
To the Graduate Council:

I am submitting herewith a thesis written by Ashwin Balakrishnan entitled “An
Experimental Study of the Accuracy of Multiple Power Estimation Methods." I have
examined the final electronic copy of this thesis for form and content and recommend
that it be accepted in partial fulfillment of the requirements for the degree of Master of
Science, with a major in Electrical Engineering.

 Dr. Donald W. Bouldin

 Major Professor

We have read this thesis and
recommend its acceptance:

Dr. Gregory D. Peterson

Dr. Chandra Tan

Accepted for the Council:

Anne Mayhew

Vice Chancellor and

Dean of Graduate Studies

(Original signatures are on file with official student records.)

An Experimental Study of
 the Accuracy of

Multiple Power Estimation Methods

A Thesis

Presented for the

Master of Science Degree

The University of Tennessee, Knoxville

Ashwin Balakrishnan

August, 2004

Acknowledgement

First and foremost, I would like to thank Dr. Don Bouldin for providing me an

opportunity to do this project. His constant support, encouragement and super fast

responses made me complete this project within the required time. I am extremely

grateful to have an excellent mentor like him. Secondly, I would like to thank

Dr.Gregory Peterson for all his guidance during some of the projects I have worked

with him and support right from the day I landed here in the United States.

 Special thanks to Dr. Chandra Tan and Dr. Fuat Karakaya for all their guidance

and support not only during the course of this project but also during my entire course

of study. This project would not have been completed in time without the initial

background work done by them. Dr. Chandra Tan’s comprehensive knowledge of

scientific approaches and methodologies together with strong mathematical concepts

always inspired me. I am thankful to my supervisor Shirley Moore at the Innovative

Computing Laboratory of the Computer Science Department for giving me an

opportunity to work with them during my course of study. I am also extremely grateful

to the entire team at the University of Tennessee Telehealth Department where I was

supported with a Graduate Research Assistantship position during the past year. A

special thanks to my supervisors Dr. Susan Dimmick and Dr. Sam Burgiss for their

invaluable guidance.

Last but not the least, I thank my family and friends for extending their support

and encouragement.

 ii

Abstract

New and complex systems are being implemented using highly advanced

Electronic Design Automation (EDA) tools. As the complexity increases, the

dissipation of power has emerged as one of the very significant design constraints.

Low power designs are not only used in small size applications like cell phones and

handheld devices but also in high-performance computing applications.

Numerous tools have emerged in recent years to address this issue of power

consumption and power optimization. With a vast number of these power

measurement tools emerging, analyzing power consumed by digital circuits has not

only become easier but also more effective methods are deployed to optimize digital

circuits to dissipate less power.

This thesis involves using Synopsys power measurement tools together with

the use of synthesis and extraction tools to determine power consumed by various

macros at different levels of abstraction including the Register Transfer Level (RTL),

the gate and the transistor level. A comparison of the power calculated using different

net-lists from different extraction tools has also been done. In general, it can be

concluded that as the level of abstraction goes down the accuracy of power

measurement increases depending on the tool used.

 iii

Table of Contents

1 Introduction... 1

1.1 Overview of the Problem.. 1

1.2 Goals and contributions .. 2

1.3 Outline of thesis .. 4

2 Background ... 5

2.1 Need for Low Power Design... 5

2.1.1 Design Flow with and without Power... 6

2.2 Basic Concepts for Power... 8

2.2.1 Static Power ... 8

2.2.2 Dynamic Power... 9

2.2.2.1 Switching power .. 10

2.2.2.2 Internal power .. 10

2.2.3 Short-Circuit Power .. 11

2.2.4 Leakage Power.. 11

2.3 Tools Used .. 11

2.3.1 Non-Power Tools .. 12

2.3.1.1 Simulation Tool ... 12

2.3.1.2 Synthesis Tool.. 16

2.3.1.3 Place and Route Tool ... 17

2.3.1.4 Layout Tool.. 18

 iv

2.3.1.5 Extraction Tool .. 20

2.3.1.6 Waveform Viewer.. 22

2.3.2 Power Tools .. 23

2.3.2.1 DesignPower .. 24

2.3.2.2 RTL Power Estimator.. 24

2.3.2.3 Power Compiler ... 25

2.3.2.3.1 Power Compiler Methodology ... 26

2.3.2.3.1.1 Power Optimization .. 30

2.3.2.4 PrimePower ... 32

2.3.2.4.1 PrimePower Methodology.. 32

2.3.2.5 NanoSim ... 34

2.3.2.5.1 NanoSim Methodology ... 36

2.3.2.6 NanoSim Integration with VCS ... 37

2.3.3 Comparison of Power Tools ... 38

3 Experimental Design.. 40

3.1 Macros... 40

3.2 Power Estimation Techniques... 40

3.3 Basic design flow.. 41

3.4 Power Estimation at the Register Transfer Level ... 44

3.4.1 Methodology... 44

3.4.2 Capturing Forward and Backward Switching Activity......................... 46

3.4.2.1 SAIF file and RTL simulation ... 47

 v

3.4.2.2 SAIF forward-annotation file... 49

3.4.2.3 Creating Backward SAIF file... 50

3.4.2.3.1 Toggle command Methodology.. 50

3.4.3 Power reporting using Power Estimator... 52

3.5 Power Estimation using Power Compiler with RTL switching activity........... 54

3.5.1 Methodology... 54

3.6 Power Estimation using Power Compiler with Gate-level Switching activity. 55

3.6.1 Creating Gate-level Switching Activity.. 56

3.7 Power Estimation using PrimePower ... 58

3.7.1 Methodology... 59

3.7.2 Generating PrimePower inputs... 62

3.7.3 Power Calculation... 63

3.7.4 Power Reporting ... 63

3.8 Power Estimation using NanoSim... 65

3.8.1 Extracting SPICE net-list from Calibre .. 66

3.8.1.1 Design Rule Check (DRC) of Adder Layout. 68

3.8.1.2 Layout vs. Schematic (LVS) check for Adder Layout 68

3.8.1.3 Net-list extraction for Adder.. 71

3.8.2 NanoSim inputs and Power reporting ... 71

4 Results and Discussion... 75

4.1 Power results – 16-bit Adder .. 78

4.2 Power Tables... 86

 vi

4.3 Power Graphs.. 90

4.4 Analysis of obtained power values ... 95

4.5 Power value difference between Tool versions .. 98

4.6 Discussion about PrimePower vs. NanoSim power calculations................... 102

4.6.1 Steps involved in calculating power using PrimePower and NanoSim103

5 Summary, Conclusions and Future Work.. 107

5.1 Summary ... 107

5.2 Conclusions.. 107

5.3 Future Work .. 110

References.. 111

VITA... 116

 vii

List of Tables

Table 4.1 Comparison Table between Default vs. Best-PDA macros......................87

Table 4.2 Default/ Best-PDA Ratio ..88

Table 4.3 Simulation time taken for macros using NanoSim89

Table 4.4 Percentage of Error on the actual power values for each macro96

Table 4.5 Percentage of Error on the Ratios of Default vs. Best_PDA for each

macro...97

Table 4.6 Power Compiler’s 2002 vs. 2003 version..99

Table 4.7 PrimePower’s 2002 vs. 2003 version ..100

Table 4.8 Tool versions..101

Table 4.9 4-bit adder power values using PrimePower and NanoSim102

Table 4.10 Comparison of power values for 16-bit adder using ADDFX2...............106

