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Abstract—Han’s inequality on the entropy rates of subsets of
random variables is a classic result in information theory, which
often finds its application in multiuser information theoretic
problems. In this note, we generalize Han’s inequality to allow
common components among the random variables, or, in an
equivalent manner, to replace the simple random variables in
Han’s inequality by subsets of random variables. This additional
ingredient significantly complicates the matter and the form of
the resultant inequalities are rather different from the original
Han’s inequality. Our proof only relies on the sub-modularity
property of the entropy function and the super-modularity
property of the conditional entropy function. This new set of
inequalities also provides a new link between Han’s inequality
and the n-way sub-modularity inequality.

I. INTRODUCTION

Han’s inequality [1] on the entropy rates of subsets of
random variables is a classic result in information theory. It
essentially states that the average entropy rates of subsets
decrease as the size of subset increases [2] (p. 490). This
inequality has found applications in multi-user information
theoretic problems; e.g. [3]–[5]. Han’s inequality, however,
does not naturally deal with common components among ran-
dom variables efficiently. For example, consider two random
variables1 V1 = {W1,W12} and V2 = {W2,W12}, where
W12 is the common component between them. Then a simple
application of Han’s inequality to the random variables V1 and
V2, which in this case is equivalent to the non-negativity of
mutual information, gives

H(V1) +H(V2) ≥ H(V1, V2). (1)

This is not a good lower bound for H(V1) + H(V2) for the
random variable under consideration, as can be seen easily

H(V1) +H(V2) ≥ H(V1, V2) +H(W12). (2)

In fact, (2) is simply the sub-modularity property of the
entropy function [6]. The inequality (2) can indeed be reached
by applying Han’s inequality in its conditional form, yet a
natural question arises from this simple example: what is the
form of the generalized Han’s inequality which takes into
account of the common components? In this note, we provide
exactly such a new set of inequalities.

1Throughout this note, {·} is used to denote the collections of random
variables, and the resulting random variable, such as V1 and V2, is defined
on the product of the alphabet of each of its elements.

The same question can be considered from another per-
spective, that is: what is Han’s inequality when the random
variables are in fact subsets of random variables, instead of
simple random variables? In the above example, V1 and V2
are themselves subsets of the set {W1,W2,W12}. Since both
perspectives may be of interest, we will present the main
theorem in two equivalent forms.

The proof of this new set of inequalities hinges only on the
sub-modular property of the entropy function, and it relies on
another inequality previously discovered in [7], namely, the n-
way sub-modularity inequality. As a consequence, this new set
of inequalities provides a connection between Han’s inequality
and the n-way sub-modularity inequality, as they are special
cases of a wider spectrum of inequalities regarding subsets of
random variables.

In addition to the well-known Han’s inequalities, inequali-
ties on the entropies of subsets of random variables have been
considered in other works, e.g. [8], [9]. The new inequalities
we present in this work do not appear to be included in these
existing inequalities, though the intersection-cover problem
considered in those work is indeed closely related to the proof
idea of our main result. This connection is hardly surprising,
since all these results are directly related to sub-modularity
functions, which naturally appear in the intersection-cover and
related counting problems.

The rest of this note is organized as follows. In Section II,
we first present the main results on the new set of inequalities,
and then discuss its relationship with Han’s inequality and the
n-way sub-modular inequality. The proofs are given in Section
III, and Section IV gives a few concluding remarks.

II. MAIN RESULT

The set {1, 2, . . . , n} is written as In, and its power set (i.e.,
the collection of all its subsets) is written as P(In). Define
P̂(In) = P(In) \ {∅}, i.e., P̂(In) is the collection of all
subsets of In excluding the empty set. For a set A, we write its
cardinality as |A|. For simplicity, we state the results only for
discrete random variables with finite alphabets for which the
entropy functions are always well-defined, however, they can
be extended to continuous random variables (or mixed random
variables) with well-defined differential entropy functions.

