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New Coding Schemes For the Symmetric
K-Description Problem

Chao Tian, Member, IEEE, Jun Chen, Member, IEEE

Abstract—We propose novel coding schemes for the K-
description problem with symmetric rates and symmetric dis-
tortion constraints. There are two main new ingredients in
these schemes: the first one is akin to the method seen in the
well-known butterfly network of network coding literature, and
systematic erasure channel codes are applied on certain carefully
chosen source coding component; the second approach is built
on the quantization splitting technique which was previously
proven useful in the Gaussian CEO problem. We first focus
on a special case of the three description problem, where any
two descriptions are rate-distortion optimal jointly, referred to
as the no two description excess rate case. For this special
case and the quadratic Gaussian source, we show that the
two afore-mentioned approaches lead to rate-distortion points
outside the achievable region based on the source-channel erasure
codes, previously proposed by Pradhan, Puri and Ramchandran.
Interestingly, though only the symmetric problem is considered
in our work, the proposed schemes in fact benefit from time-
sharing several asymmetric rate-distortion points. The insights
gained through the no two description excess rate case lead to
strategic combination of the new ingredients with the existing
coding scheme, yielding new coding schemes for the symmetric
K-description problem.

Index Terms—Multiple descriptions, rate-distortion.

I. INTRODUCTION

The multiple description (MD) source coding problem is
well known as a long-standing open problem in information
theory. The problem setting is that a source needs to be
encoded into several descriptions, such that any subset of these
descriptions can be used to reconstruct the source with certain
fidelity (see Fig. 1). The problem is practically motivated
by applications in efficient distributed storage systems, or
communication systems over packet-loss network (see the
review article [1] for more detailed discussions). It is easily
seen that even for the two description case, a conflict exists
that if the individual descriptions are good, then they must be
similar to the source and thus quite alike, which reduces the
efficiency when they are taken jointly.

For the two description problem (i.e., K = 2), the only
case for which the rate-distortion region has been completely
characterized is the quadratic Gaussian problem [2], [3]. Sev-
eral achievable regions exist [2], [4] for general sources, yet a
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Fig. 1. System diagram for symmetric three description coding.

complete characterization has not been found. Recent effort on
the MD problem focuses more on the general K-description
problem. An achievable rate region under general distortion
constraints was given in [5] based on conditional codebooks.
Since many modern packet networks have the property that
packets are treated without priority, the symmetric MD prob-
lem has received more attention. For this case, the distortion
constraints depend only on the number of descriptions avail-
able, but not the specific combination of the descriptions; at
the same time, the rates of the descriptions are kept the same.
An achievable symmetric rate under such symmetric distortion
constraints was given in [6], [7], which utilizes the binning
technique often seen in distributed source coding problems. A
rather descriptive name was coined for these codes in [6], [7]–
(n, k) source-channel erasure codes (SCEC)–because of their
similarity to (n, k) maximum distance separable (MDS) codes.
We will sometimes refer to these codes simply as SCEC when
the exact values of (n, k) are of no importance; moreover, we
will refer to the multilayer coding scheme based on SCEC,
which was proposed by Puri, Pradhan and Ramchandran in
[7], as the PPR multilayer scheme.

Wang and Viswanath [8], [9] made important progress
on the K-description problem by considering the quadratic
vector Gaussian source problem. Applying their result to the
symmetric scalar quadratic Gaussian problem shows that the
PPR multilayer scheme (in fact a single layer SCEC) is sum-
rate optimal when only two levels of distortion constraints
exist and one of them is on the distortion of having the
complete set of descriptions. A new sum-rate lower bound
was recently discovered by Tian et al. [10] with any levels of
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symmetric distortion constraints, through which it was shown
that the (symmetric) individual description rate loss by the
PPR multilayer scheme is no larger than 0.92 bit for the
Gaussian source. With these results, one may conjecture that
the PPR multilayer scheme is indeed sum-rate optimal with
any levels of distortion constraints for the Gaussian source.
However as we shall show in this work, this conjecture is
in fact not true, and other rate-distortion (R-D) points can
be achieved outside the R-D region achievable by the PPR
multilayer scheme.

The following simple question motivates our work. It was
shown in [6] that for the Gaussian source and a total of three
descriptions, using SCEC with a Gaussian codebook, any two
descriptions can be made R-D optimal jointly (this requirement
will be referred to as no two description excess rate), and
having all three descriptions can reduce the distortion even
further. However, at this R-D point (referred to as the binning
point due to the coding scheme based on the well-known
“binning” technique), we observe that each description by
itself is useless, because the bin index alone offers no possible
distortion reduction1. Our question is the following: is there
a coding scheme satisfying the no two description excess rate
requirement, for which individual descriptions are still useful?

The answer to this question is in fact positive, and we show
that this can be accomplished using two distinct approaches.
The first approach requires the addition of a (systematic)
erasure channel coding component on top of some carefully
chosen source codes, and for K = 3 this method is quite
similar to the approach used in network coding [11]. The
second approach utilizes the quantization splitting technique,
which was previously used to design simple yet optimal
coding schemes for the Gaussian CEO problem [12] and
the Gaussian two description problem [13]. We show that
in the K-description problem, quantization splitting can also
serve as a useful tool to boost the system performance.
Though the quantization splitting technique itself is not new
and has been used in other problems, utilizing it in the K-
description problem poses particular difficulties. In the existing
works [12] [13], quantization splitting can be performed rather
conveniently by invoking a sequential encoding and decoding
order, however in the MD problem, due to the rather involved
distortion requirements, using such a completely sequential
order is no longer appropriate. We circumvent this difficulty by
specifying only a partial coding order, instead of a completely
sequential one.

The first approach of incorporating channel codes was in
fact mentioned briefly in [7] (Section VI) as a possible way
to further improve the PPR multilayer scheme. However, it is
worth mentioning that one key new finding in our current work
is that the channel coding component should operate on some
specific source codes, which have to be chosen strategically.
Furthermore, the fact that for the Gaussian source there exist
R-D points outside the PPR multilayer achievable region is
revealed for the first time.

The remainder of the paper is organized as follows. The
problem definition is given in Section II, and then the PPR

1This statement is proved in the subsequent section more rigorously.

multilayer scheme and the quantization splitting technique
are reviewed briefly. In Section III we introduce two simple
coding approaches and show that they are useful under the no
two description excess rate requirement, yielding R-D points
outside the PPR-multilayer R-D region. In Section IV we
generalize these two approaches to the K-description case in
the setting of single layer coding. Section V further generalizes
the schemes to include multiple layers. Section VI concludes
the paper with a few remarks.

II. PROBLEM DEFINITION AND REVIEW

In this section, we first give a few necessary notations
and the problem definition, then review briefly the results
on the PPR multilayer scheme, and the quantization splitting
technique in the context of the Gaussian CEO problem.

A. Notations and Problem Definition

Since we use the Gaussian source as the working example,
it is convenient to define the problem for the Gaussian source
below. The problem can be defined for general discrete mem-
oryless sources under bounded distortion measures with only
minor changes; moreover, the results presented in Section IV
and V hold for both kinds of sources using the techniques in
[14], and thus we do not distinguish them in the remainder of
the paper unless necessary.

Let {X(i)}i=1,2,... be a memoryless and stationary Gaussian
source with zero-mean and unit-variance; the source alphabet
X is thus R in this case. The vector X(1), X(2), ..., X(n) will
be denoted as Xn. The mean squared error (MSE) distortion
d(xn, yn) = 1

n

∑n
i=1(x(i)− y(i))2 will be used; this implies

that the reconstruction alphabet is also R in this case, i.e., the
same as the source alphabet, but the restriction can be relaxed
straightforwardly when other sources are considered. The
notation Ik is used to denote the set {1, 2, ..., k}. Throughout
the paper, the entropy of a random variable X is denoted as
H(X), and if the source is continuous, e.g., the Gaussian
source, the notation should be implicitly understood as the
differential entropy. For an arbitrary set A, we use 2A+ to
denote the set of all non-empty subsets of A, i.e.,

2A+ , {S : S ⊆ A, |S| > 0}. (1)

where |S| is the cardinality of the set S. For a set of
random variables with double subscript {Xi,j , i ∈ A, j ∈ B},
we sometimes write it simply as X̄A,B; similarly the set
{Xi,j , j ∈ A} is sometimes written as X̄i,A. All the sets, such
as those denoted by A, B or C in the remainder of the paper,
are inherently understood as subsets of IK , unless specified
otherwise.

For the general K-description problem, a length-n block of
the source samples is encoded into K descriptions. A specific
decoder TA, where A ∈ 2IK+ , has access to the descriptions in
the set A. The symmetric distortion constraints are given such
that the decoder TA can reconstruct the source sequence to
satisfy a certain distortion D|A|, i.e., the distortion constraints
depend only on the number of descriptions that the decoder has
access to, but not the particular combination of descriptions.
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Formally, an (n, (Mi, i ∈ IK), (∆A,A ∈ 2IK+ )) code is
defined by encoding functions Si and decoding functions TA

Si : Xn → IMi , i ∈ IK ,

TA :
∏
i∈A
IMi → Xn, A ∈ 2IK+ ,

and

∆A = Ed(Xn, TA(Si(X
n), i ∈ A)), A ∈ 2IK+ ,

where E is the expectation operator.
A (K+1) symmetric R-D tuple (R,D1, D2, ..., DK) is said

to be achievable if for every ε > 0, there exists for sufficiently
large n an (n, (Mi, i ∈ IK), (∆A,A ∈ 2IK+ )) code such that

1

n
logMi ≤ R+ ε, i ∈ IK ,

∆A ≤ D|A| + ε, A ∈ 2IK+ .

The collection of all the achievable (K + 1) symmetric
R-D tuples (R,D1, D2, ..., DK) is of interest. The setting
is sufficiently general such that achievable asymmetric R-D
tuples or the achievable asymmetric R-D region can also be
defined, but they are omitted here for brevity. Occasionally, we
need to consider the distortion associated with the descriptions
in a particular set A such that |A| = k, and we write it as
Dk,A. Throughout this paper, we use base-2 logarithm.

B. Review of the PPR Multilayer Scheme
We first quote the main theorem given in [7] together with

a necessary definition, then briefly explain the coding scheme
and provide a few new observations; more details can be found
in [6] and [7].

Definition 1 ([7]): A joint distribution p(ȳIK−1,IK , yK |x)
is called symmetric if for all 1 ≤ ni ≤ K where i ∈ IK−1,
it is true that the joint distribution of YK and all (n1 + n2 +
...+ nK−1) random variables where any nk are chosen from
the set {Yk,1, Yk,2, ..., Yk,K}, conditioned on X , is the same.

Theorem 1 ([7] Theorem 2): For any symmetric probabil-
ity distribution p(ȳIK−1,IK , yK |x) over YK(K−1)+1

p(x, ȳIK−1,IK , yK) = p(x)p(ȳIK−1,IK , yK |x),

and a set of decoding functions

gA : Y |A||A| → X , 1 ≤ |A| ≤ K − 1,

gIK : YK(K−1)+1 → X ,

such that

Ed(X, gA(ȲI|A|,A)) ≤ D|A|, 1 ≤ |A| ≤ K − 1,

Ed(X, gIK (ȲIK−1,IK , YK)) ≤ DK ,

the following rate is achievable

R ≥
K−1∑
k=1

1

k
H(Ȳk,Ik |ȲIk−1,Ik) +

1

K
H(YK |ȲIK−1,IK )

− 1

K
H(ȲIK−1,IK , YK |X). (2)

The PPR multilayer scheme can be described roughly as
follows. There are a total of K layers in this coding scheme,

and the encoding and decoding can be performed from lower
layers to higher layers sequentially. The first K− 1 layers are
encoded and decoded using a different mechanism from the
last layer. At the k-th layer (k ∈ IK−1) and for any description
j ∈ IK , a codebook of size 2nR̂k,j is generated using the
marginal distribution of Yk,j . The codewords in a codebook
are then randomly and independently assigned into a total of
2nRk,j bins, for all k ∈ IK−1\{1} and j ∈ IK , where \ is
the set difference operation.

The rates R̂k,j’s should be sufficiently large such that for
any typical source sequence, with high probability there exist
codewords in these codebooks of a certain layer such that they
are jointly typical with the source sequence and the codewords
previously found in the lower layers. Using the property of
symmetric distribution (see [7]), it can be shown that this can
be done with

K∑
j=1

R̂k,j >

K∑
j=1

H(Yk,j)−H(Ȳk,IK |X, ȲIk−1,IK ),

k ∈ IK−1. (3)

As given in [7], the rate can thus be chosen as

R̂k,j = R̂k , H(Yk,1)− 1

K
H(Ȳk,IK |X, ȲIk−1,IK ) + δ,

k ∈ IK−1, (4)

for an arbitrarily small but positive δ. The bin indices (or the
codeword indices for the first layer) of the found codewords
are then put into the respective descriptions.