 viii

List of Figures

Figure 1.1 Design Methodology showing power calculation using different power

tools ...3

Figure 2.1 VLSI design flows ..7

Figure 2.2 ModelSim simulation flow ..13

Figure 2.3 VCS work flow ...14

Figure 2.4 Verilog-XL design flow...15

Figure 2.5 Design Compiler synthesis process ..16

Figure 2.6 Silicon Ensemble work flow ...19

Figure 2.7 xCalibre Extraction flow...21

Figure 2.8 Power flow at each of the abstraction level ..26

Figure 2.9 Power flow from RTL to Gate level ...27

Figure 2.10 Power methodology in Power Compiler...29

Figure 2.11 PrimePower Methodology Flow...35

Figure 2.12 NanoSim Input/Output flow..37

Figure 2.13 NanoSim-VCS flow ..38

Figure 2.14 Power tools comparison chart...39

Figure 3.1 Design Flow..42

Figure 3.2 Power Analysis flow in Power Estimator...45

Figure 3.3 Methodology using RTL simulation and SAIF file48

Figure 3.4 RTL backward switching activity using ModelSim51

Figure 3.5 Toggle command Methodology..53

 ix

Figure 3.6 Gate-level backward switching activity using ModelSim57

Figure 3.7 PrimePower Analysis flow...60

Figure 3.8 Adder Layout ..67

Figure 3.9 DRC check of Adder Design ..69

Figure 3.10 LVS check of Adder Design ...70

Figure 3.11 Extraction output of Adder design..72

Figure 4.1 Design Methodology showing power calculations using different power

tools ...76

Figure 4.2 ModelSim Simulation result for 16-bit adder ..79

Figure 4.3 Power Report using Power Estimator ...80

Figure 4.4 Power Report using Power Compiler with RTL Switching Activity....81

Figure 4.5 Power Report using Power Compiler with Gate-level Switching

Activity ...82

Figure 4.6 Power Report using PrimePower ...83

Figure 4.7 Power Graph using CosmoScope..84

Figure 4.8 Power Report using NanoSim...85

Figure 4.9 Comparison between Adder macro’s Default and Best_PDA power

values ...90

Figure 4.10 Comparison between Multiplier macro’s Default and Best_PDA power

values ...91

Figure 4.11 Comparison between Complex Multiplier macro’s Default and

Best_PDA power values ...92

 x

Figure 4.12 Comparison between FIR macro’s Default and Best_PDA power values .

 ...93

Figure 4.13 Comparison between Poly-FIR macro’s Default and Best_PDA power

values ...94

Figure 4.14 16-bit adder schematic using ADDFX2 ...104

Figure 4.15 16-bit adder Layout using ADDFX2..105

 xi

List of Acronyms

1. EDA - Electronic Design Automation

2. VLSI - Very Large-Scale Integration

3. CMOS - Complementary Metal Oxide Semiconductor

4. ASIC - Application-Specific Integrated Circuit

5. FPGA - Field Programmable Gate-Array

6. SPICE - Simulation Program With Integrated Circuit Emphasis

7. RTL - Register Transfer Level

8. VCS - Design Exchange Format

9. HDL - Hardware Design Language

10. DEF - Design Exchange Format

11. LEF - Library Exchange Format

12. SDF - Standard Delay Format

13. GDS - Graphical Data Stream

14. DRC - Design Rule Check

15. LVS - Layout Vs. Schematic

16. SVRF - Standard Verification Rule Format

17. DSPF - Delayed Standard Parasitic Format

18. VSS - VHDL System Simulator

19. SAIF - Switching Activity Interchange Format

20. VCD - Value Change Dump

21. PIF - PrimePower Intermediate Format

 xii

22. DARPA - Defense Advanced Research Projects Agency

23. PDA - Power Delay Area

24. ICFB - Integrated Circuit Front to Back

25. TCL - Tool Command Language

 xiii

1 Introduction

1.1 Overview of the Problem

 With the increasing usage of hand-held wireless devices and Internet

appliances, there is a corresponding increased need for employing low-power design

methodologies. One of the important requirements to know during a design process is

how much power the circuit should dissipate considering its application. So after the

designer writes the required code, keeping in mind all the specifications that have been

given to him, a power calculation needs to be done to confirm if the design meets the

required specification. This is done prior to sending the chip for fabrication. So it is

extremely important to get accurate power values using power determining tools

running them at certain input conditions.

 Numerous EDA (Electronic Design Automation) tools have been developed to

not only determine power but also help in power reduction. Some of these tools are

targeted specifically for use in the power domain. The usage of these tools is classified

depending on the layer of abstraction they are used in. The three main layers of

abstraction include the RTL (Register Transfer Level), the gate and the transistor

level. Though there are numerous tools that can be used at each of these levels, this

thesis mainly concentrates on using Synopsys tools. The various power values that can

be calculated using these tools is given in brief in the next section with detailed

information following in the subsequent chapter.

 1

 1.2 Goals and contributions

The main goal of this thesis is to calculate the power of several macros which

vary in complexity from a 500-transistor net-list to one containing more than 150,000

transistors. All these macros were developed by others as part of research at the

Microelectronics Systems Laboratory at the University of Tennessee, Electrical and

Computer Engineering Department.

For each of the macros, power will be calculated at various levels of

abstraction using four EDA tools supplied by Synopsys: Power Estimator, Power

Compiler, PrimePower and NanoSim. The purpose and functionality of each of tools

will be discussed in the later chapters. One of the major contributions will be to

calculate the power using the transistor-level simulator, NanoSim and compare it with

the value obtained from Prime Power which operates at the gate level. A powerful

and sophisticated extraction tool, Calibre, will be used to get the flat Spice-level net-

list of each of the macros. Finally, a macro table will be formed indicating the power

values of each macro at each level, together with the simulated time taken using each

of the tools. Scripts will be developed to implement the various results. The following

Figure 1.1 shows the design flow involved in the thesis in calculating the power values

at different levels of abstraction. The results obtained at each level are tabulated.

 2

Figure 1.1 Design Methodology showing power calculation using different power tools

 3

1.3 Outline of thesis

Chapter 2 mainly reviews the literature related to the various tools that have

been used in this work. Chapter 3 discusses the implementation of the work at

different levels of abstraction namely, RTL level, Gate level and Transistor level.

Chapter 4 gives the results gathered from the previous chapter. Chapter 5 presents

conclusions and discusses possible future work.

 4

2 Background

2.1 Need for Low Power Design

In the early 1970’s designing digital circuits for high speed and minimum area

were the main design constraints. Most of the EDA tools were designed specifically to

meet these criteria. Power consumption was also a part of the design process but not

very visible. The reduction of area of digital circuits is not as big issue today because

with new IC production techniques, many millions of transistors can be fit in a single

IC. However, shrinking sizes of circuits have paved the way for reduced power

consumption in order to have an extended battery life. Also in submicron

technologies, there is a limitation on the proper functioning of circuits due to heat

generated by power dissipation. Market forces are demanding low power for not only

better life but also reliability, portability, performance, cost and time to market. This is

very true in the field of personal computing devices, wireless communications

systems, home entertainment systems, which are becoming popular now-a-days.

Devices that are also used for high-performance computing particularly need to

dissipate less power to function correctly and for a long period of time [1].

Keeping all these in mind, low power design has become one of the most

important design parameters for VLSI (Very Large Scale Integration) systems.

 5

 2.1.1 Design Flow with and without Power

 A top-down ordinary VLSI design approach is illustrated in Figure 2.1. The

figure summarizes the flow of steps that are required to follow from a system level

specification to the physical design. The approach was aimed at performance

optimization and area minimization. However, introducing the third parameter of

power dissipation made the designers to change the flow as you shown in the right-

hand side of the Figure 2.1.

In each of the design levels are two important power factors, namely power

optimization and power estimation. Power optimization is defined as the process of

obtaining the best design knowing the design constraints and without violating design

specifications. In order to meet the design and required goal, a power optimization

technique unique to that level should be employed. Power estimation is defined as the

process of calculating power and energy dissipated with a certain percentage of

accuracy and at different phases of the design process. Power estimation techniques

evaluate the effect of various optimizations and design modifications on power at

different abstraction levels.

Generally a design performs a power optimization step first and then a power

estimation step, but within a certain design level there is no specific design procedure.

Each design level includes a large collection of low power techniques. Each may

result in a significant reduction of power dissipation. However, a certain combination

of low power techniques may lead to better results than another series of techniques.

 6

System design level
Power optimization/Estimation

Architecture Design Level
Power optimization/Estimation

Logic Design Level
Power optimization/Estimation

Circuit Design Level
Power optimization/Estimation

System Specification

Physical Design Level
Power optimization/Estimation

System
Specification

System
Design Level

Architecture
Design level

Logic Design
Level

Circuit Design
Level

Physical
Design Level

Design Parameters

Performance

Area

Figure 2.1 VLSI des
Power
ign flow
Performance
s
Area
7

Generally, power is consumed when capacitors in the circuits are either charged or

discharged due to switching activities. So at higher levels of a system this power

dissipation is conserved by reducing the switching activities which is done by shutting

down portions of the system when they are not needed. Large VLSI circuits contain

different components like a processor, a functional unit and controllers. The idea of

power reduction is to stop any of the components of the processor when they are not

needed so that less power will be dissipated when the processor is operating [2].

