
DESIGNING FPGAS & ASICS

Prof. Don Bouldin, Ph.D.
SCHEMATIC

AND
ORAND

HDL
architecture behavior of control is
 if left_paddle then
 n_state <= hit_state
 elsif n_state <= miss_state
 end if;

SYNTHESIS

Simulation and TestingSimulation and Testing

©2007 -- Don Bouldin

Electrical & Computer Engineering
University of Tennessee

TEL: (865)-974-5444
FAX: (865)-974-5483

dbouldin@tennessee.edu

PHYSICAL LAYOUT
PLACE & ROUTE

COURSE OUTLINE

• Overview of FPGAs and ASICs

• Using Synthesis

©2007 -- Don Bouldin

• HDL Examples

• Simulation and Testing

• Physical Place and Route

• Testing ASICs

• Component Reuse

SEMI-CUSTOM DESIGN FLOW OF
DIGITAL FPGAS/ASICS

1—HDL 1—HDL 2--PRE-SYNTHESIS SIMULATION2--PRE-SYNTHESIS SIMULATION
CASE w IS

WHEN "00" => y <= "1000" ;

WHEN "01" => y <= "0100" ;

WHEN "10" => y <= "0010" ;

WHEN OTHERS => y <= "0001";

CASE w IS

WHEN "00" => y <= "1000" ;

WHEN "01" => y <= "0100" ;

WHEN "10" => y <= "0010" ;

WHEN OTHERS => y <= "0001";

©2007 -- Don Bouldin

3—SYNTHESIS/AUTO LAYOUT3—SYNTHESIS/AUTO LAYOUT

4--POST-LAYOUT SIMULATION4--POST-LAYOUT SIMULATION

END CASE ;END CASE ;

Note the "zero" delay at 2450 ns:

PRE-SYNTHESIS SIMULATION IS
TECHNOLOGY-INDEPENDENT

©2007 -- Don Bouldin

Note the “14ns" delay at 2464 ns:

POST-LAYOUT SIMULATION INCLUDES
COMPONENT AND WIRING DELAYS

©2007 -- Don Bouldin

Simulation of fulladd.vhd

• Pre-
synthesis:
outputs
change
i t tl t

©2007 -- Don Bouldin

instantly at
200 ns.

• Post-
layout:
outputs
change at
206-207 ns.

RECOMMENDED METHOD FOR
LEARNING VHDL

• Copy a known working file to use as a template with

reserved words and syntax. Simulate it.

• Modify the VHDL source code to perform your intended

operations and then simulate the revised code

©2007 -- Don Bouldin

operations and then simulate the revised code.

• Be wary of examples in textbooks and on the internet

since not all VHDL code is synthesizable with a

particular synthesis tool and software environment.

• Avoid use of the “FOR” statement which is confusing.

• Avoid using technology-dependent statements like

“WAIT until 14 ns”. Instead, use “WAIT_CLOCK(16)”.

SIMULATION SHOWS THE RESPONSES
OF THE VHDL TO STIMULI

STIMULI RESPONSES

©2007 -- Don Bouldin

• Functional
stimuli are
developed by
the designer
to mimic the
system
environment.

VHDL
SOURCE

CODE

WAVEFORM

• The testbench is written in VHDL but is
not synthesized into the FPGA/ASIC.

THE TESTBENCH CONTAINS THE
STIMULI, RESPONSES AND UUT

©2007 -- Don Bouldin

VHDL
SOURCE

CODE
STIMULI RESPONSES

Synthesizable
Unit-Under-Test
Synthesizable

Unit-Under-Test

TestBench—Simulation onlyTestBench—Simulation only

“Failure” stops simulation while “warning” does not.

“Note” is used to document a correct response.

EXPECTED RESPONSES ARE
COMPARED TO ACTUAL ONES

wait_clock(16); wait_clock(16);

©2007 -- Don Bouldin

IF (left_seg = X"6")
-- check second state of 7-segment display
THEN
ASSERT false
REPORT "Output signals set correctly (7-segment second state)"
SEVERITY note;
ELSE
ASSERT false
REPORT "Output not set correctly (7-segment second state)"
SEVERITY warning;
END IF;

IF (left_seg = X"6")
-- check second state of 7-segment display
THEN
ASSERT false
REPORT "Output signals set correctly (7-segment second state)"
SEVERITY note;
ELSE
ASSERT false
REPORT "Output not set correctly (7-segment second state)"
SEVERITY warning;
END IF;

The simulator can produce coverage reports.

