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Abstract—Let X, Y , Z be zero-mean, jointly Gaussian ran-
dom vectors of dimensions nx, ny and nz , respectively. Let P be
the set of random variables of W such that W ↔ Y ↔ (X, Z) is
a Markov string. We consider the following optimization problem

min
W∈P

I(Y ; W |Z),

subject to one of the following two possible constraints: (1)
I(X; W |Z) ≥ RI , (2) the mean squared error between X
and X̂ = E(X|W, Z) is less than d. The problem under the
first kind of constraint is motivated by MIMO relay channels
with an oblivious transmitter and a relay connected to the
receiver through a dedicated link, while for the second case it is
motivated by source coding with decoder side information where
the sensor observation is noisy. In both cases, we show that the
joint Gaussian solution is optimal. Moreover, explicit water filling
interpretations are given for both cases, which suggest transform
coding approaches performed in different transform domains,
and that the optimal solution for one problem is in general sub-
optimal for the other.

Index Terms—Gaussian vector, source coding with side infor-
mation, relay channel, transform coding.

I. INTRODUCTION

In a relay channel [1], the relay wishes to help the trans-
mitter to convey information reliably to the end receiver.
In certain cases, the transmitter does not actively cooperate
with the relay, which falls into the oblivious cooperation
framework [2]; it can also be understood as a special case
of the nomadic transmitter setting where two relays send
summary information regarding their received signals to a final
central processing center [3], but in this special case the link
between one relay and the processing center is taken to have an
almost infinite capacity. In both settings, the transmitter may
send its signal without awareness of the existence of the relay,
and the relay does not necessarily know exactly the codebooks
the transmitter is using1.

We are interested in the case that the relay is connected to
the receiver through a dedicated link (e.g. a separate frequency
band or a land line) of a maximum rate R. We assume the
channel noises are additive and Gaussian, and moreover the
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1If the relay knows the codebooks of the transmitter, the relay may be able
to decode the messages, or when it is not able to decode, may use any coding
strategy to help the transmitter. The restricted problem setting we consider
here essentially requires the relay to always use the compress-and-forward
strategy given in [1].

transmitter which has nx transmit antennas is using Gaussian
signaling X; this is a reasonable and popular assumption [3].
The relay which has ny receive antennas observes Y , and it
is a noisy version of X . The relay now has the task of source
coding this noisy observation for the end receiver. The end
receiver, which is the decoder in this source coding setting,
has nz antennas and thus also has side information Z through
its own observation of the channel. Assuming channel state
information and the probability distribution of X are known
at the relay and end receiver, and using well-known property of
typical sequences, it can be shown that the system can reliably
transmit at rate arbitrarily close to R′I , if there exists a random
variable W ↔ Y ↔ (X,Z), such that

I(X; Z,W ) ≥ R′I , I(Y ;W |Z) ≤ R. (1)

This can be rewritten as the optimization problem

R(RI) , min
W∈P

I(Y ;W |Z), (2)

subject to

I(X;W |Z) = I(X; Z,W )− I(X; Z)

≥ R′I − I(X; Z) , RI , (3)

which is exactly the optimization problem under the first kind
of constraint given in the abstract. Roughly speaking, the
relay utilizes a source coding scheme based on the Wyner-
Ziv coding technique [4], and the quantity I(Y ;W |Z) is
exactly this coding rate, however the receiver places the mutual
information constraint (3), instead of attempting to reconstruct
the source X to satisfy certain distortion constraint as in [4].

Let us turn to the more conventional rate-distortion setting
where the encoder observes a noisy version of the source,
and the end receiver, which has certain side information, is
interested in recovering the source within certain distortion.
Wyner and Ziv’s solution [4] generalizes naturally to this re-
mote source setting (see [5], [6]). The single letter optimization
posed in the abstract under the second constraint is thus exactly
the rate distortion function under a mean squared error (MSE)
distortion criterion, i.e., the quantity I(Y ;W |Z) is again the
source coding rate. We shall denote this function as R(d).

It is now clear that the essential task is to determine
the optimal random variable W , since in both problems it
provides the optimal quantization codebook, and perhaps more
importantly, the optimal resource allocation for these vector
source coding problems. One key question in this context is
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whether the optimal solutions of the random variables W are
the same under these two constraints.