At the decoder, with any k descriptions such that k ∈ IK−1,
the lower k layers are decoded sequentially from the lower
to the higher layers in k steps. More precisely, the decoder
receives descriptions in the set A such that |A| = k. Taking
an induction approach, we can assume the first k−1 layers of
codewords are correctly decoded, and only need to consider
the decoding of the k-th layer. If there exists a unique set of
codewords in the bins of the corresponding codebooks, spec-
ified by the descriptions in the set A, that are jointly typical
with each other, and at the same time they are jointly typical
with the correctly decoded lower layer codewords, then the
decoder reconstructs using the single-letter decoding function
gA(·); otherwise a decoding failure occurs. To succeed with
high probability for any k ∈ IK−1, it can be shown, using the
property of symmetric distribution, that the rates Rk,j , j ∈ IK ,
only need to satisfy

0 ≤ Rk,j ≤ R̂k,j , j ∈ IK−1, (5)

and ∑
j∈A

(R̂k,j −Rk,j) < kH(Yk,1)−H(Ȳk,Ik |ȲIk−1,Ik),

|A| = k, (6)

which should hold for any k ∈ IK−1.
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Rewriting (6), we have for all A such that |A| = k, k ∈
IK−1, that∑

j∈A
Rk,j >

∑
j∈A

R̂k,j − kH(Yk,1) +H(Ȳk,Ik |ȲIk−1,Ik)

= H(Ȳk,Ik |ȲIk−1,Ik)

− k

K
H(Ȳk,IK |X, ȲIk−1,IK ) + kδ. (7)

The last layer codebook is generated using the more con-
ventional method, i.e., the conditional codebook, and the
following condition is sufficient

K∑
k=1

RK,k > I(X;YK |ȲIK−1,IK ). (8)

The given rate in Theorem 1 can be attained by choosing the
symmetric tuple, i.e.,

Rk,j = Rk =
1

k
H(Ȳk,Ik |ȲIk−1,Ik)

− 1

K
H(Ȳk,IK |X, ȲIk−1,IK ) + δ′,

k ∈ IK−1, j ∈ IK , (9)

where δ′ is a small positive quantity such that δ′ > δ, and by
making δ′ and δ sufficiently small.

In this coding scheme, if only one layer exists, then it
is a single (layer) source channel erasure code (SCEC). For
example if only the k-th level exists in a K-description PPR
multilayer scheme, then it is a (K, k) SCEC; for this case,
(3) and (6) only need to hold for a single particular value
of k. It is not difficult to see that (4) and (9) can be readily
applied to this case by taking the first k − 1 layers random
variables ȲIk−1,IK to be constants. It is clear that the small
quantities δ’s are inconsequential, and they will be ignored in
the remaining sections.

Two important remarks should be made at this point. Firstly,
we note (see also [9]) that it is not necessary to keep the
distribution, rates R̂k,j’s and Rk,j’s all symmetric in this
coding scheme. In fact, the conditions on the choice of rates
can be easily extracted in [6] and [7], when these symmetric
conditions are removed, and these conditions can then be
reduced to give Theorem 1 when the rates and distribution
are chosen to be symmetric. Our second approach to boost
the system performance can be understood as utilizing this
observation. Secondly, the symmetric distribution requirement
can be straightforwardly relaxed to the following one, and
Theorem 1 still holds under this relaxed requirement (see also
the related discussion in [10]). This observation is useful for
the development of the general coding schemes.

Definition 2: A joint distribution p(ȳIK−1,IK , yK |x) is
called generalized symmetric if for any permutation π(·) :
IK → IK , the joint distribution p(ȳIK−1,π(IK), yK |x) is the
same as p(ȳIK−1,IK , yK |x).

In the above definition, though ȳIK−1,IK is written as a
set, we assume the random variables in this set are inherently
ordered in a pre-defined manner, and thus the definition is
meaningful; also we slightly abuse the notation for the permu-
tation operator, such that π(IK) is the resulting sequence after

the permutation under this just given convention. The original
version of symmetric distribution essentially requires the dis-
tribution to be invariant under K − 1 different permutations
πk(·), one for each layer k = 1, 2, ...,K−1; i.e., if we permute
{Y1,1, Y1,2, ..., Y1,K}, and then permute {Y2,1, Y2,2, ..., Y2,K}
differently, and so on for each k = 1, 2, ...,K−1, the resulting
distribution should remain the same as the one before such
permutations. This requirement was however never completely
utilized in the coding scheme in [7], which instead in fact
requires only invariance under a single permutation π(·) which
is applied to all the levels simultaneously, i.e., πk(·) = π(·),
for k = 1, 2, ...,K − 1.

For the quadratic unit-variance Gaussian source with three
descriptions, one particular interesting case is when there is
no two description excess rate, i.e., when any two of the
descriptions are R-D optimal jointly. For this case with rate
R per description, it was shown in [6] that the following R-D
quadruple is achievable

(R,D1, D2, D3) =

(
R, 1, 2−4R,

2 · 2−4R

3− 2−4R

)
, (10)

by using only the second layer in the PPR multilayer scheme,
and letting

Y2,i = X +N2,i, i = 1, 2, 3, (11)

where N2,i’s are zero-mean independent identically distributed
Gaussian random variables, also independent of the source
X , with variance 2(24R − 1)−1. More generally, for the K-
description case, when any k descriptions are R-D optimal
jointly, SCEC can be shown to achieve the R-D tuple

(R,D1, ..., Dk−1, Dk, ..., Dk+r, ..., DK)

=

(
R, 1, ..., 1, 2−2kR, ...,

k2−2kR

k + r − r2−2kR
,

...,
k2−2kR

K − (K − k)2−2kR

)
. (12)

Another achievable R-D tuple of interest using SCEC is when
the combination of all K descriptions is R-D optimal. It was
shown in [6] that for the Gaussian source, an SCEC can
achieve

(R,D1, ..., Dj , ..., DK)

=

(
R, 1− 1

K
(1− 2−2KR),

..., 1− j

K
(1− 2−2KR), ..., 2−2KR

)
. (13)

This R-D tuple is not a special case of (12), i.e., it can not
be deduced from (12) by setting k = K or k = 1. In fact the
dependence structure among the auxiliary random variables
achieving (12) and that achieving (13) are quite different, and
we will return to this subtle point later in Section III-C.

C. Review of Quantization Splitting in the Gaussian CEO
Problem

Quantization splitting was thoroughly investigated for the
Gaussian CEO problem in [12], and was previously also
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used to construct optimal coding schemes for the Gaussian
two description problem [13]. Similar techniques in channel
coding are usually referred to as rate splitting [15]–[17], and
those in lossless compression are usually referred to as source
splitting [18]. Next we give a brief review of the quantization
splitting technique in the context of two-encoder Gaussian
CEO problem, which is depicted in Fig. 2.

The R-D region characterization for the Gaussian CEO
problem was independently discovered by Oohama [19] and
Prabhakaran et al. [20]. More relevant to us is a special optimal
R-D tuple specified by the following equations

R1 = R2 = I(W1;Y1)− 1

2
I(W1;W2),

D = E(X − E(X|W1,W2))2,

where W1 = Y1 + N1 and W2 = Y2 + N2, N1 and N2

are independent Gaussian random variables with variance σ2
N ,

also independent of everything else. This R-D triple can
be achieved by the so called Berger-Tung scheme [21][22],
depicted in Fig. 3(a), from which we see that the codewords
are found by jointly decoding using their bin indices. However,
one crucial observation given in [12] is that the scheme can be
converted to a successive coding scheme by using the quan-
tization splitting technique, resulting in the coding structure
depicted in Fig. 3(b). Here we choose W ′1 = W1 + N ′1,
where N ′1 is a Gaussian random variable independent of
everything else, as an intermediate quantization step at the
first encoder, thus the name quantization splitting. The idea
is that at the decoder, this quantization information split from
W1 can be decoded by itself, and subsequently the Wyner-
Ziv [23] decoding module can be used, instead of the more
complicated joint decoding. It is important to note that that
by properly choosing the variance of N ′1, the following two
properties can be made true:
• In the quantization splitting scheme, the first encoder

rate R1,1 + R1,2 = R1, and the second encoder rate R2

remains the same; the distortion is also preserved.
• Encoder 2 in the two coding schemes can be identical.

It is easy to check that we only need to ensure

I(W2;W ′1) =
1

2
I(W2;W1), (14)

for which there always exists a valid solution of W ′1.
The second approach given in the next section is based

on the quantization splitting technique, and we are motivated
partly by the similarity between the SCEC coding structure
and the Berger-Tung coding structure in the CEO problem,
which will be discussed in more details in the next section.

III. TWO SIMPLE SCHEMES FOR NO TWO DESCRIPTION
EXCESS RATE CODING

In this section, we focus on a special case of the three
description problem where any two descriptions are R-D
optimal jointly. We first establish an outer bound for the PPR
multilayer scheme rate region under this requirement, then
provide two simple coding schemes, which can achieve R-
D points outside the PPR multilayer achievable region. These
two schemes are the basis of the general schemes given in later

Encoder 1 Decoder X̂
X

R

R
Encoder 211 ZXY +=

22 ZXY +=

Fig. 2. System diagram for symmetric two encoder Gaussian CEO problem.
For simplicity we assume the independent zero-mean Gaussian random
variables Z1 and Z2 have the same variance.

sections, and in this section we present them in the simplest
form to facilitate understanding.

A. An Outer Bound For the PPR Multilayer Achievable Region

We first formally define the PPR multilayer achievable
region Q(K)

PPR, and then provide an outer bound for it.
Definition 3: For the unit variance Gaussian source, PPR

multilayer achievable region Q(K)
PPR is the convex closure of

the collection of (R,D1, D2, ..., DK) tuples which satisfy
Theorem 1 for some generalized symmetric probability dis-
tribution p(ȳIK−1,IK , yK |x).

We establish the following theorem for the case of K =
3, which essentially states that under the no two description
excess rate requirement, each individual description in the PPR
multilayer scheme is useless.

Theorem 2: For the quadratic unit-variance Gaussian
source, if the R-D quadruple (R,D1, D2, D3) =

(R,D1, 2
−4R, D3) ∈ Q(3)

PPR, then D1 ≥ 1.
Proof: Since the conventional single description R-

D function for the Gaussian source, denoted as R(d), is
strictly convex, it is clear that to achieve (R,D1, D2, D3) =
(R,D1, 2

−4R, D3) by time-sharing several R-D points in
Q(3)
PPR, each point being time-shared must have the form

(R,D′1, 2
−4R, D′3). Let us consider any one of these points.

It follows from the supposition in the theorem that there exist
random variables {ȲI2,I3 , Y3} such that

1

2
R(D2) ≥

2∑
k=1

1

k
H(Ȳk,Ik |ȲIk−1,Ik) +

1

3
H(Y3|ȲI2,I3)

− 1

3
H(ȲI2,I3 , Y3|X)

= H(Y1,1) +
1

2
H(Ȳ2,I2 |Ȳ1,I2)− 1

3
H(ȲI2,I3 |X)

+
1

3
I(YK ;X|YI2,I3)

(a)

≥ H(Y1,1) +
1

2
H(Ȳ2,I2 |Ȳ1,I2)− 1

3
H(ȲI2,I3 |X)

(b)
= H(Y1,1)− 1

2
H(Ȳ1,I2) +

1

2
H(ȲI2,I2)

− 1

3
H(ȲI2,I3 |X)

(c)

≥ 1

2
H(ȲI2,I2)− 1

3
H(ȲI2,I3 |X), (15)

where (a) is by the non-negativity of mutual information, (b)
is by applying the chain rule, and (c) is by the symmetric
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Fig. 3. Converting the joint decoding procedure into successive decoding through quantization splitting. The binning rates at encoder 1 in (a) and (b) are
different.

assumption H(Y1,1) = H(Y1,2) and the non-negativity of
I(Y1,1;Y1,2). Continue this chain of inequalities

1

2
R(D2) ≥ 1

2
H(ȲI2,I2)− 1

3
H(ȲI2,I3 |X)

=
1

2
I(ȲI2,I2 ;X) +

1

2
H(ȲI2,I2 |X)− 1

3
H(ȲI2,I3 |X)

(d)

≥ 1

2
I(ȲI2,I2 ;X), (16)

where the equality is by adding and subtracting the same
term, and (d) follows from the conditional version of Han’s
inequality [25] and the symmetry. Since ȲI2,I2 can be used
to recover X within distortion D2, by the conventional R-D
theorem

I(ȲI2,I2 ;X) ≥ R(D2). (17)

We thus have
1

2
R(D2) ≥ 1

2
I(ȲI2,I2 ;X) ≥ 1

2
R(D2). (18)

Since the beginning and the end of this chain of inequalities
are the same, all the inequalities have to be equalities. To keep
(c) and (d) holding with equality, we must have

I(Y1,1;Y1,2) = 0, I(ȲI2,1; ȲI2,2ȲI2,3|X) = 0. (19)

The second equality in (19) leads to

I(Y1,1;Y1,2|X) = 0. (20)

If we assume the joint distribution among X and
{ȲI2,I3 , Y3} is jointly Gaussian, i.e., a Gaussian codebook

is used, then the proof is rather straightforward from here
on, as was given in [26]. Next we provide a proof without
the Gaussianity assumption. In the following, we assume
Y1,1, Y1,2, Y1,3 are real-valued continuous random variables
which have probability density functions and the differential
entropies are well defined; the case when they are discrete
random variables can be treated similarly. For these two cases,
the (differential) entropies are well defined, and Theorem 1 is
meaningful.