2.2 Basic Concepts for Power

The power dissipation of digital CMOS circuits can be described by

Pavg = P dynamic + P short-circuit + P leakage + P static

Pavg is the average power dissipation, P dynamic is the dynamic power dissipation due to

switching of transistors, P short-circuit is the short-circuit current power dissipation when

there is a direct current path from power supply down to ground , P leakage is the power

dissipation due to leakage currents, P static and is the static power dissipation [2].

 2.2.1 Static Power

Static power is the power dissipated by a gate when it is not switching that is,

when it is inactive or static. Ideally, CMOS (Complementary Metal Oxide

Semiconductor) circuits dissipate no static (DC) power since in the steady state there

 8

is no direct path from Vdd to ground. This scenario can never be realized in practice,

since in reality the MOS transistor is not a perfect switch. There will always be

leakage currents, subthreshold currents, and substrate injection currents, which give

rise to the static component of power dissipation. The largest percentage of static

power results from source-to-drain subthreshold voltage, which is caused by reduced

threshold voltages that prevent the gate from completely turning off [2].

2.2.2 Dynamic Power

Dynamic power is the power dissipated when the circuit is active. A circuit is

active anytime the voltage on net changes due to some stimulus applied to the circuit.

In other words, dynamic power dissipation is caused by the charging. Because voltage

on an input net can change without necessarily resulting in logic transition in the

output, dynamic power can be dissipated even when an output net doesn’t change its

logic state. This component of dynamic power dissipation is the result of charging and

discharging parasitic capacitances in the circuit [2].

 Dynamic power of a circuit is composed of

a) Switching power

b) Internal power

 9

2.2.2.1 Switching power

The switching power of a driving cell is the power dissipated by the charging

and discharging of the load capacitance at the output of the cell. The total load

capacitance at the output of a driving cell is the sum of the net and gate capacitances

on the driving output. The charging and discharging are result of logic transitions.

Switching power increases as logic transitions increase. Therefore, the switching

power of a cell is a function of both the total load capacitance at the cell output and the

rate of logic transitions. Switching power comprises 70-90 percent of the power

dissipation of an active CMOS circuit [2].

2.2.2.2 Internal power

Internal power is any power dissipated within the boundary of a cell. During

switching, a circuit dissipates internal power by the charging or discharging of any

existing capacitances internal to the cell. Internal power includes power dissipated by

a momentary short circuit between the P and N transistors of a gate, called short-

circuit power. In most simple library cells, internal power is due mostly to short-circuit

power. Library developers can model internal power by using the internal power

library group [2].

 10

2.2.3 Short-Circuit Power

The short-circuit power consumption, P short-circuit, is caused by the current flow

through the direct path existing between the power supply and the ground during the

transition phase.

2.2.4 Leakage Power

The nMOS and PMOS transistors used in a CMOS logic circuit commonly

have non-zero reverse leakage and sub-threshold currents. These currents can

contribute to the total power dissipation even when the transistors are not performing

any switching action. The leakage power dissipation, P leakage is caused by two types of

leakage currents

a) Reverse-bias diode leakage current

b) Subthreshold current through a turned-off transistor channel [23].

2.3 Tools Used

There has been a variety of tools involved in this thesis. Even though, this

thesis is all about power calculations of macros which are done using tools; there are

other tools that have been used prior to the usage of power tools to give the required

input to the power tools. More emphasis is given to these tools that are mainly

involved in power estimation. The usage of tools has been classified as Power tools

 11

and Non-Power tools.

2.3.1 Non-Power Tools

 Non-power tools include Simulation tools, Synthesis tools, Layout tools,

Extraction tools and Waveform viewers.

The tools that are discussed in this chapter are some of the non-power tools

involved in the entire design flow. A short description of each of these tools along

with their working flow is given in this chapter to understand their functionality. The

subsequent chapter discusses each of the power tools in detailed manner as most of the

thesis involves the use of these power tools. The following chapter also discusses the

design flow from code writing to spice net-list simulation, clearly explaining the usage

of these tools at the respective level.

2.3.1.1 Simulation Tool

 Initially, to start with the Verilog or VHDL code for a particular design is

written and tested. Simulation is done using Mentor’s ModelSim for both VHDL and

Verilog or other Verilog simulators. ModelSim is a simulation and a debugging tool

for VHDL, Verilog, and other mixed-language designs from Mentor Graphics [21].

The basic simulation flow is as shown in Figure 2.2. To start with a working library is

created and the code is compiled using

 12

Compile design units

Run simulation

Debug results

Creating a working library

Figure 2.2 ModelSim simulation flow

the commands depending upon whether the code is VHDL or Verilog.

Verilog Compiled Simulator (VCS) [22] from Synopsys is a high-performance,

high-capacity Verilog simulator that incorporates advanced high-level abstraction,

verification into an open platform. The basic work flow for VCS consists of two basic

steps:

a) Compiling source files into executable binary files

b) Running the executable binary file

This two step approach simulates the design faster and uses less memory than other

interpretive simulators. The basic design flow is given in Figure 2.3.

Verilog-XL [23] simulator from Cadence provides a powerful environment for

designing and verifying the functional building blocks of complex ASICs (Application

 13

Figure 2.3 VCS work flow

 14

Specific Integrated Circuits) and SoC (Systems on Chip). This digital simulator not

only allows to check the functional integrity of a design but also helps in finding the

design flaw. This simulator processes models which are descriptions of design that are

developed using Verilog. The design flow starts with a design idea and ends with an

verified design as shown in Figure 2.4.

Normally, Verilog-XL compiles all the modules that are defined in a source

text file. Those that are not instantiated in the source file become top-level modules.

Creating libraries avoids this unnecessary origination of top-level modules, saving

compile time and memory. So whenever Verilog-XL cannot find the module in the

design description it searches the libraries associated with the design description for

the definition.

Figure 2.4 Verilog-XL design flow

 15

2.3.1.2 Synthesis Tool

Design Compiler [24] is the core of the Synopsys synthesis software products.

It comprises tools that synthesize HDL designs into optimized technology-dependent,

gate-level designs. It supports a wide range of flat and hierarchical design styles and

can optimize both combinational and sequential designs for speed, area, and power.

Design Compiler reads and writes design files in all the standard EDA formats,

including Synopsys internal database (.db) and equation (.eqn) formats. In addition,

Design Compiler provides links to EDA tools, such as place and route tools, and to

post-layout resynthesis techniques, such as in-place optimization. Design Compiler

products include DC Professional, DC Expert, DFT Compiler, DC Ultra, and DC

Ultra Plus.

 The basic Design Compiler synthesis process is given in Figure 2.5.

Figure 2.5 Design Compiler synthesis process

 16

These products help in producing fast, area efficient ASIC designs by employing user-

defined gate arrays, FPGA (Field Programmable Gate Arrays) or compiled libraries.

The tools also help in exploring design tradeoffs involving design constraints such as

timing, area and power under various loading, temperature and voltage conditions.

 The Design Compiler is a powerful tool that other products can be run inside

its environment using specific options. Some of the products that can be accessed are

HDL compiler, Automated chip synthesis, FPGA compiler, Behavioral compiler and

Power Compiler.

 HDL compiler reads and writes Verilog or VHDL design files. The Verilog or

VHDL compiler reads the HDL files and performs translation and architectural

optimization of the designs. The appropriate HDL compiler is automatically called by

Design Compiler when it reads an HDL design file.

2.3.1.3 Place and Route Tool

 Silicon Ensemble [24] is Cadence's Automatic Place and Route tool. Silicon

Ensemble can perform the physical placement and routing of a net-list of standard

cells. Its uses compaction algorithms for giving the most effective way of placing and

routing cells. The output from Silicon Ensemble is a DEF (Design Exchange Format)

file which can be later imported into Virtuoso to get the layout.

 Silicon Ensemble is a stand alone tool that needs some intermediate

files, that describe the various aspects of the design, in an appropriate format. These

files are called LEF (Library Exchange Format) which describes the rules on how

 17

wires can be drawn by the router and what the available cells and blocks look like. The

other important file is DEF which is an output file from Silicon Ensemble that contains

information on how the cells are connected along with the coordinates of where the

blocks are placed with their wire informations. Another important output file is SDF

(Standard Delay format) file which is used to get timing information of the design.

The basic flow from Silicon Ensemble is as shown in Figure 2.6.

2.3.1.4 Layout Tool

Virtuoso Layout Editor [25] from Cadence is a custom physical layout tool. It

supports the physical implementation of custom digital, mixed-signal, and analog

designs at the device, cell, and block levels. Apart from GDS (Graphical Data Stream)

file from Silicon Ensemble, a DEF file is also created and imported into Virtuoso to

check that the final layout is according to the design rules. The gate level net-list from

Design Compiler can also be imported into Virtuoso to get the schematic for the

VHDL or Verilog code written. LVS (Layout versus Schematic) is performed to prove

that the layout created is only for that particular schematic.