In this correspondence, we show that for both cases a
jointly Gaussian vector solution is optimal for W , which also
naturally leads to transform coding and water-fill interpre-
tations. However, the water filling is performed in different
spaces for the two problems, which implies that in general
the optimal solutions in the rate distortion setting are sub-
optimal solutions in the relay setting, and vice versa. It is thus
important to distinguish between these two constraints, and
use the appropriate one depending on the particular system
requirement.

One may also ask the question whether if giving the decoder
side information Z to the encoder helps or not. Indeed our
result suggests that encoder side information does not help
for both cases, however it does play a role in determining the
transform domains.

The solution of the vector problem under the mutual infor-
mation constraint is largely inspired by the work in [8] for the
case without side information at the decoder. However, our
proof is significantly simpler than theirs, despite the fact that
side information is introduced. Our work is also relevant to
[7]. However in [7] only distortion-constrained problem with
direct observation of the source is considered, which does not
include the problems considered here.

In the rest of the paper, the following notation is adopted.
Random vectors are written in bold capital letters, and random
variables in capital letters. X,Y ,Z are jointly Gaussian, zero-
mean, real-valued random vectors. We write their variance
matrices as Σx,Σy,Σz , and covariance matrices as Σxy ,Σyz

and Σxz , respectively. X is the underlying source of interest,
Y is the noisy observation at the encoder, and Z is the
decoder side information. We do not assume that Y and Z
are conditionally independent given X , i.e., the channel noises
are not necessarily independent. All the logarithms are base e.

Before proceeding, we shall rewrite the relation between X ,
Y and Z to simplify the proof given in the sequel. It is clear
that without loss of generality we can write

Y = KyzZ + N1,

X = KxyY +KxzZ + N2

= (KxyKyz +Kxz)Z +KxyN1 + N2, (4)

where N1, N2 are zero-mean jointly Gaussian random vectors
independent of each other; N1 is independent of Z and N2 is
independent of (Y ,Z). More precisely, we have by applying
well-known linear estimation calculation [9] that

Kyz = ΣyzΣ−1
z ,

Kxy = ΣxyΣ−1
y + ΣxyΣ−1

y Σyz∆−1ΣzyΣ−1
y

− Σxz∆−1ΣzyΣ−1
y ,

Kxz = Σxz∆−1 − ΣxyΣ−1
y Σyz∆−1, (5)

where ∆ = Σz−ΣzyΣ−1
y Σyz . We shall assume the inverses of

the above matrices are well defined, which is usually satisfied
except for some degenerate cases. The following covariance

matrices are also important,

ΣN1 = Σy|z = Σy −KyzΣzy

ΣN2 = Σx|yz = Σx −KxyΣyx −KxzΣxz

Σx|z = Σx − ΣxzΣ−1
z Σzx. (6)

II. SCALAR RANDOM VARIABLE PROBLEMS

For the scalar case, denote kzy , Kzy , kxy , Kxy and
kxz , Kxz , respectively. We consider the scalar Gaussian
case first. Since we are not aware a formal proof for the case
under the mutual information constraint, such a proof is given;
for the other case, we simply restate the known result.

A. The mutual information constraint problem
Theorem 1: For the scalar Gaussian source and RI ≥ 0,

R(RI) =∞, if RI ≥
1
2

log
Σx|z

Σx|yz
, (7)

and otherwise

R(RI) =
1
2

log
Σx|z − Σx|yz

Σx|z exp(−2RI)− Σx|yz
. (8)

Proof: We start the converse proof by writing

I(X;W |Z) = h(X|Z)− h(X|W,Z). (9)

To bound the second term, we have

h(X|W,Z) = h(kxyY + kxzZ +N2|W,Z)
= h(kxyY +N2|W,Z). (10)

Then it follows

exp[2h(kxyY +N2|W,Z)]
(a)

≥ exp[2h(kxyY |W,Z)] + exp[2h(N2)]

= k2
xy exp[2h(Y |W,Z)] + exp[2h(N2)]

= k2
xy exp[−2I(Y ;W |Z) + 2h(Y |Z)] + exp[2h(N2)]

= k2
xy exp[−2I(Y ;W |Z) + 2h(N1)] + exp[2h(N2)], (11)

where (a) is by applying the conditional version of the entropy
power inequality [10]. Thus we have

I(Y ;W |Z) ≥ 1
2

log[k2
xy exp(2h(N1))]

− 1
2

log[exp(2h(X|Z)− 2I(W ;X|Z))− exp(2h(N2))].