Since I(Y1,1;Y1,2) = 0 implies that Y1,1 and Y1,2 are
independent, we can write their joint density fY1,1,Y1,2

(·, ·) as

fY1,1,Y1,2
(ya, yb) = fY1,1

(ya)fY1,2
(yb), (21)

for any ya, yb ∈ R. We thus have

fY1,1,Y1,2(ya, yb)fY1,1,Y1,2(yb, ya)

= fY1,1(ya)fY1,1(yb)fY1,2(yb)fY1,2(ya)

= fY1,1,Y1,2(ya, ya)fY1,1,Y1,2(yb, yb). (22)

Since I(Y1,1;Y1,2|X) = 0 implies the Markov string Y1,1 ↔
X ↔ Y1,2, and by the symmetry in the distribution of Theorem
1, we can write the joint density of fX,Y1,1,Y1,2

(·, ·, ·) as

fX,Y1,1,Y1,2
(x, ya, yb) = fX(x)fY |X(ya|x)fY |X(yb|x), (23)

for any triple x, ya, yb ∈ R. However, this implies that

fY1,1,Y1,2(ya, yb) =

∫ ∞
−∞

fX,Y1,1,Y1,2(x, ya, yb)dx

=

∫ ∞
−∞

fX(x)fY |X(ya|x)fY |X(yb|x)dx. (24)
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Recall that Cauchy-Schwarz inequality states that for any
square-integrable real-valued functions g1(x) and g2(x), we
have(∫

ga(x)gb(x)dx

)2

≤
∫

(ga(x))2dx

∫
(gb(x))2dx,

where equality holds if and only if ga(x) and gb(x) are linear
dependent. Now with fixed ya and yb, take

ga(x) =
√
fX(x)fY |X(ya|x)

gb(x) =
√
fX(x)fY |X(yb|x),

it follows from (24) that

fY1,1,Y1,2
(ya, yb)fY1,1,Y1,2

(yb, ya)

=

(∫
ga(x)gb(x)dx

)2

≤
∫

(ga(x))2dx

∫
(gb(x))2dx

= fY1,1,Y1,2
(ya, ya)fY1,1,Y1,2

(yb, yb).

However this inequality can only hold with equality because
of (22), and thus ga(x) =

√
fX(x)fY |X(ya|x) and gb(x) =√

fX(x)fY |X(yb|x) are linearly dependent, and it follows that
g∗a , fY |X(ya|x) and g∗b , fY |X(yb|x) are also linearly
dependent, for any fixed ya and yb. This is equivalent to
the independence between the random variables X and Y1,1
(and Y1,2, Y1,3 by symmetry). Thus by the converse to the
conventional rate distortion theorem, we conclude that D′1 ≥ 1
and thus D1 ≥ 1, and the proof is complete.

Note that the symmetric distribution assumption in Theorem
1 was used in the proof at several places. It will become
clear in the sequel that this is a severe limitation of the
PPR multilayer scheme, and asymmetry can be introduced in
various ways to improve the system performance, even when
only the symmetric MD problem is considered.

B. The Coding Scheme Based on Channel Codes

The complete R-D region for the Gaussian two description
problem was established in [3], from which it can be easily
checked that the following symmetric R-D triple is achievable,

(R,D1, D2) =

(
R,

1

2
(1 + 2−4R), 2−4R

)
, (25)

i.e., the two descriptions are R-D optimal jointly.
Now for this R-D point, there is a sufficiently long code

that operates near it, and we denote the resulting codeword
indices as S1 and S2, respectively; moreover, we assume they
are written as binary sequences. Now the third description
is simply given as S1 ⊕ S2, where ⊕ is the modulo two
addition (binary XOR operation). With this simple scheme,
it is straightforwardly seen that these three descriptions can
achieve the following asymmetric distortions using rate R per
description

D1,{1} = D1,{2} = 1
2 (1 + 2−4R), D1,{3} = 1, (26)

D2 = 2−4R, D3 = 2−4R. (27)

QuantizationQuantizationnX

BinningBinningEncoder Joint bin index decodernY 1,2 SourceestimationDecoder 
nY 2,2Quantization Binning
nY 3,2

nY 1,2
nY 2,2

}2,1{T

Fig. 4. The SCEC coding scheme. Though the quantization noises can be
correlated in general, in the special case discussed in this section, they are in
fact independent.

By a simple time-sharing argument, it is seen that the follow-
ing symmetric R-D quadruple is achievable

(R,D1, D2, D3) =

(
R,

1

3
2−4R +

2

3
, 2−4R, 2−4R

)
. (28)

The modulo two addition operation introduces a channel
erasure code, and it is extremely similar in spirit to network
coding in the well known butterfly network [11]. We thus
refer to this specific R-D point as the network coding point.
This channel code introduced by the modulo two addition is
essentially a (3, 2) systematic maximum distance separable
(MDS) code, and this view becomes important for the general
K-description problem considered in later sections.

The following theorem now follows from Theorem 2 and
the performance of the network coding point.

Theorem 3: For the unit variance Gaussian source, the net-
work coding point R-D quadruple (R, 132−4R+ 2

3 , 2
−4R, 2−4R)

is achievable, and it is outside R(3)
PPR.

One may wonder whether in the above scheme, using
asymmetric distortion triples within the two description D-
R region instead of the symmetric one given in (25), can
lead to better performance. However, it can be easily checked
that in order to satisfy the no two description excess rate
requirement, asymmetric choice of distortion triples can not
yield better performance for the Gaussian three description
problem considered here.

C. The Scheme Based on Quantization Splitting

For the network coding point, though individual descriptions
are useful, the three description distortion D3 does not improve
upon the two description distortion D2, in contrast to the
binning point for which D3 does improve upon D2. Thus, the
network coding point R-D tuple does not improve upon that
of the binning point in a component-wise manner. Next, we
introduce a new coding scheme based on quantization splitting,
which indeed gives performance strictly dominating that of the
binning point.

To understand the coding scheme in its simplest form, let
us again consider the no two description excess rate case, and
recall the PPR multilayer scheme with only the second layer
SCEC. In Fig. 4, the encoding structure is given, and one of
the decoder using the first and the second descriptions is also
shown. Observe that Fig. 3(a) and Fig. 4 are strikingly similar,
with Y2,1 and Y2,2 replacing the role of W1 and W2, and the
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noisy observations of the source in the CEO problem in fact
become direct observation of the source. It is thus conceivable
that the quantization splitting technique used in the scheme
given in Fig. 3(b) can also be used to convert the SCEC in the
MD problem. Indeed, now we can introduce another random
variable defined as

X2,1 = Y2,1 +N ′2,1, (29)

where N ′2,1 is a zero-mean Gaussian random variable inde-
pendent of everything else, with variance σ2

N ′ . Using this
new random variable, an almost identical quantization splitting
method given in Fig. 3 can be used. More precisely, the
coding scheme can be given as follows with the specified joint
distribution of (X,Y2,1, X2,1, Y2,2, Y2,3) defined in (11) and
(29).
• Codebook generation: Four code-

books Cy2,1, C
x
2,1, C

y
2,2, C

y
2,3 of sizes

2nR̂
y
2,1 , 2nR

x
2,1 , 2nR̂

y
2,2 , 2nR̂

y
2,3 are generated

independently according to the n-fold product of
the marginal distribution of Y2,1, X2,1, Y2,2, Y2,3,
respectively.

• Random binning: each codeword in Cy2,1 is randomly
assigned to one of 2nR

y
2,1 bins; similarly each codeword

in Cy2,2 and Cy2,3 is randomly assigned to one of 2nR
y
2,2

and 2nR
y
2,3 bins, respectively.

• Encoding: The encoder attempts to find
codewords yn2,1, x

n
2,1, y

n
2,2, y

n
2,3 in the codebooks

Cy2,1, C
x
2,1, C

y
2,2, C

y
2,3, respectively, such that they are

jointly typical with a typical source sequence xn. If this
can not be done, an encoding error is declared; otherwise
the codeword index of xn2,1 (denoted as ix2,1) and the
bin indices of yn2,1 (denoted as iy2,1) are concatenated
together as the first description information, and the
bin indices of yn2,2, y

n
2,3 (denoted as iy2,2 and iy2,3) are

used as the second and third description information,
respectively.

• Decoding: At decoder T{1,2}, the codeword xn2,1 is first
decoded using its index ix2,1, and then yn2,2 is decoded
by finding the unique codeword in the iy2,2-th bin of
Cy2,2 codebook that is jointly typical with xn2,1, and
finally yn2,1 is decoded by finding the unique codeword
in the iy2,1-th bin of Cy2,1 that is jointly typical with
the decoded (xn2,1, y

n
2,2). At decoder T{1,3}, the decoding

procedure is similar to the one used in decoder T{1,2}.
For decoder T{2,3}, it tries to find a unique codeword
in the iy2,2-th bin of Cy2,2 and one in the iy2,3-th bin of
Cy2,3 that are jointly typical with each other. In the above
decoding steps, if more than one codeword (or one pair
of codewords) is found, then a decoding error is declared.
The decoders eventually estimate the source sequence
using the available decoded codeword sequences, if no
error occurs.

In the codebook generation step, the sizes of the codebooks
should be sufficiently large, such that jointly typical codewords
can be found for any typical source sequence with high
probability. During decoding, to ensure the decoders can
decode with high probability, the sizes of bins can not be

too large. Though the exact conditions can be derived in a
rigorous manner, here we only list one possible choice of such
rates; the formal proof is delayed to the next section when a
more general setting is considered in order to avoid repetition.
The following rates are valid to guarantee reliable encoding
(ignoring the small quantities δ’s)

R̂x2,1 = Rx2,1 = I(X;X2,1), (30)

R̂y2,1 = I(X;Y2,1|X2,1) + I(X2,1;Y2,1), (31)

R̂y2,2 = R̂y2,3 = I(X;Y2,2) = I(X;Y2,3). (32)

Using the same converting technique of Wyner-Ziv decoding
as in the CEO problem, it is easily checked that the following
rates suffice for reliable decoding

Ry2,1 = I(X;Y2,1|X2,1) + I(X2,1;Y2,1)

− I(Y2,1;X2,1Y2,2), (33)

Ry2,2 = Ry2,3 =
1

2
I(Y2,1, Y2,2;X). (34)

Take K = 3 and k = 2 in (9), and compare it with (34), it
is clear that for the second and third descriptions, the rates
remain the same as the original SCEC-based scheme when no
splitting is used.

Next we check the rate for the first description is also the
same as when splitting is not used.

Rx2,1 +Ry2,1 = I(X;X2,1) + I(X;Y2,1|X2,1) + I(X2,1;Y2,1)

− I(Y2,1;X2,1Y2,2)

(a)
= I(X;Y2,1) + I(X2,1;Y2,1)− I(Y2,1;X2,1Y2,2)

(b)
= I(X;Y2,1)− I(Y2,1X2,1;Y2,2) + I(X2,1;Y2,2)

(c)
= I(X;Y2,1)− I(Y2,1;Y2,2) + I(X2,1;Y2,2), (35)

where (a) and (c) are due to the Markov string (X,Y2,2) ↔
Y2,1 ↔ X2,1, and (b) is by applying the chain rule twice.
Recall the condition given in (14) when the Berger-Tung
scheme is converted to the successive decoding scheme using
quantization splitting, and take W1 = Y2,1, W ′1 = X2,1 and
W2 = Y2,2, the condition (14) is thus equivalent to

1

2
I(Y2,1;Y2,2) = I(X2,1;Y2,2). (36)

With this condition satisfied, it follows that

Rx2,1 +Ry2,1 = I(X;Y2,1)− 1

2
I(Y2,1;Y2,2)

(d)
=

1

2
H(Y2,1, Y2,2)−H(N1)

=
1

2
I(Y2,1, Y2,2;X), (37)

where (d) is by the definition of random variables in (11).
Thus indeed this new scheme based on quantization splitting
preserves the rates of the original scheme. It is also seen
that when any two descriptions (or all three descriptions) are
available, the distortions are also preserved, i.e., it satisfies the
no two description excess rate requirement. However observe
that if only the first description is available, the codeword
based on X2,1 can be decoded, which can be used to estimate
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the source.
To quantify the distortion with only the first description, the

variance of N ′2,1 needs to be determined. From (36), and the
choice of variances of N2,1 and N2,2 being 2(24R− 1)−1, we
derive that

σ2
N ′ =

2

22R − 1
− 2

24R − 1
. (38)

Thus the linear minimum mean squared error of estimating
X using X2,1 = X + N2,1 + N ′2,1 can be computed to be
2(22R + 1)−1. Summarizing the above derivation, it is clear
now that the following asymmetric distortions are achievable
using rate R per description

D1,{1} = 2(22R + 1)−1, D1,{2} = D1,{3} = 1,

D2 = 2−4R, D3 = 2·2−4R

3−2−4R . (39)

This implies the following symmetric R-D quadruple can be
achieved by a time-sharing argument

(R,D1, D2, D3) =

(
R,

2 · 22R + 4

3(22R + 1)
, 2−4R,

2 · 2−4R

3− 2−4R

)
.

(40)

We will refer to this R-D quadruple as the splitting point, and
the following theorem is now straightforward.

Theorem 4: For the unit variance Gaussian source, the
splitting point R-D quadruple (R, 2·22R+4

3(22R+1)
, 2−4R, 2·2−4R

3−2−4R ) is

achievable, and it is outside R(3)
PPR.

Note that the splitting point R-D quadruple does not domi-
nate the network coding point R-D quadruple in a component-
wise manner, because the individual description distortion D1

in the splitting scheme is not as good as in the network
coding point, though the three description distortion D3 in
the splitting scheme is indeed better.

In the special case considered above, the quantization noises
N2,i’s are mutually independent, thus the quantization splitting
technique used in the Gaussian CEO problem can be used
without much change. However, since the MD problem is
a centralized coding problem, the quantization noise can in
fact be correlated in the PPR multilayer scheme, unlike in
the distributed CEO problem where quantization noises are
always independent in the Berger-Tung scheme; see [24] for
related discussions. In fact, the depiction in Fig. 4 is no longer
accurate in the general case, since the overall MD encoder can
not be divided into three separate encoders, and the encoding
operation has to be better coordinated. With such correlated
quantization noises, the technique used in the Gaussian CEO
problem can not be directly applied any more, because the
choice of splitting random variables is now more constrained.
In the next section, we show that even when the quantization
noises are correlated, the quantization splitting technique can
still be used. In fact, though we made the analogy to the
Gaussian CEO problem to facilitate understanding here, the
coding scheme outlined for Theorem 4 already does not rely
on whether the encoders can operate in a separate manner.