 Simulations using Verilog-XL and Spectre can be performed from this

environment to check if the circuit is functionally correct.

 18

RTL
Physical Synth

Placement an
Routing

Silicon Ensemble

optimization place

GDSII

Figure 2.6 Silicon
Constraints

esis

d

 (PKS)

and route

 Ensemble w
Gate Net-list and

constraints

ork flow

19

2.3.1.5 Extraction Tool

The Extraction tool used in this thesis is Mentor Graphic’s Calibre [37]. There

are two versions of this tool; one is used for getting hierarchical parasitic extraction by

xCalibre-H tool and other one is used for a flat net-list with RC parasitic extraction.

Mostly xCalibre PX-C/PX- RC tool has been used to get flat net-list with RC

extraction.

 The xCalibre PX-X/PX-RC tool performs parasitic extraction on nets in

transistor and cell-level IC designs. These designs produce either lumped or

distributed net models suitable for resistance or capacitance net models. The tool

creates net models for the design in the form of net-list. In other terms, in processing a

design, the tool flattens the design’s hierarchy, and outputs a net-list with capacitance

and resistance values or ASCII reports. The tool performs both layout-based and

source-based extraction. It is mandatory to supply the tool with layout database,

whereas the source database is optional. The following Figure 2.7 shows the extraction

flow.

The sequence involved in the process is to first prepare the design data, then

prepare the SVRF (Standard Verification Rule Format) file, and then invoke the tool.

Once the net-list and report files are generated, they are analyzed. One of the major

advantages in using xCalibre is that it does DRC checking very fast compared to other

extraction tools which largely helps in reducing time during a completion of layout

verification.

 20

.

xCalibre Extraction
SVRF Rule

file

Source
(Optional)

Process

Model

Layout

 Net-list Reports

Figure 2.7 xCalibre Extraction flow

The tool produced two outputs:

a) Net-list

b) Reports

The outputs are controlled by the operations and statements in the SVRF file.

The net-list contains the parasitic net models. These models are an extracted net’s

parasitic capacitance and resistance values. The tool produces one parasitic model per

net. Using the application two types of net-list can be produced.

a) HSPICE

b) DSPF (Delayed Standard Parasitic Format)

The HPSICE or DSPF net-list are produced in one of the three modes:

 21

• Simple – Net-list without parasitic data

• Lumped (PX-C) – Net-list with lumped C data

• Distributed (PX-RC) – Net-list with distributed RC data

The tool also produces ASCII reports which list net capacitances, resistances,

and delays. They contain only formatted parasitic data without net-list information or

syntax. The following are the output report modes:

• ASCII Distributed

• ASCII Lumped

• SDF

 in accordance with the instructions specified in the rule file. Additionally, the tool can

produce SDF suitable for analysis of pin-to-pin timing delays.

2.3.1.6 Waveform Viewer

 CosmoScope [38] from Synopsys is a graphical waveform analyzer tool that

allows to view and analyze results in the form of waveforms displayed on graphs, or

as values displayed as lists. Some of the tools that are included with CosmoScope are

a) Signal Manager – which is used to open the files to plot them

b) Measurement tool – Used for measurements that can be applied to a

waveform

c) Waveform calculator – calculator that interacts graphically with application

 SimWave [39] from Synopsys is an interactive waveform display capable of

displaying digital, analog, floating-point, enumerated, and string type signals. It can be

 22

used as a post-processing tool or an interactive tool capable of showing simulation

results while a simulation is still running. Users can open multiple windows for

viewing unlimited signals in each of those windows. Some of the features of SimWave

are

a) Circuit development is accelerated using fast, clear displays

b) Complex relationships can be understood easily due to waveforms

c) Circuit operation can be documented

d) Has got better search so that debugging is easier

2.3.2 Power Tools

This thesis involves the usage of Synopsys power tools. The power products

are tools that comprise a complete methodology for low-power design. Synopsys

power tools offer power analysis and optimization throughout the design cycle, from

RTL to the gate level. Analyzing power early in the design cycle can significantly

affect the quality of the design. Improvements made to the design while it is at RTL

level can get even better results eventually. Not only these power tools do accurate

measurements but also can help in calculating power quicker.

Power consumption is calculated at three levels of abstraction. The tools used

at these levels are

a) RTL Level - RTL Power Estimator

b) Gate Level – Power Compiler (based on switching activity),

PrimePower

 23

c) Transistor Level – NanoSim

2.3.2.1 DesignPower

DesignPower [29] is a power analysis tool that analyzes the design for

switching power, internal cell power, and leakage power. The DesignPower tool

analyzes the power of a gate-level design. It requires a gate-level net-list and some

form of switching activity for the net-list. It computes average power consumption

based on activity of nets in the design. DesignPower allows capturing the switching

activity of primary inputs, primary outputs, and outputs of sequential elements during

simulation.

Power analysis using switching activity from RTL simulation provides a much

faster turnaround than analysis through switching activity from gate-level simulation.

DesignPower supports interfaces to Synopsys VHDL System Simulator (VSS), VCS

and Verilog-XL simulator.

2.3.2.2 RTL Power Estimator

The RTL Power Estimator [29] enables one to obtain design power estimates

early in the design process. Its presynthesis estimation capabilities analyze power

consumption at the RTL. It covers both synthesizable and instantiated parts of the

circuit. One of the advantages is that power information can be obtained using limited

input. Since power is calculated at a very early stage in the design flow it helps in

 24

estimating packaging and battery requirements. It is also used to identify the hotspots

in a large, complex design.

2.3.2.3 Power Compiler

Power Compiler [29] is an add-on product to Design Compiler. The Power

Compiler tool optimizes the design for power. Working in conjunction with the

Design Compiler tool, Power Compiler provides simultaneous optimization for

timing, power and area. In addition to the standard inputs to synthesis (RTL or gate-

level net-list, technology library, design constraints, and parasitics), Power Compiler

uses two other inputs: Switching activity of design elements and power constraints. It

contains all the analysis capabilities of DesignPower.

 Power Compiler uses the same power analysis engine as DesignPower. This

allows Power Compiler to the use the same switching activity for optimization that

DesignPower uses for analysis. It accepts either user-defined switching activity,

switching activity from simulation, or a combination of both. It provides RTL clock

gating and optimizes the circuit based on circuit activity, capacitance, and transition

times. Power Compiler cannot only be used as a standalone product but also can be

used in coordination with Design Compiler, Module Compiler, Physical Compiler and

Floor plan Manager.

 25

2.3.2.3.1 Power Compiler Methodology

 Power Compiler is used at RTL and Gate level to calculate power and do

power optimization depending on the need. At each level of abstraction, simulation,

analysis and optimization can be performed to refine the design before moving to the

next lower level. Simulation and the resultant switching activity gives the analysis and

optimization the necessary information to refine the design before going to next lower

level of abstraction. The higher the level of design abstraction, the greater the power

savings can be achieved. The following Figure 2.8 describes the power flow at each of

the abstraction level. Figure 2.9 shows power flow from RTL to Gate level.

Cell internal power and net toggling directly affect dynamic power of a design.

To report or optimize power, Power Compiler requires toggle information for the

design. This toggle information is called Switching Activity.

Switching
activity

`

O

Simulation

Figure 2.8 Power flow at each of

Analysis
ptimization

the abstraction level

26

Simulation Analysis

Optimization

Register Transfer
Level

Optimization

Analysis Simulation

Gate Level

Figure 2.9 Power flow from RTL to Gate level

27

 Power Compiler models switching activity in terms of static probability and

toggle rate. Static probability is the probability that a signal is at a certain logic state

and is expressed as a number between 0 and 1. It is calculated during simulation of the

design by comparing the time of a signal at a certain logic state to the total time of the

simulation. Toggle rate is the number of logic-0-to-logic-1 and logic-1-to-logic-0

transitions of a design object per unit of time.

 The following Figure 2.10 shows the methodology of power calculation using

the combination of Power Compiler and Design Compiler. The flow of data between

the different steps and tools used are also shown. Before starting to calculate power

using Power Compiler the desired gate-level net-list of the design should be first

generated. The power methodology starts with the RTL design and finishes with a

power-optimized gate-level net-list. Ultimately, Power Compiler is used to calculate

power using the gate-level net-list produced by the Design Compiler or power-

optimized gate net-list produced by Power Compiler itself. As seen in the figure most

of the processes that take place are using Design Compiler, but the simulation process

that is shown is outside Design Compiler tool and is done as part of power calculation.