Because the function − log(r exp(−2x)− q) is monotonically
increasing in x when r > 0, and I(W ;X|Z) ≥ RI , we have

I(Y ;W |Z) ≥ 1
2

log[k2
xy exp(2h(N1))]

− 1
2

log[exp(2h(X|Z)− 2RI)− exp(2h(N2))]. (12)

Clearly when we take W = Y + N3 where N3 is a zero-
mean Gaussian independent of everything else such that
I(W ;X|Z) = RI , all the inequalities become equality.

Since I(W ;X|Z) ≤ I(W,Y ;X|Z), the Markov string
W ↔ Y ↔ (X,Z) implies that I(W,Y ;X|Z) = I(Y ;X|Z).
Thus when RI ≥ I(Y ;X|Z), the optimization problem is not
feasible. Substitute appropriate values into the quantities, and
it is easy to see Σx|z − Σx|yz = k2

xyΣy|z because it is the
variance of kxyN1. The proof is thus complete.
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B. The rate-distortion problem

Theorem 2 ([5] and [6]): For the scalar Gaussian source,
we have for Σx|z ≥ d ≥ Σx|yz ,

R(d) =
1
2

log
Σx|z − Σx|yz

d− Σx|yz
; (13)

and R(d) = 0 if d > Σx|z; R(d) =∞ if 0 ≤ d < Σx|yz .
We omit the proof here; see [5] and [6]. It can be shown that

in both cases encoder side information does not help, i.e., even
when the Markov string is relaxed to W ↔ (Z, Y )↔ X the
solutions do not change. Further notice the similarity between
the functions R(RI) and R(d). Indeed, for the scalar problem,
for both cases the solution is given by the same Gaussian
solution W = Y+N3 with the variance of N3 properly chosen.
However, as we shall illustrate next, for the vector problem,
their solutions no longer coincide.

III. RANDOM VECTOR PROBLEMS

In this section we discuss the vector version of the problems.
We provide a proof by decomposing the problem into a set of
component-wise problems. It is conceivable that the enhance-
ment technique given in [11], [12] may be of use, however
our proof directly yields the water filling interpretation.

A. The mutual information constraint problem

The following notation is needed. For a symmetric pos-
itive definite matrix S, let its eigenvalue decomposition be
UT ΛU , where Λ is the diagonal matrix with eigenvalues on
its diagonal. Define S1/2 = UT Λ1/2U , where Λ1/2 is the
diagonal matrix where the squared root of each element of
Λ is taken. Similarly, S−1/2 is also defined for a symmetric
positive definite matrix, however with an inverse on each non-
zero element of Λ. The main result in this subsection is the
following theorem.

Theorem 3: Let the eigenvalue of Σ1/2
y|zK

T
xyΣ−1

x|zKxyΣ1/2
y|z

be given as µi. Then for 0 ≤ RI ≤ 1
2 log |Σx|z| −

1
2 log |Σx|yz| , R∗I ,

R(RI) =
nx∑
i=1

1
2

log

µi

[(
1− µi

1− γ

)−
− (1− µi)

]−1
 ,

where (x)− = min(x, 1), log 0
0 , 0, and γ ∈ [0, 1) is chosen

such that

−1
2

nx∑
i=1

log
(

1− µi

1− γ

)−
= RI .

If RI > R∗I , then R(RI) =∞.
We shall consider a specific transform; this transform

is usually referred to as the canonical correlation analysis
in statistics. First find the singular value decomposition of
Σ−1/2

x|z KxyΣ1/2
y|z = UT ΛIV , where U and V are two orthogo-

nal matrices and ΛI is a diagonal matrix with singular values
on the diagonal. Define Tx = UΣ−1/2

x|z and Ty = V Σ−1/2
y|z ,

which in fact gives the transforms X′ = TxX and Y ′ = TyY ,

respectively. Notice that the transformation matrices are full
rank, and under these transforms,

Σx′|z = TxΣx|zT
T
x = UΣ−1/2

x|z Σx|zΣ−1/2
x|z UT = Inx , (14)

where Inx is the identity matrix of dimension nx. Similarly,

Σy′|z = TyΣy|zT
T
y = V Σ−1/2

y|z Σy|zΣ−1/2
y|z V T = Iny . (15)

