymnmetric binary source when the worse
side information is a constant. Thus for both cases, the failure of beaugssively refinable is only due to the inherent
uncertainty on which side information will occur at the decoder, but netpifogressive encoding requirement.

I. INTRODUCTION

The notion of successive refinement of information was thiced by Koshelev [1] and by Equitz and Cover [2],
whose interest was to determine whether the requirememadding a source progressively necessitates a higher
rate than encoding without the progressive requirementodxce is said to be successively refinable if encoding
in multiple stages incurs no rate loss as compared with @ptiate-distortion encoding at the separate distortion
levels. Rimoldi [3] later provided a complete charactei@a of the rate-distortion region for this problem.

In another seminal paper, Wyner and Ziv [4] characterizedréte-distortion function for encoding a source when
the decoder alone has access to side information correlgtadthe source. The notion of successive refinement
was combined with the presence of side information by Setntand Merhav [5], who formulated the problem
of successive refinement wittegraded side informatioret the decoder. The degradedness roughly means that the
decoder receiving the higher rate bit-stream also has stoabe “better quality” side information. More formally,
this means the source and side-informations arranged idebeending order according to the rate of bitstream form
a Markov chain. The notion of successive refinability witlgideled side informations was consequently defined,

which answers the question whether such a progressive imgcoduses rate loss as compared with a single stage

DRAFT



Wyner-Ziv coding. In this context, the main result in [5] wdee characterization of the rate-distortion region and
the necessary and sufficient conditions for successiveatsfity for two-stagesystems. The characterization for
more than two stages was left open. An achievable region maeed given, however, the converse proof was not
found'.

In this work we extend these ideas in several ways. First,gtinestion left open by Steinberg and Merhav is
resolved, which is the characterization of the rate-diiginmregion for the successive refinement under the Wyner-Zi
setting, for any finite number of degraded side informatidriss is accomplished by an alternative representation of
the rate region based on rate-sums. This characterizatient@mes the difficulty perhaps encountered by Steinberg
and Merhav, in proving the converse for the general mufisstachievable region they found. The achievable region
provided in [5] is then analyzed and shown to be equivalerihéorate-distortion region. Necessary and sufficient
conditions for a source to be successively refinable areetkri

The notion of successive refinability introduced by Steigh&nd Merhav can be quite restrictive. This can be
understood in the context of work of Heegard and Berger [8]wall as Kaspi [7], who studied the problem of
source coding when a correlated side information may or matybe available at the decoder. In particular, it
was shown that when transmission was to multiple decodetts dggraded side informations, the rate distortion
function could exceed the Wyner-Ziv rate needed for the decavith the “stronger” side information, as well
as that needed for the decoder with the “weaker” side inftionaAs such, sources can fail to be successively
refinable (with side information) simply due to this reas®his motivates our definition of generalized successive
refinability of sources when decoders have access to nail§jgle informations. In this notion we only require
the sum-rate of the progressive encoding to match the Hed®gnger rate for degraded side informations, instead
of the Wyner-Ziv rate. Necessary and sufficient conditiomsd source to have this property are then given. This
notion of generalized successive refinability is applie@aussian sources with jointly Gaussian side informations
and quadratic distortion measure. It is shown that the Gaussource is actually successively refinable in the
generalized sense, though it fails to be successively t#éria the strict sense as defined by Steinberg and Merhav
in most cases. An explicit calculation is also given for tloelloly symmetric binary source (DSBS) under Hamming
distortion measure, when the worse side information is astemrt, which we show is also successively refinable
in the generalized sense. The explicit calculation of the-distortion region for the DSBS source in fact gives
the Heegard-Berger rate-distortion function, which wasfoond as of our knowledge despite several attempts [6],
[8]-[10].

The result can be generalized to the scenario when the gésns are transmitted oveéy independent discrete
memoryless channel (DMC). In a more recent work [11], Steigland Merhav showed a source-channel separation
result holds for the two-stage case. In light of the our nesultg it can be shown that such separation holds for

the multistage case as well.

1In fact, the complete rate-distortion region for multi-staxystem withidentical side information was given, however this only addresses a
special case in the framework.
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Fig. 1. A three-stage successive refinement system with sfdemations. The side informations are degraded in the sérageXt — Y3 «—
Ys < Y7.

The rest of the paper is organized as follows. In Section lldefne the problem and establish the notation. In
Section Ill, a characterization is provided for the ratstalition region with an arbitrary finite number of stages,
therefore the question left open in [5] is resolved. Secfibhegins with the necessary and sufficient conditions for a
source to be successive refinable, then the notion of gérextauccessive refinability is introduced and investigiate
The Gaussian example is explored in Section V, and the dosyotymetric binary source is investigated in VI.

Section VII concludes this paper with a brief discussioredPidetails are given in the appendices.

II. NOTATION AND PROBLEM STATEMENT

Let X be a finite set and let™ be the set of alh-vectors with components IA’. Denote an arbitrary member
of X" asa™ = (x1,x2,...,,), Or alternatively ase when the dimensiom is clear from the context. Upper case
is used for random variables and vectors. A discrete memssysource (DMSJ.X, Px) is an infinite sequence

{X;}:2, of independent copies of a random variaBlein X' with a generic distributiorPx
Px(a") = [ [ Px (). )
i=1

Similarly, let (X, Y1,Ys, ..., Yn, Pxvivs,....vy) D€ @ discrete memoryless multisource with generic didichu
Pxv,v,,... vy, WhereN is the number of coding stages.

Let X be a finite reconstruction alphabet, and let
d: X xX—[0,00) )

be a distortion measure. For simplicity, we will assume tkeadlers at all the stages use the same reconstruction
alphabet and have the same distortion measure. The gemaditaiito different distortion measures and reconstractio

alphabets is quite simple. The per-letter distortion of etmeis defined as

1 n
d(w, &) = — > d(zi,#), VeeXx", &ean (3)
1=1

All the log function in this work is taken to be base 2.
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Fig. 2. The corresponding source channel coding problenth®rsource coding system depicted in Fig. 1. .

Definition 1: An (n, My, Ms, ..., My, D1, D>, ..., Dy) successive refinement (SR) code for souktevith side
information (Y1, Y2, ..., Yy) consists ofN encoding function®,,, m = 1,2, ..., N, and N decoding functiong),,,
m=1,2,...,N:

Om o X" = Iy, 4)
Vm IAIIXIJWZX...XIMMXJ)ZH‘)(A", (5)
where I}, = {1,2,...,k}, such that

Ed(Xna ¢m(¢1 (Xn)’ d)l (Xn)7 (XS] ¢77L(Xn)7 }/,Z)) S Dm7 (6)

whereRE is the expectation operation.
Definition 2: A rate vectorR = (Ry, Ro, ..., Ry) is said to beD = (D;, D», ..., Dy ) achievable, if for every
e > 0 there exists for sufficient large an (n, My, M, ..., Mn, Dy + €, Ds + ¢, ..., Dy + €) code with

Rm—l—ezllong, m=1,2,...,N. (7

A three-stage example is given in Fig. 1. TILDenote the cobectf all the D achievable rate vectors &(D),
and this is the region to be characterized. When the sidentations have arbitrary dependence among them, the
problem appears to be difficult. As in [5], we consider onlg ttase with a particularly ordered degraded side
informations, which is given by the Markov conditioXi < Yy < Yy_1 < ... «> Y7. One of our main results is
the complete characterization of this region, given in tegtrsection.

We can further consider the case when the descriptions amsnhitted overV independent discrete memoryless
channel (DMC) (see Fig 2). For simplicity, instead of usihg tmore general model where the channels are cost-
constrained as in [11], we only consider channels withoutstraints; however, such an extension can be done
without much difficulty.

Definition 3: An (n,ny,ns,...,ny, D1, Ds, ..., Dy) source-channel SR (SC-SR) code for souicewith side

information (Y1, Yz, ..., Y ) for independent channels given By,  (x...,m =1,2,..., N, consists ofN encoding
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functions¢,,, m = 1,2, ..., N, and N decoding functions),,, m =1,2,..., N:

Gu AT AT ®)
Um0 VUL X VIS X X Y x Yl — X, 9)

such that
Ed(X™, ¢¥m(Ye, Ye2, o, Ye3, Yon)) < Dy (10)

Definition 4: A distortion vectorD = (D1, D, ..., Dy) is said to be SC-SR achievable for souiey,y,.... vy

and channels?y, | x m = 1,2,..., N, under bandwidth expansion factgs,, po, ..., pn), if for every e > 0

there exists for sufficient large an (n, np1,nps, ...,npn, D1 +¢€,Da+¢, ..., Dy +¢) SC-SR code. The achievable
SC-SR distortion regio®(p1, p2, ..., pn ) is the collection of all the SC-SR achievable distortionteex under the

given bandwidth expansion factors.

IIl. THE CHARACTERIZATION OF THE RATE-DISTORTION REGION WITH DEGRADED SIDE INFORMATION

Define the regiorR* (D) to be the set of all rate vecto® = (R, Rs, ..., Ry) for which there existsV random

variables(Wy, Wy, ..., Wy ) in finite alphabet3/V;, W, ..., Wy such that the following condition are satisfied.
1) (Wl, WQ, ~-~7WN) — X < YN — YN—I AT g Yl-
2) There exist deterministic mags, : Wi, X Vi — X such that

Ed(X, frn(Wn,Y)) <D, 1<m<N. (11)
3) The alphabet sizes satisfies

Wi < |x|+2N -1

m—1

Wil < X J] Wil +2N —2m+1, m=2,3,..,N. 12)

1=1

4) The non-negative rate vectors satisfies:
S R =Y (X W Wa, Wa, oo, Wi 1, Y), 1<m < N. (13)

=1 =1
where we have used the convention thig§ = (), i.e., the null set.