The main purpose of simulation is to generate information about the switching activity

of the design and create a file called Back-annotation. This file can contain switching

activity from RTL simulation or gate-level simulation. Initially, the RTL design is

given to the HDL compiler to create a technology-independent format called as

GTECH design. This is as a result of analyzing and elaborating the design by HDL

compiler. This formatted design is given as an input to Design Compiler. Before it is

 28

 dc_shell
environment

Power optimized
Net-list

RTL Clock gating

Design Compiler

Power Compiler

Technology
Library

RTL Simulation

Forward-annotation
files using rtl2saif GTECH

Back-annotation file

Power
Compiler

Back-annotation
capacitance files

(optional)

Gate Level
Simulation

HDL Compiler

RTL
Design

Figure 2.10 Power methodology in Power Compiler

 29

compiled by the Design Compiler, “rtl2saif” command is used to create forward-

annotation file which is later used for simulation. The formatted design GTECH is

later given as input to Design Compiler which produces an output which is given to

Power Compiler.

 The Forward-annotation SAIF file is given as an input to do RTL simulation

which gives a back-annotation SAIF file which is used by Power Compiler. This

forward annotated file contains directives that determine which design elements to be

traced during simulation. Gate-level simulation can also use a library forward-

annotation file. This forward-annotation file used for gate level simulation has

different information compared to RTL forward-annotation file. This file contains

information from the technology library about cells with state and path-dependent

power models. “Lib2saif” command is used to get this forward-annotation file.

During power analysis, Power Compiler uses the annotated switching activity

to evaluate the power consumption of the design. During power optimization, Power

Compiler uses the annotated switching activity to make decisions about the design.

2.3.2.3.1.1 Power Optimization

Power optimization achieved at higher levels of abstraction (RTL) has an

impact in reducing power in the final gate-level optimization. Power Compiler

performs clock gating when the design is elaborated using “-gate_clock” option.

Design generally has synchronous load-enable registers. These registers are formed

using feedback loops by Design Compiler.

 30

These registers maintain the same logic value through multiple cycles and

unnecessarily use power. When the “-gate_clock” option is used HDL compiler

introduces gates in the clock network before Design Compiler does its processing.

During the next step, Design Compiler checks the gated clock introduced by HDL

compiler and uses simple registers without synchronous load-enabled functionality

thus saving power. RTL clock gating is achieved without affecting timing or area of

the design.

 At the gate level, Design Compiler and Power Compiler are used to create

gate-level net-list optimized for power. Once the RTL clock gating is done, the next

output is the gate-level net-list which will be optimized for power. First constraints are

set for timing and area. Then the design is compiled using the Design Compiler. This

creates a gate-level design on which the switching activity can be annotated using the

back-annotation file. The back-annotation file is read into Power Compiler using

“read_saif” command. After this power constraints are set to trigger power

optimization by Power Compiler. Then the design is compiled using Power Compiler.

Using the switching activity and power constraints, Power Compiler produces a gate-

level net-list which is optimized for timing, power and area.

 Switching activity from RTL simulation provides good power optimization

results. However, switching activity from gate level simulation provides much more

accurate analysis and optimization. The power analysis of the gate-level design can be

done at various points in the entire methodology. Once annotating the switching

activity from the back-annotation file, power can be analyzed before compiling using

 31

Power Compiler. This is done before power optimization. Once doing power

optimization the power values can be compared. “report_power” is the command

used to get detailed power results.

2.3.2.4 PrimePower

One of the tools apart from Power Compiler that is used to calculate gate level

 power is PrimePower [31]. PrimePower is a dynamic gate-level simulation and

analysis tool that accurately analyzes power dissipation of cell-based designs.

PrimePower achieves a high level of accuracy with precise modeling of power

dissipation. Because of this feature it is a very useful tool for circuit designers who

develop products that are power-critical such as portable computing and

telecommunications. It also provides a very comprehensive power analysis reports

which can be seen interactively by the user and hence can analyze better. PrimePower

also works with standard simulators like VCS.

2.3.2.4.1 PrimePower Methodology

The methodology involved using PrimePower consists of two phases;

a) HDL Simulation

b) Power profiling

During the first phase which is HDL simulation, PrimePower interprets

switching activity in the VCD (Verilog Change Dump) or PIF (PrimePower

 32

Intermediate Format). Most of the simulators generate files in the VCD format using

“$dumpvars ()” command. The event information given by the VCD file is directly

read by PrimePower during its input. VCD+ formatted file is generated using VCS

simulator. The event information can be converted to VCD within PrimePower using

“vpd2vcd” command.

 The second phase involves power profiling gives a detailed power report. To

generate the power profile, design connectivity, design switching activity and pin-to-

pin delay information are required. The ASCII based power reports, is used to view

the power profile at the cell, block, or chip levels. The design activity is available in

the VCD data file. The design connectivity is provided in the form of Verilog or

VHDL net-list files, and pin-to-pin timing is derived from the Synopsys libraries and

updated when parsing the VCD file. Based on these inputs and any additional net

capacitance, PrimePower builds the power profile. The inputs given to the first phase

i.e. HDL simulation are SDF file, Test bench file and Verilog library. This results in

the generation of VCD file which is given to PrimePower along with Synopsys db file

and Net-list. Depending on the mode of operation of PrimePower which are Batch

mode, Interactive batch mode, or GUI mode power reports can be obtained. The GUI

provides templates to set up the PrimePower commands, and a suite of analysis tools

to view the results graphically. The command line mode is run using the command

“pp_shell”. The “pp_shell” also provides script execution environment based on TCL

(Tool Command Language). Interactive mode produces a set of text-formatted power

 33

reports based on data that is entered interactively at command-line prompt. The

analysis tool of PrimePower is based on PrimeTime.

 Power analysis is performed using PrimePower to determine the power

consumption of the chip based on the switching activity. PrimePower is event based,

so for every event it determines the supply current and leakage current dissipated

given the states and dynamic conditions. PrimePower calculates both static and

dynamic power. Static power is often referred to as Leakage power. PrimePower can

also be used to determine Glitch power. If two toggles are very close to each other,

and the time interval of two toggles is less than the rise and fall transition time of that

particular pin, then these two toggles form a glitch. The following Figure 2.11 gives

the methodology involved in PrimePower.

2.3.2.5 NanoSim

 NanoSim [26] is one of the most powerful power tools by Synopsys. NanoSim

is a dynamic transistor level simulator. It is a dynamic power/timing analysis tool. It is

a combination of two previous simulators, PowerMill and TimeMill. Some of the

important features of using NanoSim are

 a) It is faster than Spice

 b) It can handle full chip net-list with extracted parasitic

 c) It can do concurrent simulation with mixed net-list types like spice,

Verilog, EPIC, Spectre, EDIF and CSPF.

 34

GUI Mode Interactive
Batch Mode

Batch
Mode

Power
Reports

Power
Reports

Power
Reports

Net-list Synopsys
.db file

VCD/VC
D +

Wire cap
file

SDF file Testbench Verilog
Library

PrimePower

HDL Simulation

Phase 2: Power
Profiling

Phase 1: HDL
Simulation

Figure 2.11 PrimePower Methodology Flow

 35

2.3.2.5.1 NanoSim Methodology

NanoSim has a great deal of configuration commands that can give user a great

deal of control over the simulation. Simulation results would significantly be affected

either if the user does not provide a specific command or a command is not used

appropriately. Accuracy of the results will also vary depending upon the use of the

commands. NanoSim can report the following

a) Top-level and block-level power analysis

b) DC path report

c) Floating node report

Power analysis includes average, RMS and peak current reports in text format

and also reports average, RMS and instantaneous current as waveform information

that can be input in a waveform viewer and be analyzed. It can also report elements

with excessive current. The DC path analysis reports conducting paths between

specified voltage source nodes. It can also report nodes that stay in a high impedance

longer than a certain period of time. NanoSim can also check a circuit for several

unusual topological conditions that could result in DC leakage paths. Figure 2.12 sums

up the inputs required and outputs that can be generated.