ALL VHDL SOURCE LINES SHOULD
BE TESTED

©2007 -- Don Bouldin

FINAL VERIFICATION IS PERFORMED
USING A PROTYPING BOARD

• .

©2007 -- Don Bouldin

PLD (2K)
FPGA (70K)

XILINX TOOLS ARE FREE BUT
TARGET ONLY XILINX PARTS

• Anyone can download Xilinx WebPACK tools for free
from www.xilinx.com

©2007 -- Don Bouldin

• WebPACK includes a free version

of ModelSim that works only for

Xilinx parts but you must register

at www.mentor.com

IMPLEMENTING A PROJECT

• Determine I/O Requirements

• Partition into 5-9 submodules and test
individually before combining.

©2007 -- Don Bouldin

• Use/Enhance Built-In Self-Test

• Debounce Pushbutton Switches

• Filter an Input to Produce a Single Pulse

• Use hierarchy with Submodule Components

• Synchronize Externally Clocked Inputs

DETERMINE SYSTEM I/O
REQUIREMENTS

©2007 -- Don Bouldin

DECOMPOSE EACH LEVEL
INTO 7+/-2 SUBMODULES

©2007 -- Don Bouldin

SIMULATE EACH SUBMODULE AND
THEN INTEGRATE THEM

Submodule#1Submodule#1 Submodule#2Submodule#2

©2007 -- Don Bouldin

Composite of #1 and #2Composite of #1 and #2

BUILT-IN SELF-TEST

• Downloading hw3a (BIST) ensures the integrity of
the connection between the CPU and the Spartan3
prototyping board AND then checks the input
switches and the 7-segment displays.

• More thorough checks could be added to ensure

©2007 -- Don Bouldin

More thorough checks could be added to ensure
the integrity of the board I/O for a specific
project.

INTERNAL FREQUENCIES CAN BE
DERIVED FROM THE EXTERNAL CLOCK

• A crystal oscillator on the Spartan3 prototyping board
produces a 50 MHz clock.

• Counters can be used to divide down a frequency into a
slower synchronized one:

©2007 -- Don Bouldin

Divide By Frequency Duration
1 clock_50MHz 20 ns
2 clock_25 MHz 40 ns
25 clock_1MHz 1000 ns = 1us
10 clock_100KHz 10 us
10 clock_10KHz 100 us
10 clock_1KHz 1000 us = 1 ms
10 clock_100Hz 10 ms
10 clock_10Hz 100 ms
10 clock_1Hz 1000 ms = 1 s
10 clock_tenthHz 10 s

Divide By Frequency Duration
1 clock_50MHz 20 ns
2 clock_25 MHz 40 ns
25 clock_1MHz 1000 ns = 1us
10 clock_100KHz 10 us
10 clock_10KHz 100 us
10 clock_1KHz 1000 us = 1 ms
10 clock_100Hz 10 ms
10 clock_10Hz 100 ms
10 clock_1Hz 1000 ms = 1 s
10 clock_tenthHz 10 s

Simulation of clk_div.vhd (part 1)

• 50 MHz divided by 2 25 MHz:

©2007 -- Don Bouldin

• 25 MHz divided by 25 1 MHz:

Simulation of clk_div.vhd (part 2)

• 10 KHz divided by 10 1 KHz:

©2007 -- Don Bouldin

clk_div.vhd (part 1)

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.all;
USE IEEE.STD_LOGIC_ARITH.all;
USE IEEE.STD_LOGIC_UNSIGNED.all;

ENTITY clk_div IS

©2007 -- Don Bouldin

PORT
(

clock_25Mhz : IN STD_LOGIC;
clock_1MHz : OUT STD_LOGIC;
clock_100KHz : OUT STD_LOGIC;
clock_10KHz : OUT STD_LOGIC;
clock_1KHz : OUT STD_LOGIC;
clock_100Hz : OUT STD_LOGIC;
clock_10Hz : OUT STD_LOGIC;
clock_1Hz : OUT STD_LOGIC);