Remark 1:Because of the conditioning diry, W, ..., W,,, _1 in the rate expressions, it is clear that the function
fm(Wi,Y,,) can also be written ag/ (Wy, Wa, ..., W,,,, Y3, ) without essential difference on the definition of the
region; however the alphabet size bounds given above shHmuilchodified accordingly. This equivalence will be
used in the explicit calculation of the rate-distortioniocggin Section V and VI.

The following theorem establishes the rate-distortioriaregwhich is one of the main results of the paper.

Theorem1: For any discrete memoryless stochastically degraded sdtire> Yy < Yy_1 < ... < Y]

R(D) = R*(D). (14)
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The achievability of the region is quite straightforwartheTn-th stage codebook of overall si2e( (XiWm W1, Wa,.... Wi —1)+em)

is generated uniform-randomly from[” 116" where Tt

W | W1, Wa,..., W (W, W1 AW, Wy 1]s dENOtES the set of

d-typical sequences given lower-hierarchy codewqpds, wo, ..., w.,,—1). These codewords are then placed into
(I (X5 W [W1, Was. ;Wi —1,Ym) +2¢m) pins using a uniform distribution. The decoder block-deo#V,,, in the
m-th stage (using the side information), which is conditiooa the lower hierarchy codewords; since the side
informations are degraded, each higher hierarchy can sldggode the lower-hierarchy codewords. From the
above interpretation, it is seen that the proof of the acthdiy of the region essentially uses the hierarchy of
random codes as in the proof of the two stage case in [5]. Trus/l focus on the converse part of the proof of
the theorem, which is given in Appendix I.

A source-channel separation result is now stated, and thaf g given in Appendix II.

Theorem?2: For any discrete memoryless stochastically degraded sakirc— Yy <« Yy_1 <« ... & Y7,
and N independent discrete memoryless channels giveiby, x. ., m = 1,2,..,N, the distortion vector
D = (D4, D, ...,D,) is achievable under bandwidth expansion facigrs ps, ..., pn), if @and only if there exist
random variablegW;, W5, ..., Wy ) in finite alphabetsV;, Wh, ..., Wy satisfying conditions 1), 2), 3) in the
definition of R*(D) and furthermore,

iPiCz‘ > iI(X§Wm|W1,W2, s Wm-1,Ym), 1<m<N, (15)
=1 =1
whereC; is the channel capacity of channgel

The rate region given in Theorem 1 is in a different form thiam &chievable region given in [5]. Hefe*(D)
is given in terms of the sum-rate at each stage, includirgsrat the previous stages, the sufficiency of which was
formally established in [12]. The achievable region in [@noted ask*(D) here, involves N + 1)N/2 random
variables, and is given in terms of individual ral&, at each stage. It is provided below for ease of comparison:
R*(D) is defined as the set of all rate vect@,, Ro, ..., Ry) for which there exists a collection ¢V + 1)N/2
random variablegV; ;,1 < ¢ < N,i < j < N}, whereV; ; is taking values in a finite se¥; ;, such that the
following conditions are satisfied.

1) {Vij;1<i<N,i<j<N}oXoYVYyoVyo.. o,

2) There exist deterministic mag$, : Vi.m X Ym — X such that
Ed(X, fm(vm,maym)) < Dm7 1<m<N. (16)

3) The rate vectors satisfies:

N
Ry > I(X;VialVa) + > I(X5 Vi k[Vig, Vi, oo, Vi kor, Vi) (17)
k=2

Ry 2 I(X; Vinml{Vij, 1<i<m, i <j<m}, V)
N
+ Y X Val{Vij1<i<m, i <j<k—1}LY:), 2<m<N. (18)

k=m+1
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Fig. 3. An example when the achievability of the two regions equivalent, but the two regions are not the same. One regisimgleton

point labeled using the star, the other region is the shaegidm including this singleton point.

It is clear that the characterizatig®* (D) given in Theorem 1 is more concise. However, it can indeechbes
that these two regions are equivalent, and we establistethitzvalence as a theorem.

Theorem3: For any discrete memoryless stochastically degraded soXire> Yy <« Yy_1 < ... < Y]

R*(D) = R*(D) = R(D). (19)

The second equality obviously follows from Theorem 1. Tleeor3 is proved in Appendix Ill, which might
be of interest for the following reason. In [5], a proof for imBar but different claim was given for the special
case of N = 2, which showed that thechievabilityof R*(D) and R*(D) are equivalent. However, this does
not directly imply that the two regions are equivalent; ség B for such an example. In our proof, the fact that
R*(D) = R(D) is used; and sinc®*(D) is an achievable region, we have trivialy* (D) 2 R*(D). However,
without invokingR*(D) = R(D), it appears difficult to prove this inclusion. Interestiynglor N = 2, it is indeed
possible to prove Theorem 2 without invokirg*(D) = R(D), and this alternative proof is also included in
Appendix III.

The following observation might shed some light on why a diferoof of R*(D) = R(D) might be difficult,
and it also provides the necessary intuition in proving Teeo3. Consider the cas¥ = 3, the random variable
V1,3 is the information that the first stage encoded for the thiedjes. However, if the second stage still has to
encodel, > with a nonzero rate, then the encoder can not enddgde conditioned onV; 3, since the second
stage decoder will not be able to decddgs. Furthermorel; 3 does not help in the second stage decoder either.
As such the encoder might as well encdde; after V5 5 is encoded, which can then be conditioned 16, to
reduce the rate. Thus the optimal scheme is to encode thestirgé random variabl®, ;; if there is additional
bit budget left in the first stage, then adjust and encbde conditioned onV; ; until V; o = V5 5; and if there
is still additional bit budget left, then adjust and encdde; conditioned on(V; 1, V2 2) until Vi 3 = V3 3, etc.;
this process carries for each stage sequentially. Thus #jerity of the N(N + 1)/2 random variables are in fact

null random variables, which reflect the change of the codingtegy at boundary points. This inherent change of
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encoding strategy appears to pose difficulty in proving theverse using@*(D).

The example in Fig. 3 can also be explained by introducingféllewing useful property.

Property1: Aregionk is said to besum-incrementalif the following is true: if R € I, then for any non-negative
rate vectorR’ that satisfiesy " | R, > """ | R, forall 1 <m < N, R’ € K.

It was shown in [12] that for successive refinement codincheuit side information, the rate region is sum-
incremental. Using the same method, it can be shown thatatsis true for the rate-distortion regidR(D) of
successive refinement coding in the Wyner-Ziv setting.itinily, this property states that “it does not matter how
you divide up the rate between layers of the (successivéiyimg) descriptions, as long as the sum-rate of first
layers is sufficiently high for eaclh = 1,2, ..., N” [12]: we can simply move the rate in higher stages into lower
stages to form new codes. The shaded region in Fig. 3 is sararArental, well the singleton point labeled by the
star is not. Thus the shaded region can be a valid rate-titssiaegion for the successive refinement problem, while
the singleton point is not, though the two regions imply thene achievability result. Now notice that it is quite
difficult to prove (even if not impossiblek* (D) is sum-incremental, which suggests it will be difficult taope
R*(D) = R(D) directly.

IV. STRICTLY AND GENERALIZED SUCCESSIVEREFINABILITY

Extending the definition of successive refinability giver[%hto an N-stage system, means the following.
Definition 5: A sourceX is said to beV-step successively refinatdong the distortion vectab = (D, Do, ..., Dy),
with side informationgY;,Ys, ..., Y) if

(Bx |y, (D1), Ry, (D2) = Ry, (D1), ., Rx v, (Dn) = Ry, _, (Dn-1)) € R(D) (20)

whereRY ,-(-) denotes the Wyner-Ziv rate distortion function for sour€avith side informationt” at the decoder.

This definition of successive refinability will be referremldsstrictly successive refinabilitfor reasons that will
become clear shortly. The following theorem provides thedéions for N-stage strictly successive refinability.

Theorem4: A discrete memoryless stochastically degraded soufcer Yy <« Yny_1 < ... « Y] is N-step
strictly successively refinable along distortion vectdr, D-, ..., D), if and only if there exist random variables
(W1, Wa, ..., Wy) and deterministic functiong,,, : W,,, x V,, — X for m = 1,2..., N such that the following
conditions hold:

1) Ryy,,(Dm) = I(X; Win|Y) andEd(X, frn (Wi, Yin)) < D, 1 <m < N;

2) (Wi, Wo, .. Wn) > X Yy < Yn_1 < ... Y

3) Wi, Wa, ., Wipq) & (Wi, Vi) & X, 2<m < N;

4) I(Wy; Yo |[Wi, Wy, ., Wi_1,Y;) =0,1<i<m—1,2<m<N.

The conditions reduce to the corresponding conditionsHertivo stage cases in [5]. Note that there are in fact
a total of N(N — 1)/2 equalities specified by condition 4).