 36

INPUTS

 Stimulus

OUTPUTS

 Figure 2.12

2.3.2.6 NanoSim Integration wit

NanoSim integration with

verification solution. Figure 2.13 s

simulate a design described in SPIC

NanoSim supports and verilog-HD

interface during simulation, the ou

(out) can be combined to one unified

NanoSim
Spice
 NanoSim Input/O

h VCS

VCS is a feature tha

ummarizes the flow.

E or other transistor-l

L. Some of the fea

tput from VCS (vcd)

 output file: the unifie
Parasitics
Power

Waveform
ut

t

It

ev

tu

 a

d o
Timing
put flow

provides a mixed-signal

enables a designer to co-

el description net-list that

res involve direct-kernel

nd output from NanoSim

utput display.

37

Waveform viewer

.out file _uod.out .vcd file

NanoSim

Configuration $dumpvars

VCS

Figure 2.13 NanoSim-VCS flow

2.3.3 Comparison of Power Tools

The three important tools used in this thesis are Power Compiler, PrimePower,

and NanoSim. Power Compiler is used at RTL and Gate level. PrimePower is used at

Gate level and NanoSim is used at Transistor level. Both Power Compiler and

PrimePower provide low power spectrum tools. Power Compiler provides analysis

and power optimization at both RTL and gate level. PrimePower provides analysis at

 38

gate level. Power Compiler provides power optimizations using clock gating and gate

level optimizations whereas PrimePower doesn’t provide power optimization.

Power analysis by PrimePower is much more in detail compared to the one given by

Power Compiler. NanoSim comes in the last category power analysis which is

transistor level. NanoSim not only gives power values depending on the inputs but also

simulates the design to check the functionality. Power values get more accurate as we

go down the level of abstraction and NanoSim gives the most accurate results. The

following Figure 2.14 summarizes the same.

Optimization &

Analysis Level

e

 Figure 2
Analysis Tool
Power Compiler Power Compiler

Implementation
RTL
Power CompilerPrime Power
Gat
NanoSim
Transistor

.14 Power tools comparison chart

39

3 Experimental Design

3.1 Macros

The following macros were developed as part of a research project with the

DARPA (Defense Advanced Research Projects Agency) and Boeing. The research

work involved was to create macros for best PDA (Power, Delay, and Area) by

exploring the best possible approach to improve those parameters. This thesis involves

calculating the power of these macros.

The following are the macros used in this experiment

a) 16-bit Optimized Adder

b) 16-bit Optimized Multiplier

c) 16-bit Optimized Complex Multiplier

d) FIR (Finite Impulse Response) macro with best PDA developed using

Clock Tree

e) Poly FIR with best PDA developed using Clock Tree

These macros were built for TSMC-0.18 micron process.

3.2 Power Estimation Techniques

Power values for each of these macros are done using four power tools of

Synopsys spread through three levels of abstraction, RTL level, Gate level and

Transistor level and in overall 5 different values for a macro being calculated. Power

 40

calculation for each of the tools at a specific level is done using a different

methodology and with other non-power tools involved. One of the major non-power

tools involved in this is an extraction tool. A table is built summarizing all the values.

 The first method of power calculation is done using Power Estimator which is

used at the RTL level. The second method involves using Power Compiler with RTL

level switching activity and the third method involves using Power Compiler with

Gate Level switching activity. The fourth method is by using PrimePower which also

comes at Gate level. The final and the most accurate fifth method is by using NanoSim

which is at the transistor level. The accuracy of the power values obtained using these

tools gets better as we move from RTL level to transistor level. This is because the

information required for calculating accurate power of a macro is given in more detail

as the level goes to the lower levels of abstraction and also the tools involved get more

complex at those levels. Finally, a table is made with power values filled for each of

the macros together with the simulation time required to get those.

3.3 Basic design flow

The following Figure 3.1 gives a basic idea of the design flow that takes place

from code writing of the macro to sending the final macro output for fabrication.

Initially to start with the VHDL or Verilog hardware description language is used to

describe the design. The design is verified using one of the different simulators to test

its functionality. Once the test is fine, the next process of creating the net-list is carried

out. The gate-level net-list is created using Design Compiler. The gate-level net-list

 41

 SDF

VHDL or Verilog
code

Synopsys Compiler
(dc_shell)

Silicon Ensemble
(Place and Route)

Testbench

Gate-level Back
Annotation
Simulation

Gate level net-list

Pre-layout
Simulation

For

Pre-layout
Simulation

 ICFB

GDS

LVS

Fabrication
Schematic
P
S

Figure 3.1
Layout
Extraction using Diva or Calibre

ost-layout
imulation

Design Flow

42

along with information about the standard cells are given to Silicon Ensemble to do

place and routing of the design. SDF file is exported from Silicon Ensemble to do

gate-level back-annotation simulation to verify the net-list .Once that is confirmed

another exported file from Silicon Ensemble; DEF is imported into ICFB’s Virtuoso

layout editor to get the layout. Also the gate-level net-list obtained from Design

Compiler is imported into ICFB’s Schematic viewer to get the schematic for the

design. DRC (Design Rule Check) is performed for the layout that is obtained from

ICFB. The layout and Schematic is compared using a test called to confirm that the

correct layout is obtained for the design. Pre-layout simulation of the schematic and

Post-Layout simulation of the layout are also done to confirm the functionality. Post-

layout simulation also helps in finding the delay and other details in the design. Then

in order to send the design for fabrication, GDS file is exported from ICFB.

In this thesis all the processes in the design flow are carried out. Additionally, the

power tools are used to estimate power at different levels depending on the tool used

at a specific level of abstraction. The next sections in this chapter describe the process

and methodology used in each of the power tools and how the power is calculated.

The following are the different methods of calculating power

a) Power Estimator using RTL level switching activity (Pre-Synthesis)

b) Power Compiler using Gate level net-list with RTL level switching activity

c) Power Compiler using Gate level net-list with Gate-level switching activity

d) PrimePower using VCD and Gate-level net-list

e) NanoSim using Spice net-list and Vector file as stimulus

 43

3.4 Power Estimation at the Register Transfer Level

The RTL Power Estimator enables to obtain design power estimates early in

the design process. Its pre-synthesis simulation capabilities enable to analyze the

power consumption of the design at the RTL. These Architectural or RTL level tools

can be used to quickly understand which modules in the entire design consume the

largest amount of power. This is also the best level to evaluate the usage of clock

gating strategies which are primarily used to reduce power consumption. The run time

efficiency of running the tools at this level is also used to calibrate the fastness of the

tool. Some of the features of using Power Estimator are

a) Obtain quick power estimation early in the design

b) Perform architectural tradeoffs early in the design flow

c) Identity the hotspots in the design so that more concentration can be put

forth to reduce power in those areas.

3.4.1 Methodology

The following is the approach that has been followed to calculate power using

Power Estimator which is part of the Power Compiler tool. Figure 3.2 gives the flow.

As shown in the figure, the RTL design is first taken. There are two flows from the

 44

Forward-SAIF

read_saif

(report_activity)

 (report_rtl_power)

Annotate Activity

Create Power model

(create_power_model)

Target Library

RTL Simulation

Report Power
estimates

Back SAIF File

RTL Design

Figure 3.2 Power Analysis flow in Power Estimator

 45

RTL design. One is the RTL code which is simulated using ModelSim simulator to get

Back Switching SAIF file which contains the switching activity of the design and it is

used to create power model for the design using “create_power_model” command.

Then the design is annotated using the back annotated switching activity and power is

reported using “report_rtl_power” command. All the commands can be added up in a

script which can be used by invoking “pp_shell” command.

3.4.2 Capturing Forward and Backward Switching Activity

Power Compiler requires information about the switching activity of the

design to do power analysis. The forward and back-annotation files are in SAIF

format. SAIF is an ASCII format developed at Synopsys to facilitate the interchange

of information between simulators and Synopsys power tools. Some of the power

tools cannot understand SAIF file so in that case VCD file is used. Depending on the

tool, either RTL level switching activity or Gate-level switching activity is used.

Power Compiler has a methodology that enables the use of switching activity from

RTL simulation as well as from Gate-level simulation. Using gate-level simulation the

power values are much more accurate but doing that is time consuming. During RTL

and gate level simulation the designer can direct the simulator to monitor and write out

the switching activity of certain important elements in the design. For accurate

analysis, synthesis-invariant elements should be closely monitored during RTL

simulation. These are the elements that are not changed during simulation like primary

inputs, sequential elements, black boxes, three-state devices and hierarchical ports.