END clk_div;

clk_div.vhd (part 2)

ARCHITECTURE a OF clk_div IS

SIGNAL count_1Mhz: STD_LOGIC_VECTOR(4 DOWNTO 0);
SIGNAL count_100Khz, count_10Khz, count_1Khz : STD_LOGIC_VECTOR(2 DOWNTO 0);
SIGNAL count_100hz, count_10hz, count_1hz : STD_LOGIC_VECTOR(2 DOWNTO 0);
SIGNAL clock_1Mhz_int, clock_100Khz_int, clock_10Khz_int, clock_1Khz_int:STD_LOGIC;
SIGNAL clock_100hz_int, clock_10Hz_int, clock_1Hz_int : STD_LOGIC;

BEGIN
PROCESS

©2007 -- Don Bouldin

BEGIN
-- Divide by 25

WAIT UNTIL clock_25Mhz'EVENT and clock_25Mhz = '1';
IF count_1Mhz < 24 THEN

count_1Mhz <= count_1Mhz + 1;
ELSE

count_1Mhz <= "00000";
END IF;
IF count_1Mhz < 12 THEN

clock_1Mhz_int <= '0';
ELSE

clock_1Mhz_int <= '1';
END IF;

clk_div.vhd (part 3)

-- Divide by 10
PROCESS
BEGIN

WAIT UNTIL clock_1Mhz_int'EVENT and clock_1Mhz_int = '1';
IF count_100Khz /= 4 THEN

count_100Khz <= count_100Khz + 1;
ELSE

©2007 -- Don Bouldin

ELSE
count_100khz <= "000";
clock_100Khz_int <= NOT clock_100Khz_int;

END IF;
END PROCESS;
-- Divide by 10
PROCESS
BEGIN

WAIT UNTIL clock_100Khz_int'EVENT and clock_100Khz_int = '1';
IF count_10Khz /= 4 THEN

count_10Khz <= count_10Khz + 1;
ELSE

count_10khz <= "000";
clock_10Khz_int <= NOT clock_10Khz_int;

END IF;
END PROCESS;

clk_div.vhd (part 4)

…………………… etc …………………

-- Divide by 10
PROCESS
BEGIN
WAIT UNTIL clock_10hz_int'EVENT and clock_10hz_int = '1';

©2007 -- Don Bouldin

IF count_1hz /= 4 THEN
count_1hz <= count_1hz + 1;

ELSE
count_1hz <= "000";
clock_1hz_int <= NOT clock_1hz_int;

END IF;
END PROCESS;

END a;

clk_div.vhd (part 5)

…………………… etc …………………

-- Divide by 10
PROCESS
BEGIN
WAIT UNTIL clock_10hz_int'EVENT and clock_10hz_int = '1';

©2007 -- Don Bouldin

IF count_1hz /= 4 THEN
count_1hz <= count_1hz + 1;

ELSE
count_1hz <= "000";
clock_1hz_int <= NOT clock_1hz_int;

END IF;
END PROCESS;

END a;

clk_div.vhd (part 6)

…………………… etc …………………

-- Divide by 10
PROCESS
BEGIN
WAIT UNTIL clock_10hz_int'EVENT and clock_10hz_int = '1';

©2007 -- Don Bouldin

IF count_1hz /= 4 THEN
count_1hz <= count_1hz + 1;

ELSE
count_1hz <= "000";
clock_1hz_int <= NOT clock_1hz_int;

END IF;
END PROCESS;

END a;

AN INPUT PUSHBUTTON SWITCH
MAY BOUNCE

VddVdd

To FPGATo FPGA

GNDGND

©2007 -- Don Bouldin

Input With BouncingInput With Bouncing

Desired OutputDesired Output

Fig. 6.11, Page 243
ASICs by M. Smith
© 1997 A-W-L, Inc.
Used by permission.