Theorem 1: Let {WA,A ∈ P̂(In)} be a set of 2n − 1
discrete random variables jointly distributed according to some
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Fig. 1. Subsets and their relation.

probability mass function on some finite alphabets. Define

h
(n)

k =
1

k
(
n
k

) ∑
A∈P̂(In):|A|=k

k∑
j=1

H(WA(j)), (3)

where

WA(j) , {WB : |B ∩ A| ≥ j} (4)

Then

h
(n)

1 ≥ h(n)2 ≥ · · · ≥ h(n)n . (5)

We can understand the set of random variables

{WB : i ∈ B}, i = 1, 2, . . . , n, (6)

as n random variables with certain common components, or
as subsets of random variables instead of simple random
variables; see. Fig. 1 for an illustration when n = 3. To make
this more explicit, it is beneficial to present an alternative
statement of Theorem 1.

Theorem 1′: Let {Wi, i = 1, 2, . . . , N} be a set of random
variables jointly distributed according to some probability
mass function on some finite alphabets. Let Ci, i = 1, 2, . . . , n
be subsets of IN . Define

h
(n)

k =
1

k
(
n
k

) ∑
A∈P̂(In):|A|=k

k∑
j=1

H(W ′A(j)) (7)

where

W ′A(j) ,

Wk, k ∈
⋃

{i1,i2,...,ij}⊆A

(Ci1 ∩ Ci2 ∩ · · · ∩ Cij )

 ,

(8)

then

h
(n)

1 ≥ h(n)2 ≥ · · · ≥ h(n)n . (9)

It is straightforward to verify that Theorem 1 and Theorem
1’ are equivalent. This result essentially provides the relation
among the average entropy rates of the fixed cardinality
intersections of subsets of random variables, however with
special consideration of the specified common parts. It should
be noted that there is a layered structure in W ′A(j), which is
generated by taking intersection of different number of subsets

of a set.
The following results are complementary to Theorem 1, in a

similar manner as those to Han’s inequality [2] (pp. 492-493).
Theorem 2: Let {WA,A ∈ P̂(In)} be a set of 2n − 1

discrete random variables jointly distributed according to some
probability mass function. Define

g
(n)
k =

1

k
(
n
k

) ∑
A∈P̂(In):|A|=k

k∑
j=1

H(WA(j)|W c
A(j)), (10)

where W c
A(j) = WIn(1) \WA(j). Then

g
(n)
1 ≤ g(n)2 ≤ · · · ≤ g(n)n . (11)

Combining Theorem 1 and Theorem 2, we have the follow-
ing theorem.

Theorem 3: Let {WA,A ∈ P̂(In)} be a set of 2n − 1
discrete random variables jointly distributed according to some
probability mass function. Define

f
(n)

k =
1

k
(
n
k

) ∑
A∈P̂(In):|A|=k

k∑
j=1

I(WA(j);W c
A(j)) (12)

Then

f
(n)

1 ≥ f (n)2 ≥ · · · ≥ f (n)n . (13)

As a special case to Theorem 1, we can recover Han’s
inequality on subsets, by letting WA be a constant for all
|A| > 1, for which W{i} can be conveniently written as Wi.

Proposition 4: Let {Wi} be a set of n discrete random
variables jointly distributed according to some probability
mass function. Define

h
(n)
k =

1

k
(
n
k

) ∑
A∈P̂(In):|A|=k

H({Wi : i ∈ A}). (14)

Then

h
(n)
1 ≥ h(n)2 ≥ · · · ≥ h(n)n . (15)

As another special case to Theorem 1, we can recover the
n-way sub-modularity inequality [7], which is the following
proposition.

Proposition 5: Let {WA,A ∈ P̂(In)} be a set of 2n − 1
discrete random variables jointly distributed according to some
probability mass function. Then

n∑
i=1

H({WB : i ∈ B}) ≥
n∑

j=1

H({WB : |B| ≥ j}). (16)

The left hand side of (16) is simply h
(n)

1 and the right
hand side is simply h

(n)

n . For this reason, it is tempting to
state Proposition 5 as a corollary of Theorem 1. However, we
refrain from doing so because Proposition 5 in fact plays an
instrumental role in our proof of Theorem 1. The proof of
Proposition 5 can be found in [7].