Proof of Theorem 4
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For the necessity, assume (20) holds. By Theorem 1, thestsexdindom variableG1;, Wa, ..., Wy ) and maps
T i Wi X Vi — X, such that Wy, Ws, ..., Wy) < X < Yy < Yy_1 < ... & Y7, and since (20) holds, due

to (13) we have,

Rx\y, (D Z (X Wi W, Wa, ., W1, Y), 1<m <N, (21)

andEd(X, fr,(Win, Yim)) < Dy, 1 <m < N. From (21), it follows that

Ry, (D) Z (X Wi Wy, Wa, o, Wi, Y5)

m—1
= G W W, Wa, oo, W1, Yo) + > TG Wi W, Wa, o, Wi, V)]
=1

m—1 m—1
Y TG W W, W, oo, Wiy, V) = Y (X Wi W, W, o, Wi, Vi)

i=1 i=1

m—1
= (X W, W, oo, Win|[ V) + D [H(Wi W, Wa, o, Wiy, Vi) — H(Wi Wy, Wa, .., Wi, Y, X)
=1

(W|W13W2;-~ W1 1;Y )+ (Wi|Wl7W27"'7Wi—17YmaX)]

,_.

= I(X7W17W277Wm|ym) + [ (WZ“W17W27~“7W7;717Y;) _H(Wi‘W17W27 WZ 17 )] (22)
i=1

3

= I(X,Wl,WQ,,Wm|Ym)—|— I(Wi;Ym‘Wl,WQ,...,Wi_l,Y;')

1=

=

m—1
= I(XWin|Vin) + T We, Way oo, W1 [V, We) + Y I(Wi Yo [We, Wa, oo, Wiy, Vi)
i=1

m—1
> R (D) 30 HOV Yl Wi Wi Wi Y0 ”
1=1

> Rip, (Dm) (24)

where(a) is by chain rule and adding and subtracting the same ternfpllojvs by combining the first and third
terms, (c) is due to the Markov chain relationshipV,, Ws, ..., Wy) < X < Yy < Yy_1 < ... & Y7; (d) is
also due to the same Markov chain relationship which imphescan further condition the last term {82) with

Y;. Next, inequality (23) is due to the fact th@d,,,Y,,) is sufficient to decode to a distortiab,,, while at the
same time satisfying the Markov conditid#r,,, — X < Y,,. Because the beginning and the end of this chain of

inequalities are equal, all the inequalities must be etjesliFor (23), the following two conditions must be true
I(X;Win|Yin) = Ry, (D), L(X; Wi, Wa, oo, Woy 1 [ Yo, Wi ) = 0 (25)

which implies (W1, Wa, ..., W,,—1) < (W, Y) < X for 2 < m < N. For (24), it must be true that for
2<m<N

I(Wi;Ym‘W15W27"'7Wi—17}/’i) =0, I<i<m-—1L (26)

This establishes the necessity. The sufficiency is of coungal. The proof is completed. ]

DRAFT



10

Remark 3:: Following the Remark 1 made after the definition Bf'(D), we note that if the function
fm(Wi,Y,,) is indeed given instead &3, (Wy, W, ..., W,,,, ¥3,,), then the third condition in Theorem 4 will not ap-
pear in this set of conditions, and the first condition shda@anodified astqym (D) = I(X; W, Wa, ..o, Wi |[Yin)
andEd(X, f,, (W1, Wa, ... Wy, Yim)) < Dy, 1 <m < N.

In order to introduce the notion of generalized successéfimability, we note that the problem considered in
[6],[7] can be understood in the framework being treatedhasprojection of rate vectoR(D) on the sum-rate
vazl R; and ignoring the individual rate; i.e., it is a relaxed versiof the current problem. Let us denote the
sum-rate-distortion function to satisfy distortion caastt vector(D;, D, ..., D,,) with degraded side information
(Y1,Ya,..,Y) as Ryp (D1, Do, ..., D,,), which was given in [6]. SinceRyp(D1, Do, ..., D,,) degenerates to
Ry,
Ruyp(Dy,Da,....,Dy) > R}lym(Dm). BecauseRy 5 (D1, Do, ..., D,,) is a lower bound for the sum-rate of

(D,,) when all the other distortion constraint®,, Do, ..., D,,_1) are set to be infinite, it is seen that

S Ri, if Rgp(D1,Ds,...,Dp,) > ,}‘Ym(Dm) for any m € Iy, then the source is trivially not strictly
successively refinable.

From the above discussion, it is seen that for a source taib#yssuccessively refinable, two conditions are neces-
sary. The first is thaRRy (D1, Da, ..., Dyy,) = Rj(lym (Dy,); and the second is that in achievi(®:, Do, ..., D.,)
for side information(Y7, Ys, ..., Y,,), the encoding can be performed progressively without rags.| The first
condition in fact provides a simple necessary conditioniieck whether a source is successive refinable without
directly testing the conditions in Theorem 4, which can béeqgdifficult because of the involvement of random
variablesiV;.

Theorem5: A necessary condition for a discrete memoryless stocladistidegraded source&X « Yy <
Yn_1 < ... & Y; to be N-step strictly successively refinable along distortiontee¢ D, D, ..., Dy), is that
Ruyp(Dy, Do, ...,Dy,) = R}lYm(Dm) for eachl < m < N.

This condition is in fact extremely strict, and it is not séigd for the following two familiar sources in the two
stage case.

o The Gaussian source when the two side informations are ati$tgtally identical. This example is treated in

more detail in the next section.

« Doubly-symmetric binary source (DSBS) with Hamming distar measure, when the first stage does not have

side information. An explicit calculation is given in SextiVI.

A natural question arises as whether the aforementionezhdemndition can be satisfied separately, and for this
purpose the notion of generalized successively refinalile sitle information is defined. This notion can be used
to delineate these two conditions which result in the failof a source being successively refinable.

Definition 6: A sourceX is said to beV-step generalized successively refinalith degraded side informations,

ie, X < Yy < Yy_1 < ...« Yy, along the distortion vectoD = (D1, Do, ..., Dy), if

(Rup(D1), Rup(D1,D2) — Rup(D1), ..., Rup(D1,Da, ..., Dy) — Rup(D1, D, ..., Dn_1))

€ R(D).
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The definition is limited to the degraded side informatiosesabecausé s 5 (D1, Da, ..., Dy) is known under
this condition. The notion of generalized successive rbfiitya only considers whether in order to achieve distattio
(D1, Do, ..., Dy) with side informationgY7, Y3, ..., Yy ), @ progressive encoder is as good as an arbitrary encoder,
but ignores whetheRX‘Y (Dy) = Rup(Dy, Do, ..., Dy,) is true.

The following theorem makes explicit the connection betwstictly successive refinability and the generalized
version.

Theorem®6: A sourceX is N-step strictly successively refinable with degraded siflermation along the distor-
tion vectorD = (Dq, Do, ..., Dy ), if and only if it is N-step generalized successively refinable, Bads (D1, Do, ..., D,y,) =
Ry, (Dn) for eachl <m < N.
Proof of Theorem 6

The sufficiency is trivial, and we only prove the necessity. d&finition, we have

" = (R )y, (D), By, (D2) = x|y, (D1), s Bx vy (DN) = Bx vy, (Dn-1)) € R(D). @7)

Sincer* is achievable, it must satisfy the following lower bound:

> ri > Rup(Dy, Dy, ....Dy), 1<m<N. (28)

=1
Define the rate vector

r = (Ryp(D1),Rup(D1,Ds3) — Ryp(D1),...., Rup(D1,Ds, ..., Dn) — Ruyp(D1,Da, ..., Dn_1)) (29)
then it follows
Zrl Ryp(D1,Ds,....Dp) > Rypy, (D) = Y 17 > Ryp(D1, Dy, ... Dy), 1<m<N. (30)
i=1
Thus the inequalities must be equality which giieg 5 (D1, Da, ..., D) = R}‘Ym (Dy) for 1 < m < N. The
sum-incremental property of the rate-distortion regiaD) further implies thatr € R(D), which completes the
proof. ]
The next theorem is also straightforward as a consequenceén@brem 1 and the definition of generalized
successive refinability, thus the proof is omitted.
Theorem7: A discrete memoryless stochastically degraded sofce-> Yy < Yy_1 < ... « Y; is N-
step generalized successively refinable if and only if tleist random variable§iVy, W, ..., W) satisfying the
conditions given forR* (D1, Do, ..., Dy ) with

Ruyp(D1,Da,...,Dy,) = zm:I(X; WilWh, Wa, .., Wi—1,Y;), 1<m<N. (31)
Different from strictly successive refirfgtl)ility with degled side information in [5] or the conventional successive
refinability without side information [2], there is no Markeondition involved. Though somewhat surprising at the
first sight, it is actually straightforward, because foridetgd side informations, the optimal coding scheme ndyural
employs a progressive order. However, an arbitrary sosroeti necessarily generalized successively refinable along

a distortion vector (pair), because a random varidifeoptimal for the first stage, is not necessarily optimal tbget
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with any W5 for the first two stages. An example is that any source thabissaccessively refinable without side
information, is not generalized successively refinable éf take both the side informatidri andY; as constant.
With the definitions above, we will show in the next sectiomttibthough Gaussian source with different but
degraded side informations is not strictly successivelipable, it is indeed generalized successively refinable. Th
reason for it to be not strictly successively refinable isstionly due to the facRg (D1, Da, ..., D;) > quyj
in these cases. Furthermore, we will show that the same éfouthe DSBS source. Unlike the conventional
successive refinability without side information, whenesidformation is involved, many familiar sources are very
likely to be not strictly successively refinable unless tide snformation is identical at all the stages; however,

they are quite likely to be generalized successively refaab

V. GAUSSIAN SOURCE WITHDIFFERENT SIDE INFORMATIONS

We explore the Gaussian source with mean squared errortistoneasure in this section. The calculation will
be focused on the two-stage system, which is sufficient ferpitrpose of illustrating the two kinds of successive
refinability; however, it can be generalized to any finitegsta We emphasize that this derivatiomist a trivial
extension of the one in [6] whel; is a constant, and thus more details are included in Appehdixrhough
all the discussions in the previous sections are for discseurces, the result can be generalized to the Gaussian
source using the techniques in [13][14].