Fig. 6.11, Page 243
ASICs by M. Smith
© 1997 A-W-L, Inc.
Used by permission.

debounce.vhd

debounce.vhd

©2007 -- Don Bouldin

Simulation of debounce.vhd (part 1)

• PB has been 0 (inactive), then is 1 (active) but
only for 10 ms (too short to be valid) so
PB_debounced stays 1 (inactive):

©2007 -- Don Bouldin

Simulation of debounce.vhd (part 2)

• This time PB is 1 (active) for 60 ms (which is valid
since it is at least 40ms) so PB_debounced
becomes 0 (active):

©2007 -- Don Bouldin

FILTER AN INPUT TO PRODUCE
A SINGLE PULSE

An External Pushbutton Switch
May Be Pressed For Multiple

Clock Ticks

An External Pushbutton Switch
May Be Pressed For Multiple

Clock Ticks

©2007 -- Don Bouldin

A Circuit Can Be
Implemented to Produce

Only a Single Pulse

A Circuit Can Be
Implemented to Produce

Only a Single Pulse

Simulation of onepulse.vhd

• PB_debounced has been 0 (active) for 100 ms
but only a single 1 ms pulse is produced:

©2007 -- Don Bouldin

onepulse.vhd (part 1)

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.all;

USE IEEE.STD_LOGIC_ARITH.all;

USE IEEE STD LOGIC UNSIGNED all;

©2007 -- Don Bouldin

USE IEEE.STD_LOGIC_UNSIGNED.all;

-- Single Pulse circuit

-- the output will go high for only one clock cycle

ENTITY onepulse IS

PORT(PB_debounced, clock : IN STD_LOGIC;

PB_single_pulse : OUT STD_LOGIC);

END onepulse;

onepulse.vhd (part 2)

ARCHITECTURE a OF onepulse IS

SIGNAL PB_debounced_delay, Power_on : STD_LOGIC;

BEGIN

PROCESS (Clock)

©2007 -- Don Bouldin

PROCESS (Clock)

BEGIN

WAIT UNTIL (CLOCK'event) AND (CLOCK='1');

-- Power_on will be initialized to '0' at power up

IF Power_on='0' THEN

-- This code resets the critical signals once at power up

PB_single_pulse <= '0';

PB_debounced_delay <= '1';

Power_on <= '1';

ELSE

onepulse.vhd (part 1)
(modified)

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.all;

USE IEEE.STD_LOGIC_ARITH.all;

USE IEEE.STD_LOGIC_UNSIGNED.all;

-- Single Pulse circuit

-- the output will go high for only one clock cycle

ENTITY onepulse IS

PORT(PB_debounced, clock : IN STD_LOGIC;

PB_single_pulse : OUT
STD LOGIC)

OriginalOriginal

©2007 -- Don Bouldin

STD_LOGIC);

END onepulse;

Modified:Modified:

onepulse.vhd (part 2)
(modified)

ARCHITECTURE a OF onepulse IS

SIGNAL PB_debounced_delay, Power_on : STD_LOGIC;

BEGIN

PROCESS (Clock)

©2007 -- Don Bouldin

PROCESS (Clock)

BEGIN

WAIT UNTIL (CLOCK'event) AND (CLOCK='1');

-- Power_on will be initialized to '0' at power up

IF Power_on='0' THEN

-- This code resets the critical signals once at power up

PB_single_pulse <= '0';

PB_debounced_delay <= '1';

Power_on <= '1';

ELSE

Simulation of onepulse.vhd
(modified)

• PB_debounced has been 0 (active) for 100 ms
but only a single 1 ms pulse is produced and
pb_flag is set. After being read, pb_flag is reset.

©2007 -- Don Bouldin

HIERARCHY WITH SUBMODULE
COMPONENTS

btn0btn0

single_pulsesingle_pulsedebounce1debounce1

btn0_debouncedbtn0_debounced
debounce onepulse

(modified)

reset_pb_flagreset_pb_flag

©2007 -- Don Bouldin

clock_50Mhzclock_50Mhz

clk_div

clock_100Hzclock_100Hz

clock_1MHzclock_1MHz

prescalarprescalar

pb_flagpb_flag
(modified)

clock_10Hzclock_10Hz

Simulation of hierarch.vhd

• A proper pressing of btn0 sets pb_flag to HIGH.
• Once pb_flag is read, it is reset to LOW.