 46

3.4.2.1 SAIF file and RTL simulation

A SAIF forward-annotation file directs the simulation to monitor primary

inputs and other synthesis-invariant elements. The backward SAIF file generated from

the simulation contains the resultant switching activity of the elements monitored

during the RTL simulation. Synopsys power tools can read the information in the

back-annotation file and annotate it on the compiled design. The following steps as

shown in the Figure 3.3 are done to get forward and finally the back switching activity

file

a) Set the variable “power_preserve_rtl_hier_name = true”

b) Create a SAIF forward-annotation file from “dc_shell”

c) Include the SAIF forward-annotation file in simulation using ModelSim

d) Write a SAIF back-annotation file from simulation

e) Read the SAIF back-annotation file to annotate the design from “dc_shell”

As the design is analyzed and elaborated, HDL compiler creates a technology-

independent design called GTECH design. Using GTECH design, HDL compiler

creates the SAIF forward-annotation file when invoking the “rtl2saif” command.

The following is the methodology followed using RTL simulation and SAIF

files.

 47

 Switching
activity

HDL Compiler

RTL Simulation
Design Compiler

Power Compiler

GTECH
Design

Gate-level
design

Forward SAIF file

Back annotated
SAIF file

dc_shell
environment

Power
optimized
Net-list

RTL
Design

Figure 3.3 Methodology using RTL simulation and SAIF file

 48

3.4.2.2 SAIF forward-annotation file

The following script has been used to create forward annotation file for

“adder” design.

 “ power_preserve_rtl_hier_names = true
 analyze -f vhdl {adder_16.vhd}
 elaborate adder_16
 link
 rtl2saif -output adder_forward.saif -design adder_16 “

 The following is the explanation of each of the command lines in the script. To

start with the “dc_shell” command is used to invoke the Design Compiler.

a) power_preserve_rtl_hier_names = true

 This variable is set true to preserve the hierarchy information of the RTL

objects in the RTL design.

b) analyze -f vhdl {adder_16.vhd}
 elaborate adder_16

 The analyze and elaborate commands read the RTL design into active memory

and converts it to a technology-independent format called the GTECH design.

c) link

 The link command resolves instantiated references of the sub designs.

d) rtl2saif -output adder_forward.saif -design adder_16

 The rtl2saif command creates the forward-annotation file using the GTECH

format created during the analysis and elaboration of the RTL design. Here

“adder_forward.saif” is the forward-annotation file for adder.

 49

3.4.2.3 Creating Backward SAIF file

 Now for Power Estimator to report power, Backward SAIF file is required

which is obtained using Forward SAIF file. ModelSim simulator is used to create the

backward SAIF file. First, the VHDL of adder along with the test bench are compiled

and then the ModelSim simulator is invoked. Forward switching activity file generated

by “rtl2saif” command as part of the Design Compiler is also fed to the simulator.

The “read_rtl_saif” command reads the SAIF forward-annotation file and registers

design objects for monitoring. The next subsection describes about the toggle

command methodology in detail. The “toggle_report” command creates a SAIF back-

annotation file from simulation. The back-annotation file contains information about

the switching activity of the synthesis-invariant elements in the design. The

“read_saif” dc_shell command back-annotates the information from the SAIF file

onto the current design. Figure 3.4 shows the steps involved in creating the backward

SAIF file.

3.4.2.3.1 Toggle command Methodology

 The following is the overview of the toggle command methodology that is

exclusively used in ModelSim simulator to get the back-annotation file. The following

flow is same for RTL simulation and Gate level simulation to finally get a back-

annotation file. This step is the main step in obtaining the switching activity of the

design.

 50

Power Compiler

analyze, elaborate
(HDL compiler)

Compile
(Design Compiler)

Power results

rtl2saif
Forward annotated
SAIF file

do file RTL Design VHDL
testbench

Figure 3.4 RTL backward switching activity u

read_rt_saif
set_toggle_region
toggle_start
toggle_stop
toggle_report
RTL Simulation

Back annotated
SAIF file

sing ModelSim

51

 As seen in the Figure 3.5, first “read_rt_saif” command is used to read in the

forward switching activity file Then “set_toggle_region” command is used to set the

toggle region making the simulator to monitor the design objects within those regions.

Then “toggle_start” and “toggle_stop” commands are used to Start and Stop the

toggle monitoring respectively. “toggle_report” is used to write out the back-

annotation file.

3.4.3 Power reporting using Power Estimator

 The following script has been used to get the power report.

“
target_library = link_library =
/sw/CDS/ARTISAN/TSMC18/aci/sc/synopsys/typical.db}
create_power_model -format vhdl -hdl {adder_16.vhd} -top_design adder_16
read_saif -input FB.saif -instance adder_16 -rtl_direct
report_activity
report_rtl_power > power_report_PE “

Here the “FB.saif” file is the back-annotation switching activity file obtained from

ModelSim. Assuming all the above commands are put inside a script, it can be run

using the following command from the UNIX command prompt.

“pe_shell –f <script name> “

The power report for the adder design gets written to “power_report_PE” file.

 52

toggle_report
(Report toggle region)

toggle_stop
(Stop Monitoring)

toggle_start
(Start Monitoring)

set_toggle_region
(Set the toggle region)

read_rtl_region

Figure 3.5 Toggle command Methodology

 53

3.5 Power Estimation using Power Compiler with RTL switching activity

 Power estimation at gate level using gate level power estimation tools is the

next accurate method in calibrating power. These tools operate on the gate level net-

list of the design together with the gate level power library. The power library consists

of power models for each of the gates like inverters, NAND gates, and flip-flops.

These models consists information about the parameters that contribute to power

dissipation in each of the standard cells. In this thesis, Power Compiler is used as the

gate level power estimation tool. Power Compiler not only estimates the power but

also helps in optimizing the design for lower power. The gate level power

consumption checks the power being consumed by logic transitions on wires and by

capacitances and short circuits internal to gates during an input transition. In the case

of smaller design, the designer can do some gate level changes to reduce power after

estimating. If it is a larger design then it would be difficult for the designer to check all

the gate-level changes. At this point, Power optimization tools come in handy. Power

Compiler is also an optimization tool.

3.5.1 Methodology

In this method of power estimation, Power Compiler is used with the same

RTL back-annotation switching activity used for power estimation using Power

Estimator but instead of RTL code, it uses gate-level net-list of the design.

 54

. Also for getting better power result, parasitic information of the system is also

provided. In this case DSPF is obtained from Place and route tool, Silicon Ensemble

using HyperExtract Extraction tool. The gate-level net-list is obtained from Design

Compiler. The following script has been used to report power.

“
read -f verilog -net-list adder_16_bestPDA.v
current_design adder_16
create_clock -name clk -period 50 -waveform {0 25}
set_load 0.005410 SUM[*]
read_parasitics -format DSPF adder_16_bestPDA.dspf -elmore
read_saif -input FB.saif -instance adder_16
report_power > power_report_RTL “

As shown in the script first the gate-level net-list of the adder design obtained from

Design Compiler is read inside the “dc_shell” environment. Depending on the clock

frequency used, it has been assigned using the “create_clock” command. The parasitic

is read in the form of DSPF file using “read_parasitics” command. Then the

backward SAIF file is loaded using “read_saif” command. Then finally

“report_power” command is used to report the power. Depending on the design,

extra commands may be required in this script especially for designs having a clock

tree. Designs having clock tree will report high fanouts when run in this environment.

Additional commands will enable to remove the high fanouts.

3.6 Power Estimation using Power Compiler with Gate-level Switching activity

 Another method of calculating power of a design which is more accurate than

the previous Power Compiler method is to use gate-level net-list with gate-level

 55

switching activity. This method is better than the previous method because it uses the

gate level net-list to get the switching activity of the design, but the time taken to do

this procedure is more than previous two methods.

3.6.1 Creating Gate-level Switching Activity

 The following Figure 3.6 shows the flow required to get the Back annotation

gate level switching activity which will be later used to calculate power. The main

difference between RTL back annotation switching activity and gate-level switching

activity is that here gate level net-list is given as the input to the ModelSim simulator

along with the testbench and the do file which contains all the toggle region definition

and the actual running of the simulation and the reporting of the toggle activity. The

resultant back-annotation SAIF file is read back to Power Compiler and power is

reported. The do file that is used to capture switching activity follows the same

procedure as RTL switching activity like defining the reading the forward SAIF file,

defining the region for counting toggle information, starting and stopping the

monitoring switching activity and finally using “toggle_report” command to report

the activity in a SAIF file format.