We first recall the result in [6] for the two stage case,

RHB(Dl,Dg) = min [I(X,W1|Y1)+I(X,W2|W17Y2)L (32)
p(D1,D2)

wherep(D1, D5) is the set of all random variabl@V,, W5) € W; x W jointly distributed with the generic random
variables(X, Y7, Y3), such that the following conditions are satisfied: (If);, Ws) <« X < Y, < Y7 is a Markov

string; (2) there exist deterministic functiorfs and f> such that
Ed(X, f(W1,Y1)) < D1, Ed(X, f(Wi,W>,Y2)) < Ds.

The source in question iX ~ N(0,02), i.e., a zero mean normal random variable with varianée Let
Y1 = X + Ny + Ny andYs = X + Ny, where Ny ~ N(0,0%), No ~ N(0,03), and X, N; and N, are mutually
independent and Gaussian; further assumedhat3 > 0. To facilitate the discussions, we partition the distartio

regions into the following subregiofisas illustrated in Fig. 4, wher®;, D; and~ are defined as

2/ 2 2 2 2 2
A o,(0f +03) « A 05,03 A 02

* p—
1 2

’ ) Y= )
02+ 0%+ 03 02+ 03 o2+ 03

where it is clear thatD] and D; are the variance of the best MMSE linear estimatorXofgiven Y; and Y5,
respectively.

The regions can be understood as follows

2To make the definition of the regions to be consistent withehag8], we label the horizontal axis d3s. This convention is also used in

the next section.
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Region Il
egion Region IV

70'|2Dz

Region | D =——1—
~ yo! —(1-y)' D,

Region IlI

0 D; D,

Fig. 4. Partition of distortion region for the quadratic Gaian source.

2
e Region I:0 < D; < D}, 0< Dy < D3 and Dy > %. In this region both constraints are effective.
1

« Region Il: D; > D3, 0 < Dy < D3. In this region, the first stage does not have to encode, angritblem
degenerates to Wyner-Ziv coding only for the second stage,/i; > 0 and R; + Ry > R}m (Ds).
. . * o?D
« Region Ill: D; < D7 and0 < D; < m
and the problem degenerates to Wyner-Ziv coding only forfiilse stage, i.e.R; > R}lyl(Dl) and Ry > 0.

. In this region, the second stage does not have to encode,

o Region IV: D; > D7 and D, > D3. This can be achieved with zero rate, since the side-infooms are
enough to satisfy the distortion constraints.
Region | is the only non-degenerate case among the fourctnffar any distortion pair§D,, D) in Region I,
[l or 1V, there is a distortion paif D}, D)) on the boundary of Region | that strictly improves oyér,, D), and
is achievable using the same rates; iR(D,, D2) = R(D}, D}), and Dy > D}, D, > D}, where at least one of
inequalities holds strictly. Since Region | is the only riegenerate case, it will be our focus. For the first stage,

an obvious lower bound is the Wyner-Ziv rate distortion fiime, which gives

1 o2(0? +02)
Ry > =1 = . 33
I*QOng(ag—l—of—i—a%) (33)
Using Ry (D1, D2) as the lower bound on the sum rate, we have
1 2 2 2
Ri+ Ry > Ryp(Dy, Dy) = 1 L (34)

2 % Dy(02 + 07 + 03)((1—7)2D1 +107)
for which the rate distortion functio®y 5 (D1, D2) is proved in Appendix IV.
Not surprisingly, the following pair of random variablest@ally achieve the lower bounds diy, and Ry + Rs

simultaneously in Region I:
Wi=X+2Z1+4+2y, Wy=X+2,

where Z;, Z, are mutually independent zero-mean Gaussian random igriabd independent ofX, Ny, Ns),
with proper choice of variances determined By, D2, 07,03, 02. Alternatively, it is obvious that this choice of
W, and W, makes all the inequalities in the lower bounding derivatatisfied with equality, thus achieves the

lower bound.
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From the above discussion, it is clear that this choicB/®fand 1V, satisfies the condition of Theorem 7, and thus
Gaussian source is indeed generalized successively rifitdtwever, in the interior of Region Ry p(D1, D)
is strictly larger thani’,, (D2), which implies Gaussian source is not successively refnabihe strict sense for
these distortion pairs by Theorem 6. On the boundary betRegion | and 11, as well in Region IRy 5 (D1, D2) =
Xy, (D2), thus it is indeed successively refinable in the strict séfosethese distortion pairs; however, this

degenerate case is less interesting.

VI. THE DOUBLY-SYMMETRIC BINARY SOURCE

In this section we consider the following special caieis a DMS with alphabet if0,1}, and P(X = 0) =
P(X = 1) = 0.5. Side informationY; =Y = X & N, whereN is a Bernoulli random variable independent of
everything else withP(N = 1) = p < 0.5 and @ stands for modulo 2 addition; alternatively, can be taken as
the output of a binary symmetric channel with inpXit and crossover probability. Y; is a constant, i.e., there is
no side information at the first stage. The distortion meassithe Hamming distortiod(z, 2) = = ® &, where®
is modulo 2 summation.

As in the Gaussian case, the functi@; s (D1, D2) plays a significant role for this source. We digress here to
give a brief review of this particular problem. The DSBS s@ymwhich is probably the simplest discrete source in
the side information scenario, provided considerableyintsinto the Wyner-Ziv problem [4]. Somewhat surprisingly,
an explicit calculation ofRy 5 (D1, D2) was not found for this source. Heegard and Berger postulateniward
test channel in [6], which was later shown to be not optimalkeypez [8]. Kerpez provided upper and lower
bounds, neither of which are tight. Fleming and Effros [$oatontributed to this problem by considering it as a
rate distortion problem with mixed types of side informatié\n algorithm to compute the rate-distortion function
numerically was further devised in [10]. However an expliekpression of the rate distortion function for this
source, and more importantly the corresponding optimalvdod test channel structure have not been given in
the literature. In the process of considering our problemtlii®@ DSBS case, we give an explicit solution to the
Heegard-Berger problem as well.

In this section we first explicitly calculat® (D1, D), and then apply the result to the successive refinement

coding case, where it will be shown that the DSBS is indeeckigdized successively refinable.

A. Ryp(D1, D,y) for the DSBS source

As in the Gaussian case considered in Section V, it was showB]? that the rate distortion region can be

partitioned into four subregions, three of which are degatee(see Fig. 5).

o Region I:0 < D; < 0.5 and0 < Dy < min(Dy, p). In this regionR(Dy, D5) is a function of bothD; and

Dy, and it is the only non-degenerate case;

SNote that the constraint®; and D,, which are the first and second stage distortions here, sporel to D, and D; defined in [8]
respectively.
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1.04

Region I Region IV
0.5

1-B
D, =D,
Region Il
z ; D,
0,0) a, p 10

Fig. 5. The four parts of the rate-distortion regiods.is the critical distortion defined in [4]

o Region Il: D; > 0.5 and0 < Dy < p. Here the first stage does not have to encode and therefoprdabhkm
degenerates to Wyner-Ziv encoding for the second stage.

» Region lll: 0 < D; < 0.5 and Dy > min(Dy,p). Here the second stage does not have to encode and hence
the problem degenerates to the rate-distortion encodinthéfirst stage.

o Region IV: D; > 0.5 and D, > p. Clearly the rate is zero since the distortion constrainéstavially met.

We will need the following function from [4], defined on therdain 0 < u < 1,
G(u) = h(pxu) — h(u),

whereh(u) is the binary entropy functioh(u) = —ulogu — (1 — u) log(1 —«) andw x v is the binary convolution
for 0 < wu,vo <1anduxv =u(l —wv)+v(l—u). We will be interested only in the cage< p < 0.5. It was
shown in [4] thatG(u) is (strictly) convex; furthermore, it is easy to show tlatu) is symmetric about 0.5, and
is monotonically decreasing far < u < 0.5; the minimum ofG (u) is zero whenu = 0.5. It was also showhin

[4] that for0 < D < p

Ry (D) [0G(B)]. (35)

We next define the following function
Sp,(a,3,0,61) =1—h(Dy*xp)+ (6 —01)G(a) + 1G(B) + (1 — 0)G(v)

where

Dy —(0—01)(1—a)—0,3
sty 041

0.5 =1

’y:

4In [4], the minimization was given instead as an infimum with teasible range of < 3’ < p, but it can be shown that foby < p,

these two forms are equivalent.
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E— BSC BSC BSC —

h 4

h 4

Fig. 6. The optimal forward test channel in Region I-B. Thessaver probability for the BSC between and W5 is Ds, while the crossover
probability  for the BSC betweeV> and W is such thatDa x n = D;.

on the domain
0<6,<0<1, 0<a,8<p, p<vy<1l-p.

Notice thatSp, () is continuous at = 1.
The following theorem characterizes the rate distortiamcfion Ry 5(D1, D) in Region 1.

