

COURSE OUTLINE

- Overview of FPGAs and ASICs
- Using Synthesis
- HDL Examples
- Simulation and Testing
- Physical Place and Route
- Testing ASICs
- Component Reuse

A VARIETY OF ASICS ARE POSSIBLE

THE COST PER GATE DECREASES AS THE DENSITY OF AN I.C. INCREASES

- Microprocessors and other offthe-shelf LSI/VLSI chips are the most cost-effective because millions of gates are available in a single chip. (\$0.0001/gate; 20,000 gates/pin)
- SSI/MSI glue logic chips are the least cost-effective because only a few gates are available in a single chip. (\$0.01/gate; 1-3 gates/pin)

		ON TO
CACHE		PREDICTI
BUS INTERFACE LOGIC		COMPLEX INSTRUCTION SUPPORT
DATA	SUPERSCALER INTEGER EXECUTION	
DATA CACHE		
MP LOGIC		

PENTIUM

SYSTEM FUNCTIONS ARE OFTEN SPLIT BETWEEN THE CPU AND AN ASIC

- The most economical means of implementing logic functions is to use s a microprocessor.
- When the microprocessor is too slow or too busy to handle some fast inputs and outputs, an ASIC can be used to implement "random" logic.

PROGRAMMABLE LOGIC DEVICES ARE BEST FOR SMALL DESIGNS WITH I/O

PLDs

- Vendor prefabricates multiple sets of ANDs and ORs with programmable connections
 - User specifies connections to implement desired logic functions
 - Replaces 200 to 8,000 gates with single package of 20-84 pins
 - Electrically programmable (and erasable) by the user one at a time within minutes
 - PC-based development system costs \$3K

FPGAS ARE BEST FOR ADAPTABLE SITUATIONS

- Vendor prefabricates parts with rows of gates and programmable connections
- User specifies connections to implement logic functions
- Replaces 8,000 to 200,000 gates (or more)
- Electrically programmable (and erasable) by the user one at a time within minutes
- Production quantity < 200,000
- PC-based development system costs \$10K

ALTERA FLEX-10K FPGA LAYOUT

Vendor prefabricates parts with rows of gates (look-up tables) and programmable connections (not shown).

RoD	Any Col		Col 2	Col 3						Col 9		Col 12			Col 16				Col 20	Col 22				
Row A	(10) (10) (10) (10) (10) (10) (10) (10)		+++++													++++		++++					00 (10, 05) 00 (10, n05) 00 Seven_se 00 Seven_se 00 Seven_se 00 Seven_se 00 Seven_se 00 Seven_se	the state of the second second second
Row B																							Di (UO) Di Seven_se Di (UO) Di Seven_se Di Seven_se Di Seven_se Di Seven_se Di Seven_se	
Row C				+ + • •																		++++	0 Seven_se 5siven_se 00(00)NIIT_ 00(851 00(80) 00(80) 00(80) 00(80)	
Row D										+++	++	+++												
Rom E	(10)= (10)= (10)= (10)= (10)= LD_5Dotte												++++	++++						++	++			
Rom F																	+							
© 2003 Don Bouldin																								

DETAILED LAYOUT OF XILINX FPGA

Programmable switches (*puddles* which have RC delay) determine which wiring segments (short, medium, long) are connected.

MGAS ARE BEST FOR HIGH-QUANTITY DESIGNS WITH CRITICAL TIME-TO-MARKET

 Vendor prefabricates rows of gates and stockpiles wafers

Mask

Gate Arrays

- User specifies *two* layers to implement logic functions
 - Replaces 20,000 to 200,000 gates (or more)
 - After place & route, masks are made for two layers
- Workstation-based development system costs \$ 20K
- Turnaround time for prototypes is 3 weeks

A MASK GATE ARRAY CAN BE STOCKPILED AND THEN PERSONALIZED

- The fabricator provides basic gates with space for interconnect.
- The application designer submits a logic net-list which defines the interconnect layers.

STANDARD-CELLS ARE BEST FOR HIGH-QUANTITY APPLICATIONS WITH RAM

- Vendor develops library disk files of logic functions (and internal RAM or cache).
- User selects cells and specifies *two* layers of interconnections
- After place & route, masks are made for *all* layers
- Replaces 20,000 to 2,000,000 gates (or more)
- Workstation-based development system costs \$ 20K
- Turnaround time for prototypes is 8 weeks

STANDARD-HEIGHT CELL CHIPS CAN ALSO USE EMBEDDED RAM

BIT-SLICE DATA PATHS ARE BEST FOR SPECIAL-PURPOSE PARALLEL PROCESSING

Replicated

Bit-Slices

- User performs *custom* layout of bitslices which are then replicated
- Most efficient use of silicon
- Masks are made for all layers
- Replaces 20,000 to 200,000 gates (or more)
- Workstation-based development system costs \$ 150K
- Turnaround time for prototypes is 8 weeks

DATAPATH OR BIT-SLICE LAYOUT IS THE MOST EFFICIENT

- The basic cell has been designed with its neighbors in mind.
- One bit has been arrayed 8 times to form a byte.
- Each byte is connected to its neighbor to form a datapath or systolic array.

SPECIAL TECHNIQUES ARE USED FOR LAYOUT OF ANALOG CIRCUITS

- Layouts use multi-gate fingers and commoncentroid symmetry to improve matching of devices.
- Poly2-Poly1 capacitors save space.
- Switched-capacitor circuits replace large resistors.
- Guard rings reduce noise.

MIXED-SIGNAL ICS USE BOTH ANALOG AND DIGITAL CIRCUITS

- Solar cells provide power.
- Analog circuit detects when sufficient energy is available.
- Digital circuit provides for series of pulses.
- Infrared LEDs emit output that is detectable 1 mile away.

MINIMIZING AREA INCREASES BOTH THE NUMBER OF SITES AND YIELD

Sites - Bad Die = Good Die 64 - 7 = 57

FPGAS COST MORE AND ARE SLOWER THAN MGAS

- FPGAs cost 2x
 more since
 programmable
 logic and
 interconnect
 switches result in
 larger die size.
- FPGAs are 2x slower since programmable interconnect switches have greater RC delay than metal vias.

Convert when >200,000 copies or 2x faster speed is needed.