Another notable difference between the quantization split-
ting used in the Gaussian CEO problem in [12] and that used
here is the decoding order. In the Gaussian CEO problem,

since there is only one central decoder, we can employ an
explicit sequential decoding order for quantization splitting.
However, since there exist multiple decoders in the MD
problem, it is difficult to find a completely sequential decod-
ing order which are good for all the decoders, particularly
when the number of descriptions is large. To circumvent this
difficulty, we can alternatively view the coding scheme given
for the above example as one designed for a four-description
problem. Using this alternative interpretation, the conditions
for the codebooks can be represented in a simpler manner,
and we will explore this alternative route in the next section.
This point of view is reminiscent to rate splitting in the K-
user multiple access channel, where the rate splitting scheme
can be understood as a scheme for more than K users, but
some of the users are paired together.

Finally, we note that only one random variable is being
split in the (3, 2) SCEC case, and in general we shall split
k − 1 random variables for any (K, k) SCEC in the next
section. It is indeed possible to split more random variables,
however it appears impossible to do so without jeopardizing
the original (K, k) SCEC performance, and thus we shall focus
on quantization splitting that only splits k−1 random variables.

D. Outline on Generalizing the Two Approaches

By considering the no two description excess rate case,
we have provided two distinct approaches to boost the per-
formance of symmetric MD coding, which yield R-D points
outside R(3)

PPR. In the remainder of the paper, these two
approaches are developed further in order to provide general
coding schemes. We proceed in two steps: first single layer
schemes similar to a single layer SCEC are considered, and
then multilayer schemes are built.

IV. SINGLE LAYER SCHEMES FOR K DESCRIPTIONS

In this section, we generalize the approaches given in the
previous section to the K-description case, however only for
single layer systems. Such single layer systems are important
step stones toward general schemes, as in the PPR multilayer
scheme for which the single layer SCEC is essential.

It is not immediately clear what the requirements are for a
system to qualify as “single layer”, since even for a single layer
SCEC, more than one level of distortion can be considered
and they can be traded off among each other. Indeed such
a classification is rather informal, and can not be defined
in a precise manner. Nevertheless we provide a heuristic
perspective which may convince the readers that the schemes
given in this section are indeed “single layer”. Note that a
single (K, k) SCEC can be understood as a code for which
any k descriptions can be used to achieve a certain distortion
(even being jointly R-D optimal), and moreover, more than k
descriptions (say k+ 1 descriptions) can reduce the distortion
even more. With an SCEC, fewer than k descriptions are
useless, but the approaches given in the previous section have
the property that fewer than k descriptions (more precisely,
k = 2 in the previous section) can still be useful. Thus we
focus on the schemes with which any k descriptions can be
used to satisfy a certain distortion constraint Dk, and at the
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same time we are also interested in the distortions achieved
with k − 1 and k + 1 descriptions, however to a somewhat
lesser degree; the R-D tuple is thus conveniently denoted as
(R,Dk−1, Dk, Dk+1) with other distortions ignored. With the
single layer codes ready, the construction of general multilayer
schemes become rather natural in the next section.

Following this heuristic perspective, we will now focus
on the combination of channel codes with SCEC for the
first approach, and the generalization of quantization splitting
scheme under more relaxed quantization noise dependence
structure for the second approach. One particularly interesting
question is whether such codes can achieve the extremal R-D
tuples where any k descriptions are jointly optimal, at least for
the Gaussian source, and we will also treat this aspect in some
detail; similar to the condition of no two description excess
rate, we refer to this condition as no k description excess rate.
In the remainder of the paper, familiarity with the properties
of the typical sequences is assumed, and familiarity with [2],
[6], [7] is particularly helpful.

A. Single Layer Scheme Based on Channel Codes and SCEC

Let us first recall the no two description excess rate case
for K = 3, i.e., D2 = 2−4R for the Gaussian source, and
consider tradeoff between the distortions D1 and D3. From
the result given in the previous section, we know that the
network coding point is outside R(3)

PPR. Thus a direct time-
sharing between the network coding point and the binning
point can achieve certain (D1, D3) tradeoff, under the no two
description excess rate requirement. However, by strategically
combining the coding schemes, instead of time-sharing them,
we can construct a scheme with an even better performance.

Consider the K-description case: the main idea is to encode
the source in two sub-layers. Roughly speaking, the first sub-
layer uses a (K, k) systematic maximum distance separable
(MDS) code on certain source coding component, and the
second sub-layer then encodes the quantization noise from
the first layer using a (K, k) SCEC. Most of the components
being standard with existing technique [6], the only part that is
not clear yet is on what source coding component the (K, k)
MDS code should be used. Recall that our goal here is similar
to that in the three description case, but instead of requiring
some individual descriptions to be useful, we require some
combination of (k − 1) descriptions to be useful. Since the
source coding component has k portions before the (K, k)
MDS coding step, it is natural to use a (k, k−1) SCEC for the
source coding component in this sub-layer. Now the scheme
is rather straightforward, at least for the Gaussian case (see
Fig. 5):
• We first construct a (k, k − 1) SCEC on which a (K, k)

systematic MDS channel code is applied to yield the first
sub-layer;

• Then the quantization noise is further encoded using a
(K, k) SCEC as the second sub-layer.

Next we provide an outline of the general scheme through
random coding, which helps to avoid the explicit discussion
of quantization noise. Though considering quantization noise
in the Gaussian case is meaningful, it can be confusing for

general discrete memoryless sources. We summarize the result
in the following theorem, after a necessary definition.

Definition 4: A joint distribution p(ȳk,IK , x̄k,Ik |x) is
called mixed symmetric if for any permutations π(·) :
IK → IK and πk(·) : Ik → Ik the joint distribution
p(ȳk,π(IK), x̄k,πk(Ik)|x) is the same as p(ȳk,IK , x̄k,Ik |x).

Let Do be the distortion achieved using a conventional R-
D code at R = 0, i.e., Do = minxo:xo∈X Ed(X,xo). We
have Theorem 5 given below. Note that though Theorem 5
is given only for discrete sources, the result holds for the
Gaussian source by replacing entropies with differential en-
tropies, replacing the discrete alphabets by reals and replacing
the bounded distortion measure by the squared error distortion
measure; this remark also holds for the theorems presented
in later sections though they are also given only for discrete
sources.

Theorem 5: For any 2 ≤ k ≤ K − 1, any discrete
memoryless source X , any mixed symmetric distribution
p(ȳk,IK , x̄k,Ik |x) over finite alphabets YKk ×X kk ,

p(x, ȳk,IK , x̄k,Ik) = p(ȳk,IK , x̄k,Ik |x)p(x), (41)

and a set of decoding functions

gA : X k−1k → X , |A| = k − 1, (42)

gB : Ykk ×X kk → X , |B| = k, (43)

gC : Yk+1
k ×X kk → X , |C| = k + 1, (44)

such that

λ∗k−1
∑

A:|A|=k−1,A⊂Ik

Ed(X, gA(X̄k,A))

+ (1− kλ∗k−1)Do ≤ Dk−1, (45)
Ed(X, gB(X̄k,Ik , Ȳk,B)) ≤ Dk, |B| = k, (46)
Ed(X, gC(X̄k,Ik , Ȳk,C)) ≤ Dk+1, |C| = k + 1, (47)

where λ∗k−1 =
(
K
k−1
)−1

, the symmetric R-D tuple
(R,Dk−1, Dk, Dk+1) is achievable where

R ≥ 1

k − 1
H(X̄k,Ik−1

)− 1

k
H(X̄k,Ik |X)

+
1

k
H(Ȳk,Ik |X̄k,Ik)− 1

K
H(Ȳk,IK |X, X̄k,Ik). (48)

Remark: We use A, B and C to label the decoding functions
with k−1 descriptions, k descriptions and k+ 1 descriptions,
respectively. In Theorem 5, there is in fact no need to distin-
guish the decoding functions gB(·) (as well as gC(·)) by their
subscript B (as well as C) among those sets with the same
cardinality, i.e., they can be written as gIk(·) and gIk+1

(·),
respectively in (43) and (44); this is because the symmetric
distribution requirement automatically ensures that a single
decoding function can be used. However we keep the current
form in this simple single layer setting for better clarity.

Proof: We provide an outline for the random coding
scheme with some details omitted in order to emphasize the
structure of the code, since the proof techniques to bound the
error probability are similar to those used in [2], [5]–[7]. Fix
a joint distribution p(x, ȳk,IK , x̄k,Ik), the coding scheme is as
follows:
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Fig. 5. The single layer coding structure based on systematic MDS channel code and SCEC. Each rectangle stands for a description.

Codebook generation: For each i ∈ Ik, a codebook of size
2nR̂

x
k is generated using the marginal distribution of Xk,i,

denoted as Cxk,i; similarly, for each i ∈ IK , a codebook of
size 2nR̂

y
k is generated using the marginal distribution of Yk,i,

denoted as Cyk,i.
Random binning: For i ∈ Ik, each codeword in Cxk,i is

randomly assigned into one of 2nR
x
k bins; similarly for i ∈ IK ,

each codeword in Cyk,i is randomly assigned into one of 2nR
y
k

bins.
Encoding: For a typical source sequence xn, the encoder

first finds a codeword in each of the codebooks Cxk,i, i ∈ Ik,
such that they are jointly typical with xn; let us denote their
bin indices as Sxk,i, and assume these indices are written in a
sufficiently large alphabet. The index Sxk,i is written in the i-th
description, i ∈ Ik, as the x sub-layer. A systematic (K, k)
MDS code is then applied on Sxk,i, i ∈ Ik, and the parity
check portion is split into K − k parts as the x sub-layer of
the (k + 1)-th description to the K-th description.

Next the encoder finds a codeword in each of the codebooks
Cyk,i, i ∈ IK , such that they are jointly typical with the source
codeword xn and the previously found codewords in x sub-
layer; the bin indices of these codewords are written in the y
sub-layer of the i-th description.

The Cxk,i codebooks should be sufficiently large such that
for any typical source sequence xn, we can find jointly typical
codewords; using the proof technique in [2], [5], [6] (and
ignoring the small quantities δ’s as afore-mentioned), we only
need

R̂xk ≥ H(Xk,1)− 1

k
H(X̄k,Ik |X). (49)

Similarly the Cyk,i codebooks should be sufficiently large such
that for any typical source sequence xn and the codewords
previously found in x sub-layer, we can find jointly typical
codewords; for this we only need

R̂yk ≥ H(Yk,1)− 1

K
H(Ȳk,IK |X, X̄k,Ik). (50)

Other events incur an error, and a special symbol can be sent
to signal it.

Decoding: When any k − 1 descriptions in the set A are
received, such thatA ⊂ Ik, the x sub-layer bin indices in these
descriptions are available, and the decoder finds in each of
these bins within the respective codebooks a unique codeword
such that they are jointly typical; if there is more than one
choice, an error is declared. Then the decoding function gA(·)
is invoked on these codewords. For any other combination
of (k − 1) descriptions, the source sequence is reconstructed
using a default letter. When any k descriptions in the set B
are received, i.e., |B| = k, the x sub-layer is decoded by

decoding the (K, k) MDS channel code to recover the bin
indices, then finding in each of these bins a unique codeword
such that they are jointly typical; if there is more than one
choice, an error is declared. Next the y sub-layer is decoded
by finding a unique codeword in each of y sub-layer bins
specified, such that they are jointly typical, also jointly typical
with the decoded x sub-layer codewords previously found. The
decoding function gB(·) is then used. The decoding procedure
for k+ 1 descriptions is similar to the case of k descriptions.
Clearly, the size of the bins can not be too large, and we need
to ensure

(k − 1)(R̂xk −Rxk) ≤ (k − 1)H(Xk,1)−H(X̄k,Ik−1
), (51)

k(R̂yk −R
y
k) ≤ kH(Yk,1)−H(Ȳk,Ik |X̄k,Ik), (52)

for the x sub-layer and y sub-layer, respectively.
With (49)-(52), it is not difficult to see the rate given in (48)

is indeed achievable. We only need to verify that the distortion
expression given in (45) is achievable, but this is obvious by
observing that it is the result of time-sharing the distortions
induced by the two kinds of (k−1) description combinations.
The proof is thus complete.