Theorem@8: For distortion pairg Dy, D2) in Region I:
Rup(D1, D) = min Sp, (a, 3,6,6,) 2 S*(Dy, Dy),
where the minimization is over the domain 85, («, 3,6, 61), subject to the constraint

(0 —61)a+ 618+ (1 —0)p= Ds.
This theorem is proved in Appendix V. One notable conseqaémc¢he proof of the forward part of this theorem,
is thatW/; can always be taken as the output of a BSC with crossover pildpaD; and input X. This observation
is important to determine whether this source is generdlgecessively refinable.
The following two corollaries are useful, and are straightfard given Theorem 8, which are also proved in
Appendix V. The first corollary provides a lower bound 8 5 (D;, D2), which is easy to compute and usually
tighter than the one given in [8].

Corollary 1: For distortion pairg Dy, D) in Region I:

RHB(DhDg) Z 1 — h(Dl *p) + R}ly(Dg)
Next recall the definition of the critical distortiod). in the Wyner-Ziv problem for the DSBS source, where
G(d.)
dc —p

= G'(d,).

We have the following corollary which specifies a simple fard/test channel structure for the cdse < d..

Corollary 2: For distortion pairg Dy, Ds) such thatD; < 0.5 and Dy < min(d., D) (i.e., Region I-B),

Rup(D1,D2) =1 —h(D1*p) + G(Da).
From the proof of Corollary 2, it is seen that the optimal fard test channel for this case is in fact a cascade of

two BSC channels depicted in Fig. 6.

B. Successive Refinability for the DSBS Source
From Corollary 1, it is evident thaRy (D1, D) > R}lY(Dg) unlessD; = 0.5, which implies that the DSBS
is not strictly successively refinable; however, it is gafized successively refinable. This is true because Theorem
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8 and its proof imply thatV; can always be taken as the output of a BSC with crossover pilapaf D, and input
X. This W, and the optimal¥; clearly satisfy the condition in Theorem 7, thus the DSBSdekd generalized

successively refinable.

VIl. CONCLUSION

We provided a characterization of the rate-distortionaedor the multistage successive refinement of Wyner-Ziv
problem with degraded side information, which was left opefb]. A systematical comparison with the achievable
region given in [5] was provided, and the equivalence isb#isized precisely. We also established a source-
channel separation theorem when descriptions are traeshover independent channels. Conditions for (strictly)
successively refinable are accordingly derived. The natiobgeneralized successively refinable was introduced, in
order to delineate the two obvious factors which result i fédilure of a source being successively refinable. We
showed that the Gaussian source with multiple side infdonat as well as the doubly symmetric binary source
when the first stage does not have side information, are ingiceralized successively refinable, but not strictly
successively refinable. As such, their being not succdsgsigeénable is only due to the uncertainty on which side

information will occur, but not the progressive encodinguieement.

APPENDIX |

PROOF OF THECONVERSE OFTHEOREM 1

There are a total ofV rate constraint inequalities. We consider bounding the sam) ", R; for a givenm,
wherel < m < N. Assume the existence ¢fi, M1, M>, ..., M, D1, Do, ..., Dy) SR code, there exist encoding
and decoding functions; and«; for 1 < i < N. Denote¢,(X™) asT;. We will use the notatioﬁ“ij to denote the
vector (T;, Tiy1, ..., Tj) wheni < j; if i > j, we take the convention th&tf is the empty sef. (X1, Xo, ..., X,,)
will be denoted asX and(Y},1,Yj2,....,Y; ) asY;. X, will be used to denote the vectoX, X», ..., X;—1) and
X to denote( X1, Xy42, ..., X,,). For a collection of side informations, dend@3);", (Yit1)/, ..., (Y;)7) as
(Y7);, and similarly for(Y);; they will be combined when necessary and denoted¥g$);. The subscript
k will be dropped when it is obvious from the conte(d./ij)k is understood as the vectoY; i, Yii1 k, ..., Y k)-
We will assumem > 2 such that the quantities exist in the following proof, buisitstraightforward to verify for

m = 1,2, that the derivation degenerates in the correct way.
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The following chain of inequalities is straightforward

ny R > H(TM")
1=1

(@)

> H(T{"|Y1) = H(I{"|Y1) — H(T"|Y1, X)
= I(X;T"|Y1) (36)
m
= I(X;T{Yy"Y:) - > I(X; YTy~ (37)
n j:2 m
= > (X T/ YaXy) = > 1Ykl T Y 1Y), (38)
k=1 j=2

where (a) is because the index is a function of the source, and thevasetualities follow from the chain rule

for mutual information. Define the term in the outer sumnmatid (38) asl'y, i.e.,

Ty = I(Xs TP Y3 Vi X ) = > I(XGY T Y 1 (Y5)0) (39)
=2

For simplicity, from here on we will drop the subscriptvhen we refer to the sequencesy.,we will denoteX
by X~ and(Yj;), by Y; . We will work primarily with T';, until the very end of the proof. For the first term in
Ty,

(X T Y X ) Y 1(X s T Y YEX T Yig) > 1(Xs TY Y EY ) (40)
where (a) follows from the fact thatXy,Y: ) is independent of(X‘,Yli). Because of the Markov string
Vg — (Xp, (Y7 1)) « (T XE(Y{~1)EY; ), for each term in the negative summationlip, we have

I(X: Y| T YY 1Y) = 100 Yo T Y 1Y) (41)

Combining (40) and (41), it follows
Tr > I(XeTPYERYVig) = Y I Vil T Y 1Y) (42)
j=2

Applying the chain rule for the positive term in the right ldaside of (42), we have
I Y Yo [Yig) = I(Xu T Y Yy [Yie) + 1(Xe Yoo Yo Y T 1Yy ) (43)
For the second term in Eqn. (43), we have
I(Xp; Yor Yo YT Y1 Yy ) = [(Xy; Yo i [T/ Y Yy ) + I(Xy; Yo Y T Y1 Yy Yoy
= I(Xp; Yo [TI" YA Yy ) + (X0 Y5 Yy [T YA Yy You) + 1(Xa; Vo Yy YR T Y2Ys )
=1(Xp; Yo i |T7"Y Y, ) + 1( Xy Y2+Y3_\T1mY1Y2_Y2,k)

+ I(Xp; Va k| T YRY5 ) + I(Xp Yyt YT Y2Yy Vi) (44)
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Continuing this decomposition, it finally gives
T Vo Y5 YT YaYy ) = 3 (X Vi T Y 1Y)
Jj=2

m—1
+ (X Y5 Y TP Y YY) + I(X e Y T Y™ Y Vo). (45)
j=2
Substituting this in (43), we get

m

(X TPYP Y|V g) = I X TYE Yy [Vig) + Y 1(Xs Vi TY7 1 y))
j=2
m—1 .
Y I(Xs VYL T Y YY) + I(X s YT Y T YY), (46)
j=2

Therefore, substituting (46) into (42) we see that the negaerm in (42) cancels out the second term on the RHS
of (46), which gives
Ty > I(Xp; T YA Y, [Yig)

m—1

D IX Y YT YTV ) + H(X s Y T Y Y V). (47)
j=2
For the first term in (47), we have
I(Xy; Tlelin_|Y1,k) = I(Xk;TlYli|Y1,k) +I( Xk, T5"Y, |T1Yq). (48)
We claim that
I(Xp T3 Yy | TV Y:) > I( X T Yy | TV Y Ya i) (49)
and more generally fo2 < j <m
(X T T YY) > 10 Ty [T Y 1Y) (50)
which can be justified as follows
[(X TPy 1T Y ™) = I T T YY)
= HXGIT YY) - HXGT Y YD)
—H(X4|T) Y7 Y50) + HXG TP Y? YY)
= I(Xg YT YY) = I(X0s Yok T7Y YY)
= HY|T{ 7Y™ - HY X T Y )

—H (Y} k

TY; ! TN 4+ H(Y ke XWT Y YY)
Y YT Y T 2 0 (51)
where (a) is due to the Markov conditidry . < (X, (Y{ ™ ")x) < (I7"Y; (Y7 )= X*) implies the reduced

Markov conditionYjj, < (Xi, (Y™ )e) < (T7"Y; (Y{~1)F). Assume for nowm > 2, and consider the
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following summation of the second term in (48) and the sedench in (47)
m—1

I(X: T3"Y, | TiYA) + Y I(X0 Y YL [T Y] 7YY
j=2

() B m—1 o B
> (X T3'Yy [T YiYas) + > I(X Y Y, LT YY)

Jj=2
= I(Xk;T;TY;_|T1Y1Y21k)-|—I(Xk;Y2+Y3_|T1TnY1Y2_Y2,k)

m—1

— m i —1~r—
+ D X Y Y (1YY YY)

m—1
® I(Xk;TQMY2iY3_|T1Y1Y2,k)+ZI(X;C,Y Y+1|T’”Y” YY)
j=3
m—1
= (X DY2 T YV1Yas) + I(Xg T3 Yy [TEY2) + ) I(Xe YV [T Y H YY),
7=3

(52)

where (a) follows because of (50) an¢b) follows due to chain rule. Notice for the second term in (5£¢, can

again apply inequality (50), and continue sequentiallynglthis way, which finally gives

m—1
(X T3Yy TV Y1) + > I(X YT Y T Y YY)
j=2

—

[0 Ty YT Y 7Y + 1(Xs T Y |17 YY) (53)
j=2
Combining (47), (48) and (53) gives

m—1

Te > I(XgTYEYie) + Y I(Xe YT Y 1Y)
j=2
(X g T Y [T Y0 4+ (X YT Y™ Y Y k) (54)
> N I T YT Y Y ). (39)
j=1

where inequality (50) is applied on the third term in (54)islistraightforward to verify that inequality (55) is still
valid if m =1 or m = 2, when the proper convention of empty set is taken.
In (55), the conditioning or{Y{ '), has to be removed to reach the desired form, which can indeatbbe

due to the degradedness of the side informations. More galgcifor2 < j <m

(X YT T Y Y50 — I(Xs YT (Y ) Y

H(Xy|T{ Y7 7YY 0) — HXGITIY?) — H(XG|T{ (Y72 0) + H(XG|T (Y])2Y0)