It should be noted that though Han’s inequality and the
n-way sub-modularity inequality can be recovered this way,
this does not mean Theorem 1 is stronger. Indeed the new
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set of inequalities, or rather its general form on sub-modular
functions (given in the next section) can be specialized to
the n-way sub-modularity inequality, however, since the n-
way sub-modularity inequality is sufficient to prove the new
set of inequalities, they are completely equivalent for general
sub-modular functions. The new set of inequalities on entropy
function can be specialized to Han’s equality, yet the condi-
tional version of Han’s inequality implies the sub-modularity
of the entropy function, and thus the new set of inequalities
in its entropy form and the conditional version of Han’s
inequality are equivalent. In the language of classification of
information inequalities, these inequalities are all Shannon
type inequalities [10]. Despite this relationship, it is our hope
that this new set of inequalities may find its applications in
the future, just as Han’s inequality finds applications in [3]–[5]
some 20 or 30 years after its discovery.

Example: Consider n = 3, and the random variables in
Theorem 1 are

{W1,W2,W3,W12,W13,W23,W123},

where for simplicity we have written W{1,2,3} as W123, and
similarly for W{i,j} and W{i}; see Fig. 1. Theorem 1 then
gives (17) on the top of this page. We can also naively apply
Han’s inequality on the three sets of random variables, and
treat each of them as a random variable,

T1 = {W1,W12,W13,W123}
T2 = {W2,W12,W23,W123}
T3 = {W3,W13,W23,W123},

which gives (18) on the top of this page. Note that when all
the random variables are independent, (17) becomes equalities,
however, (18) will not give equalities in general. The form
of (17) is not obvious, particularly the coefficients of the
entropies are not easy to determine a priori.

III. PROOFS OF THE THEOREMS

It is well known that the entropy function is sub-modular,
thus the following theorem regarding sub-modular functions
suffices for the proof of Theorem 1. For notational simplicity,
we reserve the calligraphic letters A, A′ and B for non-empty
subset of In, i.e., A ∈ P̂(In) (and similarly for A′ and B),
and will not explicitly include this condition from here on.

Theorem 6: Let θ be a submodular function on sets, i.e.,
for any two sets C1 and C2,

θ(C1) + θ(C2) ≥ θ(C1 ∪ C2) + θ(C1 ∩ C2). (19)

Define

θ
(n)
k ,

1

k
(
n
k

) ∑
A:|A|=k

k∑
j=1

θ({B : |B ∩ A| ≥ j}), (20)

then

θ
(n)
1 ≥ θ(n)2 ≥ · · · ≥ θ(n)n , (21)

Note here C1 and C2 should be understood as sets of subsets
in the context of Theorem 1.

We will need the following lemma from [7] to prove
Theorem 6. It is clear that Proposition 5 follows directly from
this lemma.

Lemma 1 ([7] n-way sub-modularity): Let θ be a sub-
modular function, then

n∑
i=1

θ(Ci) ≥
n∑

k=1

θ(Ck,n), (22)

where

Ck,n ,
⋃

{j1,j2,...,jk}⊆In

(Cj1 ∩ Cj2 ∩ · · · ∩ Cjk). (23)

Proof of Theorem 6:



We first prove that θ(n)n ≤ θ
(n)
n−1. For notational simplicity,

Ai is used to denote In \ {i} for i = 1, 2, . . . , n. By Lemma
1 we can write for a fixed j that

n∑
i=1

θ({B : |B ∩ Ai| ≥ j}) ≥
n∑

i=1

θ(C(j)i ), (24)

where

C(j)i ,
⋃
|A′|=i

⋂
m∈A′

{B : |B ∩ Am| ≥ j}. (25)

We claim that

C(j)i =

{
{B : |B| ≥ j} i+ j ≤ n
{B : |B| ≥ j + 1} i+ j > n

(26)

To see this, observe that due to its complete symmetry, C(j)i

must be in the form {B : |B| ≥ v} for some integer v. Clearly
v ≥ j because of the special form of C(j)i . Furthermore, since
any B that has at least j + 1 elements in In, it must have at
least j elements in Ai for i = 1, 2, . . . , n, i.e.,

{B : |B ∩ Ai| ≥ j} ⊇ {B : |B| ≥ j + 1}, (27)

it is clear that v ≤ j+1. Next we show that v = j if and only
if i+ j ≤ n.