Next let us return to the Gaussian source, and more specif-
ically consider the no k description excess rate case. For the
x sub-layer, we can use the result for the (k, k − 1) SCEC
under the no k description excess rate condition given in [6];
and for the y sub-layer, we only need to consider encoding
the quantization noise X − E(X|X̄k,Ik), and apply the result
for the (K, k) SCEC also under the no k description excess
rate in [6]. Let the rate used in the x sub-layer be Ra per
description, and the remaining rate R − Ra be used in the y
sub-layer, it is then straightforward to use (12) to derive that

Dk = 2−2kR, Dk+1 =
k · 2−2kR

k + 1− 2−2k(R−Ra)
. (53)

Using (13) and (45) for the first layer (k, k− 1) SCEC, we
can also derive that

Dk−1 =
k(
K
k−1
) (1− k − 1

k
(1− 2−2kRa)) + (1− k(

K
k−1
) )

= 1− k − 1(
K
k−1
) (1− 2−2kRa). (54)

Using (53) and (54), it is easy to check that in this scheme
Dk+1 is a convex function of Dk−1 for a fixed R, and thus
the performance of this scheme is better than a direct time-
sharing between the MDS channel code scheme and the SCEC
scheme; the extreme schemes for K = 3 in fact lead to the
network coding point (Ra = R) and the binning point (Ra =
0). In Fig. 6, we plot the tradeoff between D1 and D3 for
the no two description excess rate case using the combined
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Fig. 6. The solid line is the tradeoff between D1 and D3 using the combined
scheme of channel codes and SCEC, under the no two description excess rate
requirement for the unit variance Gaussian source with R = 1. The star
denotes the splitting point, and the dashed line forms a portion of the convex
hull of the distortion region achievable by the two methods.

scheme given above. It is seen that the tradeoff curve is convex,
implying the performance is better than a direct time-sharing.
The single point labeled with a star is the splitting point as
given in (39).

The distortion Dk−1 for using k − 1 descriptions can be
further improved. An interesting effect observed in [6] is that
though a (K, k) SCEC is designed to be only decodable when
at least k descriptions are available, for certain special cases
fewer than k descriptions are also decodable. For the no k
description excess rate considered above, this observation can
be used. In fact, it is clearly seen that for the R-D tuple in (13),
any number of descriptions is useful. Using a code achieving
the performance in (13) in the x sub-layer of the given scheme,
let us assume, for example, the first k − 2 descriptions are
received, but another description in the last K−k description
is also available which has only parity check portion, then
it is clear that a distortion reduction can still be achieved by
using the x sub-layer of the first k−2 descriptions. Taking this
effect into consideration, for the Gaussian source the distortion
Dk−1 can be further reduced to those given in (55) at the top
of next page, where

D∗k−1,Ij , 1− j

k
(1− 2−2kRa), (56)

and for convenience we define
(
m
n

)
, 0 if m < n and

(
m
0

)
,

1. However, note that such a phenomenon that fewer than
k−1 descriptions can be decodable is only a byproduct of the
special R-D point, but not a mechanism inherent in the given
coding scheme. Thus from here on, we will not consider this
aspect further. Nevertheless, it is worth noting that this implies
an increased difficulty in finding an optimal scheme, since
an extra tension appears to exist between the general coding
scheme and the scheme for some special R-D points.

Readers may wonder whether the quantization splitting
technique can also be combined together with the systematic
MDS channel codes and SCEC to yield an even better perfor-

mance. Indeed, from the plot for K = 3 shown in Fig. 6, it
is clear that even a simple time-sharing of the scheme given
above and the splitting point scheme given in the previous
section can provide further performance improvement. There
are in fact many ways to combine various techniques, however
we did not find a satisfactory combination which leads to a
natural multilayer scheme. Moreover, such combinations can
quickly become overly complicated. Thus in this work, we
instead only present the schemes with clear structures that
we believe are most natural, and forgo the task of finding a
complete general scheme with all the possible components.

B. Single Layer Scheme Based on Quantization Splitting

Now we consider a single layer system based on the
quantization splitting approach. From the no two description
excess rate case, we see that one key difficulty is to find
some appropriate splitting random variables. The space of
the splitting random variables is constrained, and only within
this space, the quantization splitting approach leads to mean-
ingful coding schemes. The following definition formalizes
these constraints; for convenience, we assume K ≥ 3 and
2 ≤ k ≤ K − 1, since the other cases are degenerate.

Definition 5: Let p(ȳk,IK |x) be a symmetric distribution.
The random variables X̄k,Ik−1

are admissible for sym-
metric splitting with respect to p(ȳk,IK |x), if they are
jointly distributed with X and Ȳk,IK such that Xk,i ↔
Yk,i ↔ (X, Ȳk,IK\{i}, X̄k,Ik−1\{i}) is a Markov string and
p(xk,i|yk,i) is the same for all i = 1, 2, ..., k− 1; furthermore
the following conditions are satisfied:

l

k − 1
H(X̄k,Ik−1

|X)−H(X̄k,Il |Ȳk,Il+m\Il , X)

≤ H(Ȳk,Im |X)− m

K
H(Ȳk,IK |X),

0 ≤ l ≤ k − 1, 0 ≤ l +m ≤ K, (57)

and
l

k − 1
I(Ȳk,Ik−1

; X̄k,Ik−1
)

≤ m

k
H(Ȳk,Ik)−H(Ȳk,Im |Ȳk,Ik\Im , X̄k,Il),

0 ≤ l ≤ m < k, (58)

where l,m are non-negative integers, and

1

k − 1
I(X̄k,Ik−1

;X) ≤ 1

k
H(Ȳk,Ik)− 1

K
H(Ȳk,IK |X). (59)

It is not immediately clear whether there indeed exist non-
trivial random variables that are admissible for symmetric
splitting. After the proof the following theorem is given,
we will show that the space of random variables that are
admissible for symmetric splitting is generally not trivial or
empty, which is important because otherwise the theorem
would be equivalent to the known result in [6].

Theorem 6: Let p(ȳk,IK |x) be a symmetric distribution,
and let X̄k,Ik−1

be random variables admissible for symmetric
splitting with respect to p(ȳk,IK |x). If there exist decoding
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D∗k−1 =
1(
K
k−1
)
 k−1∑
j=max(1,2k−K−1)

(
k

j

)(
K − k
k − j − 1

)
D∗k−1,Ij +

(
K − k
k − 1

)
Do

 , (55)

functions

gIk−1
: X k−1k → X ,

gB : Ykk → X , |B| = k,

gC : Yk+1
k → X , |C| = k + 1,

such that

λ∗k−1Ed(X, gIk−1
(X̄k,Ik−1

)) + (1− λ∗k−1)Do ≤ Dk−1,
(60)

Ed(X, gB(Ȳk,B)) ≤ Dk, |B| = k, (61)
Ed(X, gC(Ȳk,C)) ≤ Dk+1, |C| = k + 1, (62)

where again λ∗k−1 =
(
K
k−1
)−1

, the symmetric R-D tuple
(R,Dk−1, Dk, Dk+1) is achievable where

R ≥ 1

k
H(Ȳk,Ik)− 1

K
H(Ȳk,IK |X). (63)

Remark: By letting the random variables X̄k,Ik−1
be con-

stants, we almost recover the main theorem (Theorem 1) in
[6], with the only difference that the distortions Dk+2, ..., DK

are chosen to be ignored in Theorem 6. But as long as the
splitting random variables X̄k,Ik−1

are not trivial, Theorem 6
strictly improves upon the performance of a (K, k) SCEC.

In the proof of this theorem, we give an outline for the
random coding scheme, but again do not bound the error prob-
ability rigorously. As afore-mentioned, this coding scheme can
be understood as a scheme for K + k − 1 descriptions, but
some of the descriptions are paired together; see Fig. 7 for an
illustration. Our focus is on reducing the rather involved con-
ditions into more manageable ones. We will initially describe
the coding scheme with a more relaxed symmetric requirement
and then specialize it to the result given in the theorem; the
scheme itself is in fact more general as we will discuss after
the proof.

Proof: First fix the joint distribution of
(X, Ȳk,IK , X̄k,Ik−1

). For each random variable Xk,i,
i ∈ Ik−1, a codebook of size 2nR̂

x
k,i is generated using the

marginal distribution of Xk,i; similarly, for each random
variable Yk,i, i ∈ IK , a codebook of size 2nR̂

y
k,i is generated

using the marginal distribution of Yk,i. Denote these
codebooks as Cxk,i and Cyk,i, respectively. For each single
Cxk,i codebook, i ∈ Ik−1, each of its codewords is uniformly
at random assigned into 2nR

x
k,i bins; similarly for each single

Cyk,i codebook, i ∈ IK , each of its codewords is uniformly
at random assigned into 2nR

y
k,i bins.

During encoding, the encoder finds in each of these code-
books a codeword such that they are jointly typical with the
(typical) source sequence as well as with each other. For the i-
th description, i ∈ Ik−1, the bin index of the found codeword
in the codebook Cxk,i, and the bin index of the found codeword
in the codebook Cyk,i are concatenated as the information for

this description; for the j-th description, j ∈ IK\Ik−1, the
bin index of the found codeword in codebook Cyk,j is used as
the information for this description.

When k − 1 descriptions are received, if they are those in
Ik−1, the decoder finds a unique tuple of codewords, one in
each bin specified by the bin index within the codebook Cxk,i,
k ∈ Ik−1, such that they are jointly typical; if there is more
than one such tuple, an error is declared. For other k − 1
description combinations, the decoder uses the default letter
as its reconstruction. When any k descriptions are received,
which are those in the set S ∪ T , where S ⊆ Ik−1 and
T ⊆ IK\Ik−1, the decoder tries to find a unique tuple of
codewords, one in each bin specified by the bin indices within
Cxk,i and Cyk,i, i ∈ S, and one in each bin specified by the bin
indices within Cyk,j , j ∈ T , such that they are jointly typical;
if there is more than one such tuple, an error is declared. When
any k+1 descriptions are received, two k-description decoders
can be used to find the intended codewords. Given the above
outline, it is clear that the rates for the descriptions are given
by

Rk,i = Rxk,i +Ryk,i, i ∈ Ik−1, (64)

Rk,i = Ryk,i, i ∈ IK\Ik−1. (65)

In this scheme, the codebook sizes should be sufficiently
large, such that jointly typical codewords can be found with
high probability. The sizes of the bins, on the other hand,
should be sufficiently small, such that the joint typicality
decoders succeed with high probability. Using the analy-
sis given in [6], and taking the above coding scheme as
one for K + k − 1 descriptions, where some of the de-
scriptions are paired together, we have the following con-
straints on (R̂xk,1, ..., R̂

x
k,k−1, Ŷ

y
k,1, ..., R̂

y
k,K) ∈ RK+k−1

+ and
(Rxk,1, ..., R

x
k,k−1, R

y
k,1, ..., R

y
k,K) ∈ RK+k−1

+ (ignoring the
small quantities δ’s):

1) Codebook constraints:∑
i∈A

R̂yk,i +
∑
i∈B

R̂xk,i

≥
∑
i∈A

H(Yk,i) +
∑
i∈B

H(Xk,i)−H(Ȳk,A, X̄k,B|X),

A ⊆ IK , B ⊆ Ik−1. (66)

2) Binning constraints for k description decoders: for any
A such that |A| = k, let B = A ∩ Ik−1, then

0 ≤
∑
i∈A′

(R̂yk,i −R
y
k,i) +

∑
i∈B′

(R̂xk,i −Rxk,i)

≤
∑
i∈A′

H(Yk,i) +
∑
i∈B′

H(Xk,i)

−H(Ȳk,A′ , X̄k,B′ |Ȳk,A\A′ , X̄k,B\B′),

any A′ ⊆ A,B′ ⊆ B. (67)
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Fig. 7. The coding structure for the single layer scheme based on quantization splitting.

3) Binning constraints for the k − 1 description decoder:

0 ≤
∑
i∈B

(R̂xk,i −Rxk,i)

≤
∑
i∈B

H(Xk,i)−H(X̄k,B|X̄k,Ik−1\B),

any B ⊆ Ik−1. (68)

Until this point, we have not introduced much symmetry
into the coding scheme yet, and the constraints given above
are completely general without such a requirement. Next, we
choose the following rates with certain symmetry built in. The
codebook rates are set as

R̂xk,i = R̂xk , H(Xk,1)− 1

k − 1
H(X̄k,Ik−1

|X),

i ∈ Ik−1, (69)

R̂yk,i = R̂y∗k , H(Yk,1)− 1

K
H(Ȳk,IK |X)

+
1

k − 1
I(X̄k,Ik−1

; Ȳk,Ik−1
|X), i ∈ Ik−1, (70)

R̂yk,i = R̂yk , H(Yk,1)− 1

K
H(Ȳk,IK |X),

i ∈ IK\Ik−1, (71)

and the binning rates are set as

Rxk,i = Rxk ,
1

k − 1
I(X̄k,Ik−1

;X), i ∈ Ik−1 (72)

Ryk,i = Ry∗k ,
1

k
H(Ȳk,Ik)− 1

K
H(Ȳk,IK |X)

− 1

k − 1
I(X̄k,Ik−1

;X), i ∈ Ik−1, (73)

Ryk,i = Ryk ,
1

k
H(Ȳk,Ik)− 1

K
H(Ȳk,IK |X),

i ∈ IK\Ik−1. (74)

Our plan is to prove that when X̄k,Ik−1
are admissible for

symmetric splitting, the rates given in (69)-(74) are indeed
non-negative rates which satisfy the conditions (66)-(68), and

Rk,i =
1

k
H(Ȳk,Ik)− 1

K
H(Ȳk,IK |X). (75)

Once this is proved, Theorem 6 is established.
To see that the rates (69)-(74) are indeed non-negative, we

only need to apply Han’s inequalities [25] and the condition
(59); it is also clear (75) is satisfied by (64) and (65).
By using the exact same proof as in [6], it can be shown
straightforwardly that (68) is indeed satisfied. Thus we only
need to focus on (66) and (67) from here on.