I(X (V7T VYY) + LXK (YT (V) Y0) = 0 (56)

where in fact both the terms in the (56) are zero, due to thekacondition(Y{ "), < Y, < (XTM(Y™)%)
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implies the reduced Markov conditiofy? '), « Y;x — (X.T7(Y{)*). Thus we reach the form

Ty > Y I(Xe LY 5T (Y Y5y = > 1 TG T (Y 5V ). (57)
Jj=1 j=1
Define W, = (Tf, (Yj),f) and by substituting (57) into (38) we have foK m < N,
nY R >N > T(Xk Wikl (W] ™)k, Vi) (58)
i=1 k=1j=1

Therefore the Markov conditioWV; , Wa i, ..., Wnk) < Xi < Yni < Yy_1x < ... < Yy, is true. Next
introduce the time sharing random varialgle which is independent of the multisource, and uniformytrilisited
over I,,. DefineW; = (W; o, Q). The existence of functiorf; follows by defining

fj(Wj7Yj):wj,Q(qbl(X)’(bQ(X)?"'7¢j(X)v},j) (59)

becausdV; includesT] Y;*, which leads to the fulfillment of the distortion constraint

1 — ‘
Ed(X, f;(W;,Y))) = ~ > Ed(Xi, $;4(61(X), 62(X), .., 6;(X), ¥3)) < Dj, 1<j<N
1=1
(60)
and the Markov conditio{iWy, Wa, ..., Wy) < X < YN < Yy_1 < ... < Y is still true. It only remains to
show the bound (58) can be writen in single letter forn¥if, but this is straightforward following the approach

on pg. 435 of [15] (see also [5]). The bounds on the alphalzetisiby applying conventional argument (see [16]).

This completes the proof. [ ]

APPENDIXII

PROOF OFTHEOREM 2

The forward part is trivially implied by Theorem 1 and the eentional channel coding theorem, and thus we
only give an outline of the converse part.

By Lemma 8.9.2 in [15], we have
nY piCi =Y I(XI:Y) (61)
i=1 i=1
wheren; = np;, andp; is the number of channel use per source symbol forittitechannel. Notice that

I(XPIXDg o, X YUY TS LY

c,my “e,l fe2o

(a) ni yne n, ni ni yna n nay N3 n ni

= NXGX0, o XOma YT ) + IIX XS, o X YOSV S, L YO YY)

(b) ni ni ni n2 MNm, n2 ns Nm, ni

= I(Xc,l’ Yc,l ) + I(Xc,lXc,Q’ ) Xc,mv Yc,2 Yc,3 PRREY) Yc,m Yc,l )

_ ni., 1 no ns MNm ni no ns3 n. ny ni nao Nm
= I(X YD)+ HYSYS, YY) — HY Y, S, Y Y X XS, X
(c) n1 ny nov N3 N ni nov N3 Non no Non

= I(Xc,l’ Yc,l ) + H(YC,Z Yc,B LA }/;,m Y::,l ) - H(Y::,Z Yc,3 PR }/;,m Xc,2ﬂ cee Xc,m)

(d) I X’nl . Yn1 H Yn2Yn3 Y?Lm H Ynzyng Ynm an Xnm

= ( c,1» c,l) + ( c,25¢,37 c,m) - ( c,25¢,37 c,m| 27 c,m)

— ni.yni N2y n3 MNom . n2 MNm

- I(Xc,l’yc,l) +I(}/;,2}/::,37"'7Yc,m7Xc,23""Xc,m) (62)
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where (a) is by chain rule, and (b) and (c) are because thenelmare independent, i.e.,

Py, Yo Yo Xer XenrXem = Py 1Xe 1 Pyeo|Xen Py 1 X (63)

which implies the Markov condition$X, ;} ;. < X.; < Yo, and{Y, ;};2 « {Xcj}jz < (Xes, Yei); (d) is
because conditioning reduces entropy.

Continue this decomposition and combine it with (61), weehav
m

m
ny piCi = Y IXMGYM) > T(XUX[S, 0 X Y YIS, Y )
=1 =1

c,2? c,msy Te,l Te200 Teym

> (XYY LY

v el e

= IS YYS, 0 YER) + IIXT Y YIS, YR
> I(X™MYRYIS, YR (64)

where (a) is due to data processing inequality, and (b) Isecéhe Markov chair; < X < Y. ;. At this point
the similarity between (64) and (36) is quite clear. Using #ame steps as in the derivation as in the proof of

Theorem 1, the converse of Theorem 2 is proved. [ ]

APPENDIX I

PROOF OFTHEOREM 3

We first prove for the special cag€ = 2 without invoking Theorem 1 thakR*(D) = R(D). The proof of
Theorem 3 then follows from invoking Theorem 1 for one dil@ttand extending the proof af = 2 for the other
direction.

Proof for the case ofV = 2

We first prove thaR;(D) C Rj(D), where the subscript 2 stands fr= 2. For an arbitrary rate pair, ;) €
7@’2‘(D17D2), there exist3 random variabled’ 1, V3 2 and V4 5, and the corresponding functiorfs(V; 1,Y7) and
f2(Va,2,Y5), such that

ri > I(X;ViaYh) +I(X;Vie|Via, Ys) (65)

ro > I(X;V272

Vig,Vipe, Ya) (66)

and the distortion constraints are satisfied. Inequal{®&§ and (66) imply that

Y

1

I(X, V111|Y1)

Y

r1+ 712 I(X;ViaY) + I(X; Vip|Vig, Ye) + 1(X; Voo |Vig, Vie, Y2)

I(X;ViaYh) +1(X;5 Vi, Vool Vi1, Y2)
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Now defineW; = V; ; and W, = (Vi 2, V2 2), and it follows that
r > I(X;Wh %)

re+ry > I(X;W1|Y1)+I(X;W2|W1,Y2)

and(W,, Ws) is a pair of random variables satisfying the condition®(D,, D2) and thus(ry,r2) € R5(D1, D3),
which shows thaRs (D) C R5(D) since trivially the distortion constraints are also met.

To prove the other direction, i.eR%(Dy, Dy) D R5(Dy, Ds), assume(ry,ry) € Ri(Dy, Dy). There exist
random variabledV; andW,, and two corresponding functiong (W1, Y7) and fo(WWs, Y3), such that

T1 Z I(X,W1|Y1) (67)
ri+re > I(X; Wi Yy) + I(X; Wa Wy, Ys) (68)

and the distortion constraints are met. L&ty = r; — I(X; W;]Y1). We claim that for any0 < Ar; <

I(X; W5 |W1,Y3), there exists a random variablg such that
Ary = I(X; VW1, Y2) (69)
I(X;VIWL, Yo) + I(X; Wa W1, V., Ya) = T(X; W2 W, Vo). (70)

There are many ways to construgt, for example we can construét = (Ws(J),J), whereJ is a Bernoulli
random variable independent of everything else withh = 1) = u; whenJ = 1, W5(J) = Wy and W)(J) is a
fixed constant otherwisdy( X; V|IW1,Y2) can be any real value in the interval I(X; W»|W7,Ys)] by choosingu
appropriately. For a more thorough treatment on this tapithé context of rate splitting in multiple access channel,

see [17]. It follows that for this case
r1 = I(X;Wh|Y1) + [(X;V|W7,Ys) (72)
ro > I(X; Wi Y1) 4+ I(X; Wa|Wy,Ys) — g
= I(X;Wa|W,V)Y). (72)

Now defineVi; = Wy, V1o = V and Vo2 = Ws. The random variable$V; 1, Vi 2, V2 2) clearly satisfy the
definition given forR*(D;, D), and thus(ry, ;) € R*(Dy, D) for this case. On the other hand, Ar; >
I(X; W5 |W1,Y3), then defined’; 1 = Wy, Vi o = Wy and Vs o = Ws. The non-negativity condition, > 0 implies
ro > I(X;V22|V11,V12,Y2). Since the reconstruction functions(W1,Y1) = f1(Vi1,Y1) and fo(Ws,Y2) =
f2(Va,2,Y5) satisfy the distortion constraints, the proof is completed [ |
Proof of Theorem 3

Since R*(D) is an achievable region, we have trivialg*(D) € R(D) = R*(D) due to Theorem 1. For
the inclusion of the other direction, the proof for the caée= 2 can clearly be extended straightforwardly, by
sequentially constructing random variable corresponttingV; ;1,7 > i. This completes the proof for Theorem 3.
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APPENDIX IV

LOWER BOUND ON THE SUM-RATE FOR THEGAUSSIAN SOURCE

To lower bound the sum-rate to achieM@;, D-) with side information(Y7, Y5), consider the following quantity,
I(X; Wi Y1) 4 I(X; Wa W1, Ys)

—  H(X|V1) — H(X|W3, V1) + H(X|Wy, Ya) — H(X|Wy, Wy, Ya)
= H(X|VD) = H(X Wi, Wa, Ya) — I(X; Y2 |W1, Y1) (73)
H(X|Y1) — H(X|W1, W2, Ys) — H(Y2[W1,Y1) + H(Y2| X, Y1) (74)
where we can seé) follows sincel (W1, X;Y1|Y2) = I(Wh;Y1]Y2) + I(X; Y1|W1,Ys) = 0 due to the Markov
conditionW; « X « Y5 < Y7, which implies that/ (X; Y;|WW1,Y3) = H(X|Wh,Ys) — H(X|W1,Ys, Y1) = 0.