Moreover, we have

Σx′y′|z = TxKxyΣy|zT
T
y

= UΣ−1/2
x|z KxyΣy|zΣ−1/2

y|z V T = ΛI . (16)

These facts imply that after the transform, the components
of X′, respectively the components of Y ′, are independent
and identically distributed with unit variance given Z. The
vectors of X′ and Y ′ are only component-wise dependent
given Z. Moreover, since the element of Σx′y′|z = ΛI is
a covariance of two random variables of unit variance, its
diagonal values satisfy 0 ≤ |λi| ≤ 1.

Proof: Since the transform Tx and Ty are full rank, and
thus information lossless, we have

I(X;W |Z) = I(X ′;W |Z). (17)

Thus we have by the conditional independence and the chain
rule

I(X;W |Z) =
nx∑
i=1

[h(X ′i|Z)− h(X ′i|W,Z,X
′
i−)]

≤
nx∑
i=1

[h(X ′i|Z)− h(X ′i|W,Z,X
′
i− ,Y

′
i−)]

(a)
=

nx∑
i=1

[h(X ′i|Z)− h(X ′i|W,Z,Y
′
i−)]

=
nx∑
i=1

I(X ′i;W,Y
′
i− |Z), (18)

where (a) is due to the Markov string X ′i ↔ (Y ′i− ,W,Z)↔
X ′i− . On the other hand we have

R ≥ I(Y ;W |Z) =
ny∑
i=1

h(Y ′i |Z)− h(Y ′i |W,Z,Y
′
i−)]

=
ny∑
i=1

I(Y ′i ;W,Y ′i− |Z). (19)

Now define (W,Y ′i−) = Wi, and it is clear that X ′i ↔
(Z, Y ′i ) ↔ Wi is a Markov string. Thus we have relaxed
the problem into

min
ny∑
i=1

I(Y ′i ;Wi|Z), (20)

subject to:
nx∑
i=1

I(X ′i;Wi|Z) ≥ RI , (21)

where X ′i ↔ (Z, Y ′i )↔Wi for i ≤ max(nx, ny).
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Using the same outer bounding derivation as the scalar
problem we can further write the relaxed problem as2

min
nI∑
i=1

−1
2

log[exp(−2Ri)− (1− λ2
i )] +

1
2

log[λ2
i ] (22)

subject to:
nI∑
i=1

Ri ≥ RI , −
1
2

log(1− λ2
i ) ≥ Ri ≥ 0, (23)

where nI is the number of non-zero λi values.
A water-filling solution can be derived from the above

optimization problem. More precisely, by the Kuhn-Tucker
condition we can find the optimizing solution as

Ri =
1
2

log
(

λ− 1
λ(1− λ2

i )

)+

,

where we use (x)+ to denote max(x, 1), and λ is the “water
level” such that the sum-rate constraint is satisfied with equal-
ity. Now defining γ = λ−1 and noticing λ2

i = µi give the
formula in the theorem.

It remains to show that the solution of the relaxed problem is
indeed achievable, i.e., there exists a random variable (vector)
W that matches this lower bound, but this is obvious by letting
W = TyY +N3, where N3 is a Gaussian random vector with
independent components such that the equality I(X ′i;Y

′
i +

N3,i|Z) = Ri holds. This indeed is a Gaussian solution, and
the theorem is proved.

B. The rate-distortion problem

Assuming the MSE distortion is taken to be averaged over
each component, we have the following theorem.

Theorem 4: Let the eigenvalues of KxyΣy|zK
T
xy be given

as λD
i , i = 1, 2, ..., nx. Then for Tr(Σx|z) ≥ nxd ≥

Tr(Σx|yz),

R(d) =
nx∑
i=1

1
2

log
[
λD

i

λ

]+
, (24)

where Tr(·) is the trace of a matrix, and λ > 0 is chosen such
that

nx∑
i=1

min(λ, λD
i ) = nxd− Tr

[
Σx|yz

]
. (25)

If nxd < Tr(Σx|yz), then R(d) = ∞; if nxd > Tr(Σx|z),
then R(d) = 0.

The proof of this theorem is rather standard, however we
include it below for completeness.