We first rewrite the condition (66) by substituting the given
choice of R̂xk,i and R̂yk,i. The conditions in (66) are then
equivalent to that for any Sx, Sy and T such that Sx ⊆ Ik−1,

Sy ⊆ Ik−1 and T ⊆ IK\Ik−1, the following condition holds

|Sy|+ |T |
K

H(Ȳk,IK |X) +
|Sy|
k − 1

H(X̄k,Ik−1
|Ȳk,Ik−1

)

− |Sy| − |Sx|
k − 1

H(X̄k,Ik−1
|X)

≤ H(Ȳk,Sy , Ȳk,T |X) +H(X̄k,Sx |Ȳk,Sy , Ȳk,T , X). (76)

Next we consider the two cases |Sx| < |Sy| and |Sx| ≥ |Sy|
separately. For the first case, we write

H(X̄k,Sx |Ȳk,Sy , Ȳk,T , X)
(a)

≥ H(X̄k,Sx |Ȳk,Sy∪Sx , Ȳk,T , X)

(b)
= H(X̄k,Sx |Ȳk,Sx)

(c)

≥ |Sx|H(Xk,1|Yk,1), (77)

where (a) is because conditioning reduces entropy, and (b) and
(c) are by the symmetry and the Markov string Xk,i ↔ Yk,i ↔
(X, Ȳk,IK\{i}, X̄k,Ik−1\{i}); by the same Markov string, we
have also

|Sy|
k − 1

H(X̄k,Ik−1
|Ȳk,Ik−1

) = |Sy|H(Xk,1|Yk,1). (78)

Thus if we can prove

|Sy|+ |T |
K

H(Ȳk,IK |X) + |Sy|H(Xk,1|Yk,1)

− |Sy| − |Sx|
k − 1

H(X̄k,Ik−1
|X)

≤ H(Ȳk,Sy , X̄k,T |X) + |Sx|H(Xk,1|Yk,1), (79)

then (76) clearly holds. But notice that

(|Sx| − |Sy|)H(Xk,1|Yk,1) +
|Sy| − |Sx|
k − 1

H(X̄k,Ik−1
|X)

=
|Sx| − |Sy|
k − 1

H(X̄k,Ik−1
|Ȳk,Ik−1

, X)

+
|Sy| − |Sx|
k − 1

H(X̄k,Ik−1
|X)

=
|Sy| − |Sx|
k − 1

I(X̄k,Ik−1
; Ȳk,Ik−1

|X)

(d)

≥ |Sy|+ |T |
K

H(Ȳk,IK |X)−H(Ȳk,Sy , X̄k,T |X), (80)

where (d) is true because the right hand side is non-positive
due to Han’s inequality and the symmetry in the distribution,
but the left hand side is non-negative when |Sx| < |Sy|. Since
(80) is equivalent to (79), it is clear that for the case |Sx| <
|Sy|, (66) indeed holds with the chosen rates.

Next consider the case |Sx| ≥ |Sy|, and rewrite the right
hand side of (76) using the chain rule and the Markov string
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Xk,i ↔ Yk,i ↔ (X, Ȳk,IK\{i}, X̄k,Ik−1\{i}) as

H(Ȳk,Sy , Ȳk,T |X) +H(X̄k,Sx |Ȳk,Sy , Ȳk,T , X)

= H(Ȳk,Sy , Ȳk,T |X) +H(X̄k,Sx\Sy |Ȳk,Sy , Ȳk,T , X)

+H(X̄k,Sx∩Sy |Ȳk,Sy , Ȳk,T , X̄k,Sx\Sy , X)

= H(Ȳk,Sy , Ȳk,T |X) +H(X̄k,Sx\Sy |Ȳk,Sy , Ȳk,T , X)

+ |Sx ∩ Sy|H(X̄k,1|Ȳk,1). (81)

Note that (66) needs to hold for any Sx ⊆ Ik−1, and the left
hand side of (76) depends only on |Sx| for any given Sy and
T . This implies that for fixed Sy , T and |Sx|, we can limit
our consideration to the choice of Sx that minimizes the right
hand side of (76), for which we can write

|Sx ∩ Sy|H(X̄k,1|Ȳk,1) +H(X̄k,Sx\Sy |Ȳk,Sy , Ȳk,T , X)

≥ |Sy|H(X̄k,1|Ȳk,1)

+H(X̄k,I|Sx|−|Sy| |Ȳk,I|Sx|+|T |\I|Sx|−|Sy| , X), (82)

because the Markov string Xk,i ↔ Yk,i ↔
(X, Ȳk,IK\{i}, X̄k,Ik−1\{i}) implies

H(X̄k,1|Ȳk,1) ≤ H(X̄k,1|X̄k,Ik−1\{1}, Ȳk,IK\{1}, X). (83)

In other words, the dominant inequality in the set of inequali-
ties of (76) is the case when Sy ⊆ Sx, and for this reason, as
long as (76) holds for Sy ⊆ Sx, the condition (66) is satisfied
with the given rates. With this observation and (82), it is clear
that we only need the following inequality to hold,

|Sy|+ |T |
K

H(Ȳk,IK |X) +
|Sx| − |Sy|
k − 1

H(X̄k,Ik−1
|X)

≤ H(Ȳk,Sy , Ȳk,T |X)

+H(X̄k,I|Sx|−|Sy| |Ȳk,I|Sx|+|T |\I|Sx|−|Sy| , X). (84)

Now define l , |Sx| − |Sy| and m , |Sy|+ |T | = |Sy ∪ T |,
and notice that Sy ∪ T ⊆ IK and k − 1 ≥ |Sx| − |Sy| ≥ 0,
(84) is exactly the admissible condition given in (57).

Next we turn to the condition in (67). First note that R̂yk ≥
Ryk, R̂y∗k ≥ Ry∗k and R̂xk ≥ Rxk , which imply that the first
inequality in (67) holds for the chosen rates. Let S ⊆ Ik−1
and T ⊆ IK\Ik−1, such that |S ∪ T | = k. After substituting
the chosen rates, the condition (67) is equivalent to that for any
such S and T , and their subsets Sx,Sy, T ′ such that Sx ⊆ S,
Sy ⊆ S and T ′ ⊆ T

|Sx|
k − 1

H(X̄k,Ik−1
) +
|Sy|+ |T ′|

k
H(Ȳk,Ik)

− |Sy|
k − 1

I(X̄k,Ik−1
; Ȳk,Ik−1

)

≥ H(X̄k,Sx , Ȳk,Sy , Ȳk,T ′ |X̄k,S\Sx , Ȳk,S\Sy , Ȳk,T \T ′)

= H(X̄k,Sx |Ȳk,S , Ȳk,T , X̄k,S\Sx)

+H(Ȳk,Sy , Ȳk,T ′ |X̄k,S\Sx , Ȳk,S\Sy , Ȳk,T \T ′)

= |Sx|H(Xk,1|Yk,1)

+H(Ȳk,Sy , Ȳk,T ′ |X̄k,S\Sx , Ȳk,S\Sy , Ȳk,T \T ′), (85)

where the last two equalities are due to the chain rule and the
Markov string Xk,i ↔ Yk,i ↔ (X, Ȳk,IK\{i}, X̄k,Ik−1\{i}).

We thus arrive at the equivalent condition

|Sx| − |Sy|
k − 1

H(X̄k,Ik−1
) + (|Sy| − |Sx|)H(Xk,1|Yk,1)

≥ H(Ȳk,Sy , Ȳk,T ′ |X̄k,S\Sx , Ȳk,S\Sy , Ȳk,T \T ′)

− |Sy|+ |T
′|

k
H(Ȳk,Ik). (86)

However, notice that

|Sx| − |Sy|
k − 1

H(X̄k,Ik−1
) + (|Sy| − |Sx|)H(Xk,1|Yk,1)

=
|Sx| − |Sy|
k − 1

I(X̄k,Ik−1
; Ȳk,Ik−1

), (87)

and

H(Ȳk,Sy , Ȳk,T ′ |X̄k,S\Sx , Ȳk,S\Sy , Ȳk,T \T ′)

− |Sy|+ |T
′|

k
H(Ȳk,Ik)

(e)

≤ H(Ȳk,Sy , Ȳk,T ′ |Ȳk,S\Sy , Ȳk,T \T ′)

− |Sy|+ |T
′|

k
H(Ȳk,Ik)

(f)

≤ 0, (88)

where (e) is because conditioning reduces entropy and (f ) is
due to Han’s inequality. Thus (86) is satisfied when |Sx| >
|Sy|, and we only need to consider the case |Sx| ≤ |Sy| in the
sequel. For this case notice that for any fixed |Sx|, |Sy|, |T ′|

H(Ȳk,Sy , Ȳk,T ′ |X̄k,S\Sx , Ȳk,S\Sy , Ȳk,T \T ′)

= H(Ȳk,Sy , Ȳk,T ′ |X̄k,(S\Sx)∩Sy , Ȳk,S\Sy , Ȳk,T \T ′)

≤ H(Ȳk,I|Sy|+|T ′| |X̄k,I|Sy|−|Sx| , Ȳk,Ik\I|Sy|+|T ′|), (89)

where the inequality is by observing that the left hand side of
(89) is maximized when the set (S\Sx)∩Sy is minimized, i.e.,
when Sx ⊆ Sy (noting also the symmetry in the distribution).
By defining l , |Sy| − |Sx|, and m , |Sy| + |T ′|, it is seen
that the most stringent conditions in (85) are exactly those
defined in the admissible condition of (58). To exclude the
case m = k, observe that under this condition (89) is trivially
true. The proof is thus complete.

Now we show the important fact that the space of random
variables admissible for symmetric splitting is generally not
trivial or empty, by investigating the conditions (57), (58) and
(59) one by one. First observe that the left hand side of (57)
satisfies

l

k − 1
H(X̄k,Ik−1

|X)−H(X̄k,Il |Ȳk,Il+m\Il , X)

≤ l

k − 1
H(X̄k,Ik−1

|X)−H(X̄k,Il |Ȳk,Il+m
, X)

(a)

≤ l

k − 1
H(X̄k,Ik−1

|X)− l

k − 1
H(X̄k,Ik−1

|Ȳk,Ik−1
, X)

=
l

k − 1
I(X̄k,Ik−1

; Ȳk,Ik−1
|X)

≤ l

k − 1
I(X̄k,Ik−1

; Ȳk,Ik−1
, X)

(b)
=

l

k − 1
I(X̄k,Ik−1

; Ȳk,Ik−1
), (90)
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where both (a) and (b) are by the Markov string Xk,i ↔
Yk,i ↔ (X, Ȳk,IK\{i}, X̄k,Ik−1\{i}). For the right hand side
of (57), we have

H(Ȳk,Im |X)− m

K
H(Ȳk,IK |X)

= m

[
1

m
H(Ȳk,Im |X)− 1

K
H(Ȳk,IK |X)

]
(c)

≥ m

[
1

K − 1
H(Ȳk,IK−1

|X)− 1

K
H(Ȳk,IK |X)

]
(d)

≥ 0,

(91)

where both (c) and (d) are by Han’s inequality; note that for
the case that m = K, (57) is true trivially, and thus it can be
ignored. The bracket in (91) can be zero, however, following
the proof of Han’s inequality [25] (p. 491), it is easily verified
that this only occurs when Yk,i’s are mutually independent
conditioned on X . Thus (91) holds with strict inequality unless
m = 0 or Yk,i’s are mutually independent conditioned on X .
It is clear that if (91) holds with strict inequality, by making
I(X̄k,Ik−1

; Ȳk,Ik−1
) sufficiently small but positive, (57) can

be made true. Moreover, when m = 0, the left hand side of
(57) is clearly non-positive by Han’s inequality; when Yk,i’s
are independent conditioned on X , the left hand side of (57)
is now in fact zero. Thus for these two special cases, (57) is
satisfied without requiring I(X̄k,Ik−1

; Ȳk,Ik−1
) to be small.

Next notice that the right hand side of (58) satisfies
m

k
H(Ȳk,Ik)−H(Ȳk,Im |Ȳk,Ik\Im , X̄k,Il)

≥ m

k
H(Ȳk,Ik)−H(Ȳk,Im |Ȳk,Ik\Im)

= (k −m)

[
1

k −m
H(Ȳk,Ik−m

)− 1

k
H(Ȳk,Ik)

]
(e)

≥ (k −m)

[
1

k − 1
H(Ȳk,Ik−1

)− 1

k
H(Ȳk,Ik)

]
(f)

≥ 0, (92)

where both (e) and (f ) are again by Han’s inequality, and
the last inequality (f ) holds with equality only when Yk,i’s
are mutually independent. If (92) holds with strict inequality,
by making I(X̄k,Ik−1

; Ȳk,Ik−1
) sufficiently small but positive,

(58) can be made true. Moreover, when Yk,i’s are indeed
mutually independent, using the Markov string Xk,i ↔ Yk,i ↔
(X, Ȳk,IK\{i}, X̄k,Ik−1\{i}), it is clear that

m

k
H(Ȳk,Ik)−H(Ȳk,Im |Ȳk,Ik\Im , X̄k,Il)

=
m

k
H(Ȳk,Ik)−H(Ȳk,Im |X̄k,Il)

= mH(Yk,1)− (m− l)H(Yk,1)−H(Ȳk,Il |X̄k,Il)

= H(Ȳk,Il)−H(Ȳk,Il |X̄k,Il)

= lI(Xk,1;Yk,1) =
l

k − 1
I(X̄k,Ik−1

; Ȳk,Ik−1
). (93)

Thus for this case (58) holds without requiring
I(X̄k,Ik−1

; Ȳk,Ik−1
) to be small.