In an identical manne(d) is due to,I(W1;Y5|X,Y7) = H(Y:2|X,Y1) — H(Y2|X,Y;,Wp) = 0. The quantities
H(X|Y1) and H(Y>2|X, Y1) are only dependent on the multi-source. We bound the seenmdin (74) as follows

H(X|Wy, Wa,Ys) = H(X —E(X|Wy, Wy, Y)Wy, Wy, Ys)
< H(X — E(X|Wp, Wy, Ya))
< HW(0,E(X — E(X|Wi, Wa, Y2))2)) (75)
< %10g(27reD2) (76)

where in (75) we use the fact that normal distribution maxzasithe entropy for a given second moment, and in (76)
the fact that the variance &f(X — E(X|W;, Wa, Ys))? < D, because of the existence of functign(Wy, Wy, Y2)
to reconstructX with distortion Ds.

To bound the third term in (74), writ®; = X + N, as follows

0'2 0'2
X+Ny = X+ No+ —52—5(N1i+ No) — ——2—(N; + N
N TNt oMt M) = S o (i )
_ % (X + Ny + Ny) + 7 X +[N. —L(N + Vo)
0} +0? ! P > o242t ?

= Wi+ (1—=7)X+[(1—7)N2—yN,

0_2
2
o'f-i—ag

where~y =

as in Section V. It can be seen tHat — v) N, — vVy] is independent of7, by checking the
fact E(Y1[(1 — v)N2 — vN1]) = 0 and recalling that they are jointly zero-mean GaussianthBumotice X is
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independent of Ny, N3), which implies[(1 — )Ny — vN,] is also independent dfi’;. Thus we have
HY2|W1, Y1) = HOYi+ (1 —7)X+[1—7)N2—yN]|Wi, Y1)
= H((1=7)X +[(1 =7)Ny = yN1]|W1, Y1)

= H((1—7)[X —EX[Wy,Y1)] + [(1 =) N2 — yN1]|[Wy, Y1)

< H((1—7)[X = EX[Wi, Y1)+ [(1 = 7) N2 — yNi1])
< HW(O,E{(1 —9)[X —E(X[W1,Y1)] + [(1 = y) N2 —yN1]}?)) (77)
< HW(0,(1=7)D1 + (1 = 7)%03 +~%07)) (78)

5 logl2me((1 —7) Dy + (1~ )03 +7%0%))]

5 logl2me(1 =)Dy +09))] ©

where in (78), we used the fact the¥ — E(X|W;,Y7)] is independent of(1 —~v) N> — Ny ]. Using (76) and (79)
in (74) gives

}10 oloiol

2 % DaoZ + % + 03)((1 = 7)2D1 +107)

Note that this lower bound is only tight and achievable whethtD, and D, are effective, i.e., in Region I. When

Ri+ Ry > (80)

D, is not effective, the bound that
oz (0% +03)
Di(02 + 07 + 03)

1
R1+R2ZR12§10g( )

is in fact achievable with equality. By comparing the abowe bounds, it can be seen that this corresponds to the

e ’yDlaf : 70%D2 %
condition Dy < (e or equivalentlyD; > o= (1=7)7D; when D, < D3, [ |
APPENDIXV

PROOF OF THETHEOREM AND COROLLARIES FOR THEDSBS
A. Proof of Theorem 8

We will need the following lemma from [8] to simplify the caill@tion.
Lemmal: For (W, Ws) € p(D1, D3)

I(X; W) + I(X; WalYW)) = H(X) — H(Y|Wy) + H(Y Wi Wa) — H(X|W,Wa). (81)
The lower bound
Let (W,,Ws) € P(D;, Ds) define a joint distribution witi{ X, Y"). Furthermore, assume the functiofisand f,
are optimal for these random variables, i.e., there do nist ¢k (or f3), such thal®d(X, f{ (W1)) < Ed(X, f1(W1))
(or Ed(X, fA(W1,Wa,Y)) < Ed(X, fo(W1,Ws5,Y))), because otherwise we can consider the alternative st
f1 (or f3) without loss of optimality. Our goal is to show thatX; W,) + I(X; W2|YW;) > S*(Dy, Ds), then

invoke the rate distortion theorem, by which the lower bogad be established.
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Similar as in [4][8], define the following set
A = {(w1,w2) : fa(wr,we,0) = fa(wi,ws, 1)}, (82)
which defines its complement as,
A=W x Wa — A = {(wi,w2) : fo(wr,w2,0) # fa(wr, w2, 1)} (83)
For eachw; € W, define the following two sets
B(wi) = {wz €Wy (wi,w2) € A, fi(wi) = fa(wi,w2,0)},
B (w1) = A{w2 €Wa:(wi,w2) € A, fi(wr) # fa(wi,w2,0)}.

Notice that for each fixed; € Wy, we haveW, = B(w}) U B*(w}) U {ws : (w],w2) € A°}, and the three sets
are disjoint. To simplify the notations, writB{(W;W:) = (wiw2)} @S Py, w,, and P{W; = w, } as P,, . Define

the following quantity for eachw; € W,
Diuy £ E[A(X, X0)[Wy = wi] = P{X # fi(un)[W1 = w1}
and define the following quantity for eacl, w2) € A,
D2 yws = E[d(X, X2)|(W1, Wa) = (w1, ws)] = P{X # fa(wi, w2, 0)|(W1, Wa) = (w1, w2)}.
By the Markov stringl” < X « (W, W5), it follows that for eachw; € W,
H(X|Wy =wy) =h(D1,w,), HY|Wi=w1)=h(p* Diw) (84)
where as before: * v </ u(1 —v) +v(1 —u). For each(wy,ws) € A, we have
H[X|(W1, W2 = wi,w2)] = W(D2uyw,),  H[Y (Wi, Wa) = (w1, w2)] = h(p * Dawyw,)- (85)
And furthermore, for eaclfw,,ws) € A€, we have
HX|(Wy, Wy =wi,w)] = h(P{X # fi(w)[W1 = w1, W2 = wa})
HY|(W1,W3) = (w1, w2)] = h(px P{X # fi(w1)|W1 = w1, Wz = wa}). (86)
We will also need the following quantities
02 P{(W1,Wa) € A}, 01 £ P{(W1,Wa) € {(wy,w2) : wy € Blwn)}}. (87)

Clearly, we have

H(X)-HY[W1) = 1- > Py, HY[W;=uw)
w1 EW1
= 1= > Puh(p*Diw,)
w1 EW1
> 1—h(p=Dy) (88)
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where we have used the concavity of functiofp = «) in the last step and

;A
D = E Py, Dy, -
w1 EW1q

Furthermore we have
H(Y|W1Wy) — H(X|W,Wa)

= > Pupw[HY[(W1,Wa) = (w1, ws)) — H(X|(Wy, Wa) = (w1, ws))]
(w1,w2)€EA
+ Y Puyan[HY[(W1, Wa) = (w1, ws)) — H(X|(Wr, Ws) = (wi, ws))]
(w1,wa)€EA®

The first term can be bounded as follows

D Puyun[HY (W1, Wa) = (wi,ws)) — H(X|(Wi, Wa) = (wr, ws))]
(w1, w2)EA

= Z Z Pwl,wg [h(p * D2,w1w2) - h(DQ,wﬂUz)]

w1 wyeB(wy)

+ Z Z P, s [h(p * DQ,wlwz) - h(D27w1w2 )}

w1 wo€B*(wy)

> 60,G(B)+ (6 — 01)G(w),

where as beforé&(u) £ h(p * u) — h(u), and

(6% é Z Z 511121 D2,w1w2, ﬂ é Z Z P%llszZ,wlwzv

w1 wo€B*(w1) w1 wa€B(wy)

and the convexity of functiod(«) is used in the last step. Next, notice the identity that farthea; € W,

Py, D1, = P{X # fi(wy), W) = w1}
= Z P{X#fQ(wl,'lUQ,O),Wl:UJl,WQ:U)Q}
wo€B(w1)
+ Z P{X:fg(wl,lU2,0),W1:wl,WQZUJQ}
wo €B* (w1)

+ > P{X # filwn), Wy = wi, Wy = wy}

wa:(wy,wa)EAC

Z Pw1w2D2,w1w2 + Z Pwlwz(l - DQ,wlwz)
w2 €B(w1) wo €B*(w1)

=+ Z Pw1u12P{X }é fl(w1)|W1 = w1, W2 = U)Q}.

wo:(wy,wa)EA®

It follows that

> Puyuw[HY (Wi, Wa) = (wi,wz)) — H(X|(Wi, Wa) = (w1, ws))]

(w1, wa)€EA®

- Z Z Py, GIP{X # f1(wy)|(Wh, Wa) = (w1, w2)}]

w1 wy:(wy,we)EAC

> (1-0)G(v),

27

(89)

(90)

(91)

(92)
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where again the convexity of functiaf(«) is used, and because of the identity (91), we have

P,

S TP A fi(w)[Wh =, We = ws)

w1 wa:(wy,we)EAC

D =618 —(0—01)(1 —a)

gl

= T3 . (93)
It was shown in [8], by a straightforward generalization loé targument in [4], that
E[d(X, X)|(W1, Wa) € A] > p. (94)

By the hypothesis
Dy 2015+ (0~ 1)+ (1-0)p < D
D} < Dy.