If i+ j ≤ n, then let us consider a special choice of A′

A′ = {n, n− 1, . . . , n− i+ 1}, (28)

and thus for this choice

Ij ∈
⋂

m∈A′

{B : |B ∩ Am| ≥ j} (29)

because

Ij ∈ {B : |B ∩ Am| ≥ j}, m = n, n− 1, . . . , n− i+ 1.
(30)

Thus v = j for this case.

Next we show that if i+ j > n, then there does not exist a
set A′ such that (29) can hold, and it will follow that Ij /∈ C(j)i ,
and thus v = j+1 for this case. We prove this by contradiction.
For (29) to hold, it must be true that

Ij ∈ {B : |B ∩ Am| ≥ j}, m ∈ A′. (31)

This implies that

Ij ⊆ Am, m ∈ A′. (32)

However there are only a total of n − j possible choices of
Am such that Ij ⊆ Am, but at the same time |A′| = i > n−j
by assumption. Thus a contradiction arises by the pigeonhole
principle. Thus (26) is indeed true.

We can now write

n(n− 1)θ
(n)
n−1 =

n∑
i=1

n−1∑
j=1

θ({B : |B ∩ Ai| ≥ j})

=

n−1∑
j=1

n∑
i=1

θ({B : |B ∩ Ai| ≥ j})

≥
n−1∑
j=1

(n− j)θ({B : |B| ≥ j}) + jθ({B : |B| ≥ j + 1})

= (n− 1)

n∑
j=1

θ({B : |B| ≥ j}) = n(n− 1)θ(n)n , (33)

which completes the proof for θ(n)n ≤ θ(n)n−1.
To prove θ(n)k ≤ θ(n)k−1 for k ≤ n, we take a similar approach

as used in [2] (p. 491). We first limit the choice of A and B to a
k-element subset of In, and then taking a uniform choice over
its (k − 1)-element subsets. For each such k-element subset,
θ
(k)
k ≤ θ

(k)
k−1, and the inequality remains true after taking the

expectation over all k-element subset chosen uniformly from
In. This completes the proof.

Theorem 1 now directly follows from Theorem 6. Clearly, if
the sub-modular functions in Theorem 6 are replaced by super-
modular functions, the direction of the inequalities are simply
reversed. With this observation, Theorem 2 follows directly
from the super-modularity of the conditional entropy function
H(C|Cc), where Cc = Ω \ C is the complement of set C. This
can be seen as follows.

H(C1|Cc1) +H(C2|Cc2)

= 2H(Ω)−H(Cc1)−H(Cc2)

≤ 2H(Ω)−H((C1 ∩ C2)c)−H((C1 ∪ C2)c)

= H(C1 ∩ C2|(C1 ∩ C2)c) +H(C1 ∪ C2|(C1 ∪ C2)c), (34)

where the inequality is by the sub-modularity of the entropy
function and the fact

Cc1 ∩ Cc2 = (C1 ∪ C2)c Cc1 ∪ Cc2 = (C1 ∩ C2)c.

The proofs of Theorem 3, Proposition 4 and Proposition 5
are trivial, and thus omitted here.

IV. CONCLUDING REMARKS

We provided a new set of inequalities, which generalizes the
classic Han’s inequality on entropy rates of subsets of random
variables to include common components. These inequalities
provide a link between Han’s inequality and the n-way sub-
modularity inequality, both of which belong to this new set of
inequalities as special cases.

Admittedly, this new set of inequality has yet to find appli-
cations in information theoretical problems. These inequalities,
however, are indeed motivated by one of author’s recent works
[11], and the consideration to include common components
comes from the common message requirement in broadcast
channel. It appears possible to simplify the rather lengthy proof
given in [11] with the help of this new set of information



inequalities. It remains to be seen whether this new set of
inequalities can find its application elsewhere.
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