It is also straightforward to show that the right hand side of
(59) satisfies

1

k
H(Ȳk,Ik)− 1

K
H(Ȳk,IK |X)

=
1

k
H(Ȳk,Ik)− 1

K
H(Ȳk,IK )

+
1

K
H(Ȳk,IK )− 1

K
H(Ȳk,IK |X)

= [
1

k
H(Ȳk,Ik)− 1

K
H(Ȳk,IK )] +

1

K
I(Ȳk,IK ;X) > 0,

(94)

because the first bracket is not-negative by Han’s inquality,
and the second term is strictly positive since the set of random
variables Ȳk,IK is dependent on X; moreover, the left hand
side of (59) satisfies

1

k − 1
I(X̄k,Ik−1

;X) ≤ 1

k − 1
I(X̄k,Ik−1

; Ȳk,Ik−1
). (95)

Thus (59) can also be made true by making
I(X̄k,Ik−1

; Ȳk,Ik−1
) small.

Summarize the above discussion, we have that the following
cases may occur.
• (Yk,1, ..., Yk,K) are conditional independent given X , but
Yk,i’s are not independent. The right hand side of (57) is
zero, but (57) always holds. Clearly the right hand side
of (58) and (59) are strictly positive by (92) and (94). By
making I(X̄k,Ik−1

; Ȳk,Ik−1
) sufficiently small, non-trivial

symmetric splitting random variables can be found.
• Yk,i’s are independent. In fact, for this case the sizes of

bins in the coding scheme are zero, implying no binning
is used. This implies that each individual description is
decodable in the original scheme, and the quantization
splitting technique is not necessary. Using the admissible
condition, we see that the right hand side of (92) is zero,
but (58) always holds; the right hand side of (57) and
(59) are strictly positive. This means there exist splitting
random variables, and it can be verified that even Xk,i =
Yk,i is a valid choice. This is exactly the reason why
the R-D tuple given in (13) is achievable in the original
single layer SCEC for the Gaussian source.

• The general dependency case. The right hand side of
(57), (58) and (59) are all strictly positive. By making
I(X̄k,Ik−1

; Ȳk,Ik−1
) sufficiently small, non-trivial sym-

metric splitting random variables can be found.
Potentially we can now find the optimal Gaussian random

variables admissible for symmetric splitting, for the Gaus-
sian source and any symmetric Gaussian random variables
Ȳk,IK , particularly for the no k description excess case where
(Yk,i − X)’s are independent. However, for the general K-
description problem, the admissible conditions reduce to a set
of polynomial inequalities on the variance (and the correlation
coefficients for the general dependence case), which do not
seem to yield a closed form optimal solution. Nevertheless
this set of conditions is still useful, since numerical methods
can now be applied to verify if certain random variables are
admissible for symmetric splitting, and the number of inequal-
ities to be checked is quadratic instead of being exponential
(in K and k).
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The choice of splitting random variables is certainly not
unique, and the set of random variables being admissible for
symmetric splitting is only a subset of the possible choices. We
present the symmetric splitting mainly for two reasons. The
first reason to favor symmetric splitting is that for the multi-
layer scheme given in the next section, the symmetric splitting
appears to be a more natural choice than others, because of the
accumulation of lower layer information. The second reason
is its smaller number of constraints. The conditions given in
(66)-(68) are in fact the fundamental constraints that should
be satisfied by any splitting random variables, however, the
number of constraints directly derived from (66)-(68) can be
exponentially large (in K and k). Other splitting may yield
even better performance in the single layer setting, by allowing
some combinations of less than k−1 descriptions to be useful.

Before ending this section, we emphasize that in the cod-
ing scheme given above, there does not exist a completely
specified coding order due to the constraints on the splitting
random variables, in contrast to the schemes in [12] and
[13]. Nevertheless, it can still be understood as being partially
ordered: the x sub-layer is first decoded if decodable, but if it
is not, there is no particular sequential decoding order and all
the codewords are jointly decoded.

V. MULTILAYER CODING SCHEMES

In this section we provide two general multilayer schemes
for the K-description problem, by properly stacking the two
single layer coding blocks given in the previous section,
respectively. The schemes can be further generalized, and
some of these generalizations are discussed in the final section.

A. Multilayer Scheme Based on Channel Codes and SCEC

We introduce more random variables in addition to the ones
that already appear in Theorem 1: for the k-th layer, k =
1, 2, ...,K − 1, k random variables Xk,j , j = 1, 2, 3, ..., k, are
introduced. We further generalize the definition of the mixed
symmetric distribution as follows.

Definition 6: A joint distribution
p(ȳIK−1,IK , yK , {x̄k,Ik , k ∈ IK−1}|x) is called multilayer
mixed generalized symmetric if for any permutations
π(·) : IK → IK and πk(·) : Ik → Ik for k ∈ IK−1, the joint
distribution p(ȳIK−1,π(IK), yK , {x̄k,πk(Ik), k ∈ IK−1}|x) is
the same as p(ȳIK−1,IK , yK , {x̄k,Ik , k ∈ IK−1}|x).

The above definition essentially requires that the additional
random variables Xk,i’s are symmetric according to the more
stringent definition in [7], yet the random variables Yk,i’s only
need to satisfy the generalized definition of being symmetric.
This new coding scheme reduces to the one in [7] without
the additional Xk,j random variables, however with a relaxed
requirement on the symmetry of the distribution.

Theorem 7: A symmetric R-D vector (R,D1, D2, ..., DK)
is achievable if there exists a probability distribution

p(x, ȳIK−1,IK , yK , {x̄k,Ik , k ∈ IK−1})
= p(x)p(ȳIK−1,IK , yK , {x̄k,Ik , k ∈ IK−1}|x) (96)

that is multilayer mixed generalized symmetric, defined over
finite alphabets X ×YK1 ×YK2 ...×YKK−1×YK×X1×X 2

2 ...×

XK−1K−1 , and a set of decoding functions

g′k :

k∏
j=1

Ykj ×
k∏
j=1

X jj ×X
k
k+1 → X , k ∈ IK−2,

g′′k :

k∏
j=1

Ykj ×
k∏
j=1

X jj → X , k ∈ IK−2,

gK−1 :

K−1∏
j=1

YK−1j ×
K−1∏
j=1

X jj → X ,

gK :

K−1∏
j=1

YKj × YK ×
K−1∏
j=1

X jj → X ,

such that

λkE[d(X, g′k(ȲIk,Ik , {Xj,Ij , j ∈ Ik}, Xk+1,Ik))]

+ (1− λk)E[d(X, g′′k (ȲIk,Ik , {Xj,Ij , j ∈ Ik}))] ≤ Dk,

k ≤ K − 2, (97)
E[d(X, gK−1(ȲIK−1,IK−1

, {Xj,Ij , j ∈ IK−1}))] ≤ DK−1,
(98)

E[d(X, gK(ȲIK−1,IK , YK , {Xj,Ij , j ∈ IK−1}))] ≤ DK ,
(99)

where λk = (k + 1)/
(
K
k

)
, for k ∈ IK−2, and

R ≥ I(X;X1,1)

+

K−2∑
k=1

1

k
H(X̄k+1,Ik |ȲIk,Ik , {X̄j,Ij , j ∈ Ik})

−
K−2∑
k=1

1

k + 1
H(X̄k+1,Ik+1

|X, ȲIk,IK , {X̄j,Ij , j ∈ Ik})

+

K−1∑
k=1

1

k
H(Ȳk,Ik |ȲIk−1,Ik , {X̄j,Ij , j ∈ Ik})

− 1

K

K−1∑
k=1

H(Ȳk,IK |X, ȲIk−1,IK , {X̄j,Ij , j ∈ Ik})

+
1

K
I(X;YK |ȲIK−1,IK , {X̄j,Ij , j ∈ IK−1}). (100)

Proof: We give an outline of the coding scheme and focus
only on its difference from the single layer case. Assume the
distribution p(ȳIK−1,IK , yK , {x̄k,Ik , k ∈ IK−1}|x) is fixed.

Random codebook generation: The codebooks are gener-
ated for each layer, and each layer consists of two sub-
layers; the first K − 1 layer codebooks are generated using
the method given in the single layer scheme. For the K-
th layer, a conventional codebook using YK conditioned on
(ȲIK−1,IK , {X̄j,Ij , j ∈ IK−1}) is used.

The encoding is performed from the lower to higher layers.
The codebooks should be sufficiently large, such that we can
find in each codebook at least one codeword, such that all
of them are jointly typical together with any typical source
sequence xn, as well with the already found lower layer
codewords with high probability. Using the properties of
typical sequences, it can be shown that we need to ensure
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that for k = 1, 2, ...,K − 1,

R̂xk ≥ H(Xk,1)

− 1

k
H(X̄k,Ik |X, {X̄j,Ij , j ∈ Ik−1}, ȲIk−1,IK ), (101)

R̂yk ≥ H(Yk,1)

− 1

K
H(Ȳk,IK |X, {X̄j,Ij , j ∈ Ik}, ȲIk−1,IK ). (102)

For the last layer, a conditional codebook of the following rate
suffices

KRK ≥ I(X;YK |ȲIK−1,IK , {X̄j,Ij , j ∈ IK−1}). (103)

Random binning and encoding: At the k-th layer, k =
2, ...,K−1, both the x and y sub-layer codebooks go through
an additional binning step. During encoding, the bin indices
are found, and the same systematic MDS coding step is also
performed as in the single layer scheme. For the first layer no
binning is performed, but the x sub-layer codeword indices go
through the (K, 1) MDS coding step, i.e., repetition in each
description. For the last layer, the codeword index is split into
the K descriptions.

Decoding: Decoder TA, where |A| ≤ K − 2, is required to
recover with high probability the y sub-layer codewords in the
first |A| layers, as well as the x sub-layer codewords in the first
|A| layers; additionally, if A ⊂ I|A|+1, then it is to recover
with high probability the x sub-layer codewords associated
with X̄|A|+1,A. This additional requirement is void for the
last two layers, which reduces to the one in the original PPR
multilayer scheme. We thus focus on the case that |A| ≤ K−2.

For A such that |A| = k ≤ K − 2, the decoder decodes
from lower layer to higher layer sequentially, assuming the
lower layer codewords are all decoded correctly; for ease of
discussion, we understand implicitly that within a given layer
the x sub-layer is “lower” than the y sub-layer. At the k-th
layer, the decoder tries to find a unique k-tuple of y sub-layer
codewords from the given bins, such that they together are
jointly typical with all the lower layer codewords. The sizes
of bins for the y sub-layer can not be too large. As in [6], [7],
using the symmetry to simplify the constraints, it is sufficient
to have

k(R̂yk −R
y
k) ≤ kH(Yk,1)

−H(Ȳk,Ik |ȲIk−1,Ik , {X̄j,Ij , j ∈ Ik}),
k ∈ IK−1. (104)

Now consider the additional condition that if A ⊂ I|A|+1,
then the decoder can recover with high probability the code-
words associated with X̄|A|+1,A. Similar to the single layer
scheme, these systematic portions of the MDS code can be
used to recover the codeword bin indices, and these codewords
can then be recovered using joint typicality decoding, if the
binning rate is chosen properly. It suffices to control the x
sub-layer rate in the (k + 1)-th layer as

k(R̂xk+1 −Rxk+1) ≤ kH(Xk+1,1)

−H(X̄k+1,Ik |ȲIk,Ik , {X̄j,Ij , j ∈ Ik}),
k ∈ IK−2, (105)

where again the symmetry is used. Clearly due to the sym-
metry, if for each layer this additional condition is satisfied,
the requirement is satisfied with high probability that the x
sub-layer codewords in the first |A| layers can be decoded.

Summarizing (102), (103), (104), and (105) gives the rate
in the theorem. It remains to show the distortions are indeed
achievable. For any |A| ≤ K − 2, there are two possible
decoding functions: the first is when A ⊂ I|A|+1, and the
second is when A 6⊂ I|A|+1. For the latter, the decoding
function operates on the codewords associated with random
variables {YI|A|,A, {Xk,Ik , k ∈ I|A|}}; for the former, the
decoding function can additionally operate on the codewords
associated with X|A|+1,A. In order to make the distortions
symmetric, a time-sharing step is used, and from a simple
counting argument we see that the following distortion is
achievable

Dk = λkD
′
k + (1− λk)D′′k , (106)

where D′k and D′′k are the distortion induced by the two
decoding functions, respectively. The decoding functions for
the (K − 1)-th layer and the K-th layer are straightforward.
The proof is thus complete.

There is one critical difference between the multilayer and
single layer schemes. First note that in the PPR multilayer
scheme, a k-description decoder, when attempting to decode
the k-th layer, uses the lower k − 1 layers in all the k
available descriptions. In the above scheme, however, since
the systematic MDS channel codes are introduced to boost
the (k − 1) description reconstruction, the x sub-layer can
not take full advantage of the lower k − 1 layers in all the
k descriptions, but only those in some k − 1 descriptions.
This does not cause any penalty for the single layer scheme,
because the lower layers do not exist in that case, however
in the multilayer case, this effect does introduce a possible
penalty. Nevertheless, it is likely that in certain regimes the
penalty such introduced is compensated by the gain of the
boosted performance, which is indeed true if the lower k − 1
layers are void, as has already been shown in the previous
two sections. It will be seen that the same remark is also true
for the multilayer scheme based on quantization splitting. In a
sense, this additional tension suggests that for certain distortion
regimes, some coding components may in fact degenerate and
should be removed.

B. Multilayer Scheme Based on Quantization Splitting

In this section we provide a multilayer scheme using the
single layer splitting scheme given in the previous section as
basic building blocks. We first introduce a slightly generalized
definition of random variables being admissible for symmetric
splitting, then give the main theorem and its proof.