Notice that for eactiwy, wa) € A, D w,w, < p, because otherwise for th{gn, ws) pair, makingfa(wy, w2,Y) =
Y will in fact reduce the distortion, which contradicts witletoptimality of the decoding function. Thas< «, 5 <
p. Similarly, p <~y < 1—p, because < P{X # f1(w1)|W; = wy, Wa = wy} < 1— p, otherwise we can modify
the decoder functiorf, to reduce the distortion. Clearl§, < 6; < 6 < 1 by definition.

Summarizing the bounds, we have shown that

Rup(Di,D2) 2 min (1= h(D}«p) + (1-0)G0) +H:G(3) + (0~ )G, (%)

where the minimization is within the following set
Q< = {(a,8,0,01,D1): (1 =0)p< Dy —(0—01)(1-a)-018<(1-0)(1-p),

This is not yet the function given in Theorem 8, because th@mization given there is within the set

Q- = {(a,f,0.61,D1): (1-0)p <Dy —(0—01)(1—a)=015<(1-0)(1-p),

0<6,<6<1, 0<a,fB<p, (0—061)a+6,6+(1—0)p=Dy, Dj=D}.

This gap will be closed after we give the forward test charstelcture. [ ]
The upper bound

We explicitly construct the random variables with joint pgiffen in Table I. It is straightforward to verify
that it is a valid pmf, given the conditions in the definitioh $p, (o, 8, 6, 61). Furthermore, the raté(X; W) +
I(X; Wo|[W1Y) is exactly Sp, (o, 8,0, 61). The decoding functions arg (W7) = Wy and fo(W1, W, Y) = W,
if W5 #£ 2, otherwisefo (W1, W5, Y) =Y. This establishes the upper bound.

Now we show that the gap aforementioned in the proof of theetolound can be closed. Suppose that the

parameters that minimize the right hand side of (95) @res3, 6,6, D)), and furthermoreD] < D;. The set
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w1 =0 w1 =1
z=0 z=1 z=0 =1
wa =0 0.501 (1 — 3) 0.5013 050 —601)1—a) | 05061
wy =1 0.5(0 — 01)ax 0.5(0 — 01)(1 — o) 0.5013 0.501(1 — B)
we =2 | 0.5(1—6)(1—7) 0.5(1 — 0)y 0.5(1 — 0)y 0.5(1—8)(1 —~)
| p,wn) | 050-D1) | 0.5D1 0.5D, | 050-Dy) |
TABLE |

JOINT DISTRIBUTION p(x, w1, w2) AND THE MARGINAL p(x,w1).

of random variablesV{, W can be constructed as given in Table | wit replacingD;. By the lower bound

established above, we have

Rup(D1,Dy) > I(X; W) + (X; Wy |WY).

(96)

Consider a random variabl#&;" = W ® N, whereN is a Bernoulli random variable independent of everythirsgel

with P(N = 1) = 7 such that) = D} = D, = DY, which is valid sincemax{D;, D{} < 1. Let W}/ =

(W1, W),

and we havgW{ , WY) € P(D;, Ds). Clearly, W/ « W{ < X < Y, andW{" — W] « WJ. Thus by the rate

distortion theorem for this problem

Notice that

I(X; W+ I(X; WY W'Y) > Ryg(Dy, Ds).

I(X; W) + I(X; Wa|[WiY)

I(X; W, W)+ I(X W Wa|WHY)

I(X5 W) + (X WHIWY) + T(X Wa|[WWY)

I(X W) + I(X WHWY) + TG WIW5 [WHY) — T(X WH W'Y

I(X5 W) 4+ I(X WIWL|[WT'Y) + (Y W WY)

I(X; W) + I(X; WiW5 [WY'Y) + h(p * DY) — h(p * DY)

I(X; W) + I(X; WiW,|[WT'Y)

(97)

where (a) and (c¢) follow because of the Markov chaiW’;’ <~ W| < X « Y, (b) is by applying chain rule to

the last term in the previous line, and the last step is becaus 0.5 and D} < D; = DY < 0.5. However, this

implies

I(X; W) + I(X; WiW5|WY'Y) > Ryp(Ds, D2)

> [(X5WY) + (X, Wo|WY) > T(X; W) 4 T(X; Wi, |[WT'Y)

which is a contradiction. Thus we conclude that the minimuosnbe achieved wittD] = D;.
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Next we show that the constrai(@ — 01)a + 615 + (1 — 8)p < D, can be met with equality without loss of

optimality; i.e.,

o, [L=h(D}xp)+ (1= 0)G() +0.G(5) + (0~ 01)G(o)

= pplin (L= A(D]*p) + (L= 0)G0) +H.G(B) + (0~ )G ()] (98)

Suppose otherwise, such that the paramefers, 6,60,, D;) minimizing the right hand side of Eqn. (95) satisfy
(0 —61)a+ 6,8+ (1 —0)p < Dy. parameterga, 3,6,0,,D1) € Q— will result in a strict increase in the rate.
If & = 0, the contradiction is trivial: eithes or 5 can be increase to reduce the rate. WHen 1, but o, 8 < p,
~v € (p,0.5)U(0.5,1—p) and0 < #; < 0, itis also trivial to construct such parameters, by dishgl{incrementally)
a or 3. Thus the only remaining cases are the follows, and we wilbig the terml — h(p « D;) in the sequel:

e p<~v<0.5, a=pandb, <80. In this case, notice that

(1=0)G(y) +6:G(B) + (0 - 01)G(e) = (1-0)G(7)+6:G(B) + (0 —01)G(1 — )

Dy — 615

10, )+ 6:G(B),
where the inequality is due to the strict convexity @fu). Furthermore, notice that < 2:=012 < 1 — p,

> (1 —91)G(

since it is a convex combination of and 1 — p. However, this implies the set of parametéfs g, 6;,6;)
strictly improves over the minimum, which is a contradiatio
e« p<~v<05andf = 0,. Let ¢ be a small positive quantity to be specified later. Firsta@the condition
implies thats < p for any Dy < p, then
(1=0)G(y) +0G(B) = (1—-0-6G(7)+eG(y) +0G(H)
> (1-0-¢G(y)+ (0 +6)G(B),

where the inequality is due to the strictly convexity @fu) and

;o €(D1—6p) 06

T 101 -0) ¥ (99)

Notice further that

o Dl—ﬂﬂ - Dl—(0+e)ﬂ’
1-60  1-0-—c¢
thus by choosing a sufficient smalt> 0, the following two conditions can be satisfied simultandpus

(100)

O+e)f+(1—0—€ep=08+(1—0—e)p+e(y—p) <Dy, [ <p. (101)
This implies that(p, 5,6 + ¢, 6 + €) strictly improves over the minimum, which is a contradiatio
e 0.5 <~y <1—p, =pandfh; > 0. The contradiction is similarly constructed as the firstecas
e 0.5 <~y <1-—pandf; =0. This is an impossible case, sinae< p and D; < 0.5.
e A=05and0 < 6; < 0,0 < a,8 < p. In this case, perturbingy, 5 together incrementally gives a
contradiction.
Thus there is no loss of optimality by replacing the optirtima set Q< with Q—, and this completes the proof.
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B. Proof of Corollary 1

Notice that for any(«, 3,6, 61),

Spl(a,ﬁ,é,el) > 1—h(D1 *p)+(6—91)G(a)+91G(ﬁ)

> 1—h(Dy*p)+0G(B)

where 3’ £ (=005 " anq the first inequality is due to the non-negativity of fiime G (u), while the second

inequality is due to its convexity. Furthermore, the caaistris satisfied with
Dy=(0—-01)a+6,6+(1—0)p=05+(1—0)p.
Let (a, 3,6,01) be the set of parameters achieving the minimum. Then by Ened&, we have
Ryp(D1, Da) = Sp, («, 3,6,61) > [1 — h(Dy * p) + 0G(6')],

where Dy, = 03’ 4+ (1 — 0)p. Moreover0 < 3’ < p, because botlx and 8 are in this range, an@’ is the convex

combination of them. Thus

Rup(D1,D2) > 1~ h(Dy *p) + [0G(3")],

min
Da=03"+(1-0)p
with the minimization rang® < ' < p and0 < # < 1. Comparing it with the rate distortion functioﬁ}‘Y(D)

of (35) establishes the claim. ]

C. Proof of Corollary 2

In [4], it was proved that whe, < d., R}ly(Dg) = G(D2), and by Corollary 1Ry (D1, D2) > 1 —h(D; *
p) + G(D>) for this case. To showRy 5(D1, D2) < 1— h(D1 *p) + G(D>), consider the following test channel.
Let W5 be the output of a binary symmetric channel (BSC) with cress@robability D, and inputX, let Wy
be the (cascade) output of a BSC with crossover probabijlityith input W5, such thaty « Dy = Dy; such anp

always exists because, < D;. It can then be easily verified that
I(X; W) + I(X; Wo|W1,Y) =1— h(D;y xp) + G(D2) (102)

and the distortion isD; and D, by taking f1 (W) = Wy and fo (W5, Ws,Y) = Ws. The rate distortion theorem
for this problem implies thaRy 5(D1, D2) < 1 — h(D; * p) + G(D>), which completes the proof. [ ]
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