Proof: To prove the converse, consider the fact that

Tr[E(X − X̂)(X − X̂)T ] ≤ nxd. (26)

It is clear that

E(X − X̂)(X − X̂)T

= E(KxyY +KxzZ − X̂)(KxyY +KxzZ − X̂)T + Σx|yz

2This component-wise problem is not the same problem as the original
scalar coding problem, since the Markov string is different. It is in fact
equivalent to the case that side information Z is also available at the encoder.
However since the lower bounding derivation of the scalar problem holds for
either cases, it indeed gives a lower bound here for the vector problem.

because N2 is independent of Y and Z, thus independent of
W and Z. Now define X̄ = X̂ + (KxyKyz + Kxz)Z, from
which we see that

Tr
[
E(X − X̂)(X − X̂)T

]
= Tr

[
E(KxyN1 − X̄)(KxyN1 − X̄)T

]
+ Tr

[
Σx|yz

]
≤ nxd. (27)

Thus there exists a function X̄ = f ′(W,Z) such that

Tr
[
E(KxyN1 − X̄)(KxyN1 − X̄)T

]
≤ nxd− Tr

[
Σx|yz

]
, nxd

′. (28)

Denote the eigenvalue decomposition of KxyΣy|zK
T
xy as

UT ΛDU . Denote N ′ = UKxyN1, which clearly has indepen-
dent components. We have the following chain of inequalities.

I(Y ;W |Z) ≥ I(UKxyY ;W |Z)
= h(UKxyY |Z)− h(UKxyY |W,Z)
= h(UKxyN1)− h(UKxyN1|W,Z)

=
nx∑
i=1

[h(N ′i)− h(N ′i |W,Z,N
′−
i )]

≥
nx∑
i=1

[h(N ′i)− h(N ′i |W,Z)]

=
nx∑
i=1

I(N ′i ;W,Z)

≥
nx∑
i=1

I(N ′i ; E(N ′i |W,Z)) =
nx∑
i=1

I(N ′i ; N̂
′
i), (29)

where N̂ ′i , E(N ′i |W,Z). Notice that U is an orthogonal
transform, thus preserves the MSE distortion. Define di =
E(N ′i − N̂ ′i)2, then it is clear that we have

∑n
i=1 di ≤ nxd

′.
This is a conventional rate-distortion problem, and thus

R(d) ≥
∑ 1

2
log
[
λD

i

λ

]+
, (30)

where λ is the water level such that
nx∑
i=1

min(λ, λD
i ) = nxd− Tr

[
Σx|yz

]
. (31)

This establish the lower bound for the rate distortion
function. The fact that this lower bound is achievable is
straightforward by letting W = UKxyY + N3, where N3 is
a Gaussian vector having independent components, with their
variances determined by

σ2
3,i =

min(λ, λD
i )

λD
i −min(λ, λD

i )
. (32)

The proof is complete.

IV. CONCLUDING REMARKS

From the proofs of Theorem 3 and Theorem 4, it is seen
that the two transforms in which water filling is performed
are different under the two kinds of constraints. For the
mutual information constraint, the transform is Ty = V Σ−1/2

y|z ,
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where V is determined by the eigenvalue decomposition
of Σ1/2

y|zK
T
xyΣ−1

x|zKxyΣ1/2
y|z , and the water filling is along

these eigenvalues. For the MSE distortion constraint, the
transform is determined by the eigenvalue decomposition of
KxyΣy|zK

T
xy , and the water filling is along these eigenvalues.

Moreover, the transform Ty may not be orthogonal, thus does
not preserve trace and the MSE distortion. This result implies
that the optimal solution for one problem is in general sub-
optimal for the other. Thus when MIMO system is considered
for the relay problem, it is important to recognize that the
Wyner-Ziv source coding component should be used under
the mutual information constraint, instead of distortion con-
straint. It should also be noted that the problem under mutual
information constraint considered here includes the hypothesis
testing problem in [13] as a special case when the source is
vector Gaussian, and thus the given result provides an explicit
solution for it.

It is theoretically interesting to consider the same optimiza-
tion problem when the two kinds of constraints are placed
simultaneously. The extremal inequality in [11] indicates
that the optimal value is attained by timesharing Gaussian
solutions. However, it is unclear whether a single Gaussian
solution suffices and whether there exists an explicit water
filling interpretation.
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