Definition 7: Let p(ȳIK−1,IK , yK |x) be a generalized
symmetric distribution. The random variables X̄k,Ik−1

,
k = 2, 3, ...,K − 1 are multilayer-admissible for sym-
metric splitting with respect to p(ȳIK−1,IK , yK |x), if
they are jointly distributed with X and (ȲIK−1,IK , YK)
such that for each k = 2, 3, ...,K − 1, Xk,i ↔
Yk,i ↔ (X, ȲIK−1,IK\Yk,i, YK , {X̄k,Ik−1

, k = 2, 3, ..,K −
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1}\Xk,i, XK) is a Markov string and p(xk,i|yk,i) is the same
for all i = 1, 2, ..., k−1; furthermore the following conditions
are satisfied for k = 2, 3, ...,K − 1,

l

k − 1
H(X̄k,Ik−1

|X, ȲIk−1,IK )

−H(X̄k,Il |X, Ȳk,Il+m\Il , ȲIk−1,IK )

≤ H(Ȳk,Im |X, ȲIk−1,IK )− m

K
H(Ȳk,IK |X, ȲIk−1,IK ),

0 ≤ l ≤ k − 1, 0 ≤ l +m ≤ K, (107)

and
l2

k − 1
I(Ȳk,Ik−1

; X̄k,Ik−1
|ȲIk−1,Ik)

− l1
k − 1

I(Ȳk,Ik−1
; X̄k,Ik−1

|ȲIk−1,Ik−1
)

≤ m

k
H(Ȳk,Ik |ȲIk−1,Ik)

−H(Ȳk,Im |Ȳk,Ik\Im , X̄k,Il2−l1
, ȲIk−1,Ik),

0 ≤ l1 ≤ l2 ≤ m ≤ min(k, l2 +K − k + 1), l2 < k,
(108)

where l, l1, l2,m are non-negative integers, and

1

k − 1
H(X̄k,Ik−1

|ȲIk−1,Ik)

− 1

k − 1
H(X̄k,Ik−1

|X, ȲIk−1,IK )

≤ 1

k
H(Ȳk,Ik |ȲIk−1,Ik)− 1

K
H(Ȳk,IK |X, ȲIk−1,IK ).

(109)

We have the following theorem.

Theorem 8: Let p(ȳIK−1,IK , yK |x) be generalized sym-
metric, and let X̄k,Ik−1

, k = 2, 3, ...,K − 1 be
multilayer-admissible for symmetric splitting with respect to
p(ȳIK−1,IK , yK |x). If there exist decoding functions

g′k :

k∏
j=1

Ykj ×X kk+1 → X , k = 1, 2, ...,K − 2,

g′′k :

k∏
j=1

Ykj → X , k = 1, 2, ...,K − 2,

gK−1 :

K−1∏
j=1

YK−1j → X ,

gK :

K−1∏
j=1

YKj × YK → X ,

such that

λ∗kEd(X, g′k(ȲIk,Ik , X̄k+1,Ik))

+ (1− λ∗k)Ed(X, g′′k (ȲIk,Ik)) ≤ Dk,

k = 1, 2, ...,K − 2, (110)
Ed(X, gK−1(ȲIK−1,IK−1

)) ≤ DK−1, (111)
Ed(X, gK(ȲIK−1,IK , YK)) ≤ DK , (112)

where λ∗k =
(
K
k

)−1
, then the symmetric R-D tuple

(R,D1, D2, ..., DK) is achievable where

R ≥
K−1∑
k=1

1

k
H(Ȳk,Ik |ȲIk−1,Ik) +

1

K
H(YK |ȲIK−1,IK )

− 1

K
H(ȲIK−1,IK , YK |X)

+
1

K

K−1∑
k=2

I(X̄k,Ik−1
; ȲIk−1,k|ȲIk−1,Ik−1

). (113)

Remark: By letting the random variables {X̄k,Ik−1
, k =

2, 3, ...,K−1} be constants, we recover Theorem 1. Different
from the single layer case where is no rate penalty from the
original single layer SCEC in general, there exists a possible
rate penalty, i.e., the last term in (113), comparing to the rate
expression in Theorem 1 in the multilayer case. Nevertheless,
in certain regimes, such penalty is likely to be compensated
by the boosted performance, similar to the multilayer scheme
based on channel codes and SCEC. Also note that due to
the Markov strings given in the admissible condition, Xk,i

is useless when Yk,i is given, and thus the decoding functions
do not need to include those x sub-layer random variables,
unless Yk,i is not available. We next give an outline for the
coding scheme. The majority of the proof is similar to the
single layer case, and we thus only focus on the difference.

Proof: First fix the joint distribution. For the first layer
k = 1, a codebook of size 2nR̂

y
1,i is generated using the

marginal distribution of Y1,i for i ∈ IK . Then for each
k = 2, 3, ...K − 1, the x and y sub-layer codebooks are
generated using the same mechanism as in the single layer
scheme, including the binning step, but the rates are to be
specified later. The K-th layer is based on a conditional
codebook.

During encoding in each layer, the encoder finds in each
codebook a codeword such that they are jointly typical with
a typical source sequence as well as with each other and the
lower layer codewords already found. Then the encoding is
performed similar as the single layer scheme, except the first
and the last layer. The first layer codewords’ indices are used
directly as the description information without binning; the
last layer is straightforward.

For decoder TA, such that |A| = k ≤ K − 2, two
kinds of decoders exist. If A = Ik, then the decoder uses
the first k layer codewords associated with ȲIk,Ik , and in
addition the x sub-layer codewords associated with the random
variables X̄k+1,Ik ; otherwise, only the codewords associated
with ȲIk,A are used. The last two layer decoders are of course
straightforward.

Similar constraints exist on the codebook rates and the
binning rates as in the single layer scheme. We have for
each k = 2, 3, ...,K − 1, the following conditions should
hold for (R̂xk,1, ..., R̂

x
k,k−1, R̂

y
k,1, ..., R̂

y
k,K) ∈ RK+k−1

+ and
(Rxk,1, ..., R

x
k,k−1, R

y
k,1, ..., R

y
k,K) ∈ RK+k−1

+ :
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1) Codebook constraints:∑
i∈A

R̂yk,i +
∑
i∈B

R̂xk,i

≥
∑
i∈A

H(Yk,i) +
∑
i∈B

H(Xk,i)

−H(Ȳk,A, X̄k,B|X, ȲIk−1,IK ),

A ⊆ IK , B ⊆ Ik−1. (114)

2) Binning constraints for k description decoders at the k-
layer: for any A ∈ 2IKk , let B = A ∩ Ik−1, then

0 ≤
∑
i∈A′

(R̂yk,i −R
y
k,i) +

∑
i∈B′

(R̂xk,i −Rxk,i)

≤
∑
i∈A′

H(Yk,i) +
∑
i∈B′

H(Xk,i)

−H(Ȳk,A′ , X̄k,B′ |Ȳk,A\A′ , X̄k,B\B′ , ȲIk−1,Ik),

any A′ ⊆ A,B′ ⊆ B. (115)

3) Binning constraints for the Ik−1 description decoder at
the k-th layer:

0 ≤
∑
i∈B

(R̂xk,i −Rxk,i)

≤
∑
i∈B

H(Xk,i)−H(X̄k,B|X̄k,Ik−1\B, ȲIk−1,Ik−1
),

any B ⊆ Ik−1. (116)

Similarly as in the single layer case, we choose certain
specific rates. For each k = 2, 3, ...,K−1, the codebook rates
are set as

R̂xk,i = R̂xk , H(Xk,1)− 1

k − 1
H(X̄k,Ik−1

|X, ȲIk−1,IK ),

i ∈ Ik−1, (117)

R̂yk,i = R̂y∗k , H(Yk,1)− 1

K
H(Ȳk,IK |X, ȲIk−1,IK )

+
1

k − 1
I(X̄k,Ik−1

; Ȳk,Ik−1
|X, ȲIk−1,IK ),

i ∈ Ik−1, (118)

R̂yk,i = R̂yk , H(Yk,1)− 1

K
H(Ȳk,IK |X, ȲIk−1,IK ),

i ∈ IK\Ik−1, (119)

and the binning rates are set as

Rxk,i = Rxk ,
1

k − 1
H(X̄k,Ik−1

|ȲIk−1,Ik−1
)

− 1

k − 1
H(X̄k,Ik−1

|X, ȲIk−1,IK ), i ∈ Ik−1, (120)

Ryk,i = Ry∗k ,
1

k
H(Ȳk,Ik |ȲIk−1,Ik)

− 1

K
H(Ȳk,IK |X, ȲIk−1,IK )

− 1

k − 1
H(X̄k,Ik−1

|ȲIk−1,Ik)

+
1

k − 1
H(X̄k,Ik−1

|X, ȲIk−1,IK ),

i ∈ Ik−1, (121)

Ryk,i = Ryk ,
1

k
H(Ȳk,Ik |ȲIk−1,Ik)

− 1

K
H(Ȳk,IK |X, ȲIk−1,IK ),

i ∈ IK\Ik−1. (122)

We only need to check the above choice indeed satisfies
(114)-(116). The cookbook constraint (114) can be reduced
similarly as in the single layer case, which eventually can be
shown to be exactly the multilayer admissible splitting condi-
tion (107); the binning constraint (116) is also straightforward
to verify. Thus we only need to check if (115) is satisfied.

Again let S ⊆ Ik−1 and T ⊆ IK\Ik−1, such that |S∪T | =
k. With the given rates, the condition (115) is equivalent to
that for any such S and T , and their subsets Sx,Sy, T ′ such
that Sx ⊆ S , Sy ⊆ S and T ′ ⊆ T , as given in (123) at
the top of next page. Similarly to the single layer case, (123)
is always satisfied when |Sx| > |Sy|, and thus only the case
|Sx| ≤ |Sy| needs to be considered. However, for this case, the
dominant inequality is also given when Sx ⊆ Sy . By defining
l1 , |Sx|, l2 , |Sy|, and m , |Sy|+ |T ′|, it is seen that the
most stringent conditions in (123) are exactly those defined in
the multilayer admissible condition of (108).

For the k-th layer, k = 2, 3, ...,K − 1, the rate Rk,i is
actually not the same for i ≤ k − 1 and i > k − 1,

Rk,i =
1

k
H(Ȳk,Ik |ȲIk−1,Ik)− 1

K
H(Ȳk,IK |ȲIk−1,IK )

+
1

k − 1
I(X̄k,Ik−1

; ȲIk−1,k|X, ȲIk−1,Ik−1
),

i ∈ Ik−1, (124)

Rk,i =
1

k
H(Ȳk,Ik |ȲIk−1,Ik)− 1

K
H(Ȳk,IK |ȲIk−1,IK ),

i ∈ IK\Ik−1. (125)

We can thus time-share the scheme in each layer to arrive at
symmetric rates and symmetric distortions, for which we have
that for k = 2, 3, ...,K − 1,

Rk =
1

k
H(Ȳk,Ik |ȲIk−1,Ik)− 1

K
H(Ȳk,IK |ȲIk−1,IK )

+
1

K
I(X̄k,Ik−1

; ȲIk−1,k|X, ȲIk−1,Ik−1
). (126)

The rates in the first and the last layer are conventional. Adding
these rates together completes the proof.
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|Sx|
k − 1

H(X̄k,Ik−1
|ȲIk−1,Ik−1

) +
|Sy|+ |T ′|

k
H(Ȳk,Ik |ȲIk−1,Ik)− |Sy|

k − 1
I(X̄k,Ik−1

; Ȳk,Ik−1
|ȲIk−1,Ik)

≥ H(X̄k,Sx , Ȳk,Sy , Ȳk,T ′ |X̄k,S\Sx , Ȳk,S\Sy , Ȳk,T \T ′ , ȲIk−1,Ik)

= |Sx|H(Xk,1|Yk,1) +H(Ȳk,Sy , Ȳk,T ′ |X̄k,S\Sx , Ȳk,S\Sy , Ȳk,T \T ′ , ȲIk−1,Ik). (123)

VI. CONCLUDING REMARKS

We considered the symmetric multiple description problem
and provided novel coding schemes. These schemes yield
rate-distortion tuples outside the PPR multilayer achievable
region. The two new ingredients are systematic MDS codes
on some smaller scale multiple description codes, and the
quantization splitting technique. General multilayer schemes
are also provided. Though only symmetric problem is consid-
ered, the proposed schemes actually benefit from time-sharing
asymmetric distortion tuples.

The given multilayer schemes can be further generalized and
improved, and several directions for doing so are as follows.
• Time-sharing between the systematic MDS code and

SCEC based scheme, and quantization splitting based
scheme. As can be seen in the Gaussian source example,
even for the three description case, such an approach will
lead to improvements in certain distortion regime.

• Combination of the systematic MDS code and SECE
based scheme, and quantization splitting based scheme.
Instead of time-sharing, we can use the single layer
scheme based on systematic MDS channel code and
SCEC in certain layers, and the quantization splitting
scheme in the others. Quantization splitting can also be
applied to the systematic part of the MDS codes.

• Other possible quantization splitting choices. In the cod-
ing scheme we only considered symmetric splittings,
formalized by the admissible conditions for symmetric
splitting. This is by no means necessary and asymmetric
splitting may yield even better performance.

• Other schemes using asymmetric rates. Recall the mul-
tilayer scheme based on rate splitting in fact has both
asymmetric rates as well as asymmetric distortions before
time-sharing. It is conceivable that more general schemes
using the possible components without the symmetric
structure can provide even better performance.

We note that though the above directions are promising for
new rate-distortion tuples, the complexity of such general
schemes can quickly grow out of control. As such, it is
practically more important to find schemes with simple coding
structure and competitive performance, even if they are not
optimal.
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