©2007 -- Don Bouldin

hierarch.vhd (part 1)

BEGIN
-- Use Port Map to connect signals between components in the hierarchy

debounce1 : debounce PORT MAP (pb => pb1, clock_100Hz =>
clock_100Hz, pb_debounced => pb1_debounced);

©2007 -- Don Bouldin

p p)

prescalar : clk_div PORT MAP (clock_25Mhz => clock_25Mhz,
clock_1MHz => clock_1Mhz, clock_100hz => clock_100hz);

single_pulse : onepulse PORT MAP (pb_debounced => pb1_debounced,
clock => clock_1MHz,

pb_single_pulse => pb1_single_pulse);

END a;

hierarch.vhd (part 2)

COMPONENT onepulse
PORT(pb_debounced, clock : IN STD_LOGIC;

pb_single_pulse : OUT
STD_LOGIC);

END COMPONENT

©2007 -- Don Bouldin

END COMPONENT;

COMPONENT clk_div
PORT(clock_25Mhz : IN STD_LOGIC;
clock_1MHz : OUT STD_LOGIC;
clock_100KHz : OUT STD_LOGIC;
clock_10KHz : OUT STD_LOGIC;
clock_1KHz : OUT STD_LOGIC;
clock_100Hz : OUT STD_LOGIC;
clock_10Hz : OUT STD_LOGIC;
clock_1Hz : OUT STD_LOGIC);

END COMPONENT;

Simulation of hw3a.vhd

• After btn0 is pressed (properly), the pb_flag is set.
Then while dig “0111” is displayed , swt<7:0> are
read and pb_flag is reset:

©2007 -- Don Bouldin

hw3a.vhd (part 1)

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.all;

USE IEEE.STD_LOGIC_ARITH.all;

USE IEEE.STD_LOGIC_UNSIGNED.all;

©2007 -- Don Bouldin

-- Single Pulse circuit

-- the output will go high for only one clock cycle

ENTITY onepulse IS

PORT(PB_debounced, clock : IN STD_LOGIC;

PB_single_pulse : OUT
STD_LOGIC);

END onepulse;

hw3a.vhd (part 2)

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.all;

USE IEEE.STD_LOGIC_ARITH.all;

USE IEEE.STD_LOGIC_UNSIGNED.all;

©2007 -- Don Bouldin

-- Single Pulse circuit

-- the output will go high for only one clock cycle

ENTITY onepulse IS

PORT(PB_debounced, clock : IN STD_LOGIC;

PB_single_pulse : OUT STD_LOGIC);

END onepulse;

hw3a.vhd (part 3)

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.all;

USE IEEE.STD_LOGIC_ARITH.all;

USE IEEE.STD_LOGIC_UNSIGNED.all;

-- Single Pulse circuit

©2007 -- Don Bouldin

-- Single Pulse circuit

-- the output will go high for only one clock cycle

ENTITY onepulse IS

PORT(PB_debounced, clock : IN STD_LOGIC;

PB_single_pulse : OUT
STD_LOGIC);

END onepulse;

hw3a.vhd (part 4)

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.all;

USE IEEE.STD_LOGIC_ARITH.all;

USE IEEE.STD_LOGIC_UNSIGNED.all;

-- Single Pulse circuit

©2007 -- Don Bouldin

Single Pulse circuit

-- the output will go high for only one clock cycle

ENTITY onepulse IS

PORT(PB_debounced, clock : IN STD_LOGIC;

PB_single_pulse : OUT
STD_LOGIC);

END onepulse;

FPGA Resources for hw3a

• Logic slices used: 58 out of 1920 = 3%
• The constraint file, hw3a.ucf, assigned the pins.

©2007 -- Don Bouldin

Detailed Layout of hw3a

• Pin M13 is connected to btn0:

©2007 -- Don Bouldin

SYNCHRONIZER REDUCES RISK OF
METASTABILITY PROBLEMS

Signals from
external circuits
whose clock is
independent must
be synchronized
with our internal
clock

©2007 -- Don Bouldin

clock.
If not, the external
input may occur
during the decision
window of our flip-
flop and cause it to
go into a metastable
state.
To reduce the
likelihood of this
occurring, the input
can be double-
buffered.

Fig. 6.16, Page 249
ASICs by M. Smith
© 1997 A-W-L, Inc.
Used by permission.

Fig. 6.16, Page 249
ASICs by M. Smith
© 1997 A-W-L, Inc.
Used by permission.