 “
 read -f verilog -net-list adder_16_bestPDA.v
 current_design adder_16
 create_clock -name clk -period 50 -waveform {0 25}
 set_load 0.005410 SUM [*]
 read_parasitics -format DSPF adder_16_bestPDA.dspf -elmore
 read_saif -input backgateadder.saif -instance testbench/design
 report_power > power_report_Back “

 56

do file RTL Design testbench

Power Compiler

analyze, elaborate
(HDL compiler)

Compile
(Design Compiler)

rtl2saif
Forward annotated
SAIF file

Gate-level
Net-list

Power results

Figure 3.6 Gate-level backward switching activity

read_rt_saif
set_toggle_region
toggle_start
toggle_stop
toggle_report
Gate Level
Simulation

Back annotated
SAIF file

 using ModelSim

57

First the gate level net-list is read into dc_shell environment. Once the net-list

is read the top level of the design is made as the current design to work on it. Then the

clock is created depending on the frequency is run while calculating the power. Then a

certain load is given to the output port which in this case is SUM. Then the parasitic

values are read into as DSPF form. Then the backward annotation file is read which

has the switching activity of the design. The switching activity file gives information

to the tool at which points there is switching in the design. This is useful to report

power of the design. “report_power” command is used to report the power of the

design. This method gives power values much more accurate the other previous

methods. Next method discussed is by using another Gate-level Power Estimator

using almost the same input files except that it takes in the switching activity as VCD

format. This tool is supposed to give almost equal power compared to Power

Compiler using Gate level switching activity.

3.7 Power Estimation using PrimePower

 PrimePower is a dynamic gate-level simulation and analysis tool that

accurately analyzes power dissipation of cell-based designs. Let us see some of the

differences between Power Compiler and PrimePower since both are Synopsys power

tools used to calculate power at gate-level of a design. Not only does Power Compiler

determine power at the gate-level, it can also calibrate power at the RTL level. Power

Compiler can be used to do power optimization using clock gating, operand isolation

whereas PrimePower cannot be used to do power optimization. Power Compiler

 58

reports for average power and are performed at the block level. PrimePower provides

full chip power analysis that can include non-synthesizable cells such as I/O and

memories. The output from Prime Power’s power report can be viewed in waveform

viewers to analyze the determined power. PrimePower also helps in determining

instantaneous power analysis that helps in identifying the hot spots in the design. It

can read in VCD file that provides time-based simulation events. The methodology in

PrimePower has already been discussed here.

3.7.1 Methodology

The following Figure 3.7 discusses the PrimePower analysis flow to perform

power analysis of the design. The steps are here

a) Read the design data which includes the gate-level net-list and associated

technology libraries

b) Read in the activity file in the form of VCD

c) Specify the environment and analysis conditions such as operating

conditions and calculate the power consumption

d) Examine the power results using waveform viewers.

The first step is to read in the gate-level design description and the associated

technology library information. PrimePower accepts design descriptions and library

information in the form of .db (Synopsys database) format and gate-level net-list in

Verilog, and VHDL format. “read_db” command is used inside PrimePower shell to

read in the database formats. “read_verilog” command is used to read in the verilog

 59

Read Design data

set search_path set link path read verilog
current design link_design

Read parasitics

read_parasitics

Read activity file

read_vcd

Examine results

report_power

Calculate power

set_operating_conditions
set_waveform_options

calculate_power

Figure 3.7 PrimePower Analysis flow

 60

gate-level net-list and “read_vhdl” command is used to read in the VHDL gate-level

net-list.

After the design files are read in, the “link_design” command helps in building

a reference between all the modules in the hierarchy and creates an internal

representation for the tool to do power analysis. Then the activity file is read in using

“read_vcd” command.

Then the operating environment and conditions are specified using various

commands like “set_operating_conditions”, “set_load”, etc. The

“set_operating_conditions” command specifies the operating condition for analysis,

so that PrimePower can use the appropriate set of parameter values in the technology

library. “set_load” command is used to specify the amount of capacitance on a port or

net. One of the most important inputs to PrimePower is DSPF file or any parasitic file

obtained from place and routing tool. PrimePower uses “read_parasitics” to back-

annotate the design with detailed parasitic resistance and capacitance information.

Also the characteristics of the design can be verified using “report_design”,

“report_port”, “report_net” commands. If the output of PrimePower needs to be

viewed in a waveform then for that “set_waveform_options” is used. After all the

design files and constraints are set, “calculate_power” command is used to calculate

power. “report_power” is finally used to report the power.

 61

3.7.2 Generating PrimePower inputs

 The three inputs required for PrimePower are

a) Gate-Level net-list

b) Switching activity file in the form of VCD file

c) Standard parasitic file in the form of DSPF or any other standard

formats

Gate-level net-list is obtained from Design Compiler in the “dc_shell”

environment. Standard parasitic file is obtained from Cadence place and route tool,

Silicon Ensemble.

VCD files are generated by many methods. One of the methods is to use

“$dumpfile (<filename>) “and “$dumpvars (<level>, <module>)” commands in

standard simulators. Second method is by using another simulator VCS. Using the

gate-level net-list and the testbench associated with it “vcs <testbench name> <net-

list name>” command can be used to generate the VCD file. The accuracy in creating

these files is important as they directly affect the power values. Other formats of VCD

are compressed VCD, gzipped VCD. These activity files are converted to VCD once

they are given as input to PrimePower. They are done using appropriate tools

associated with PrimePower. “read_vcd” command is used to read in the VCD file.

Options are available with the reading of the VCD file.

 62

3.7.3 Power Calculation

 Power analysis by PrimePower depends on the conditions specified such as

input transitions, port capacitance, wire load models and operating conditions.

“set_input_transitions” command defines a fixed transition time for input ports.

PrimePower uses the specified transition time in calculating the power of logic driven

by the port. “set_load” is used to set load capacitance on ports. Wire load models are

also specified using “set_wire_load” command. If the design has got clock tree,

“create_clock” command is used to define the clock. Finally, after setting all the

parameters, “calculate_power” is used to calculate power. There can be time limit set

in this function so that PrimePower can be asked to calculate power only during those

time intervals.

3.7.4 Power Reporting

 PrimePower can give a detailed power report using the power reporting

commands. The power dissipation report (*.rpt) is produced by default. Some of the

powers that it can report are

a) Total power = Total dynamic and leakage power

b) Dynamic power = Total power consumption due to switching capacitances,

glitches

c) Leakage power = Reverse-biased junction leakage and sub-threshold

leakage.

 63

d) Internal power = Dynamic power consumed inside a cell

e) Glitch power = Power dissipated into detectable glitches at the nets

Also the one of the forms of output as result of power analysis is an fsdb file. This file

can be opened in a waveform viewer to view the consumption of power at the time

intervals.

 The following is the script used to calculate power for adder circuit.

“set search_path {. /sw/CDS/ARTISAN/TSMC18/aci/sc/synopsys}

 set link_library {* typical.db}
#--
Load Design and Activity Files
#--
read_verilog {adder_16_bestPDA.v}
current_design adder_16
link
set_hier_sep /
read_vcd -strip_path testbench/adder_16 adder_16_vcd.vcd
#--
Apply Default Parameters
#--
set_input_transition .1 inst_A[*]
set_input_transition .1 inst_B[*]
set_operating_conditions typical
set_load 0.05410 "SUM[*]"
--
Back annotation: Uncomment the commands which apply
#--
read_parasitics adder_16_bestPDA.dspf
current_instance fillin
source fillin
#--
Power Analysis and Waveform Generation
#--
#set_operating_conditions fillin
set_waveform_options -interval 0.01 -file adder_16_bestPDA -format fsdb
calculate_power -waveform -reset_neg_power
report_power -file adder_16_bestPDA -threshold 0 -sortby power -leaf
#--

 64

report capacitance
#--
#report_wire fillin
quit “

3.8 Power Estimation using NanoSim

 The next power estimation of a design can be performed using a

transistor-level power estimation tool. Transistor level power analysis tools are very

accurate and values obtained from them are very reliable for design engineers. The

transistor level of abstraction is also acceptable to get the power values. The tool used

in this thesis is NanoSim. NanoSim is a high-speed, high-capacity circuit simulator that

combines best-in-class circuit simulation technologies from Synopsys’s PowerMill

and TimeMill. NanoSim simulates block and full chip current and power behavior and

is much faster than HSPICE and comes into 2-5% of accuracy of SPICE. It is also

used to diagnose the design flaws by checking the areas where power is consumed

more. Once the specific area of high power consumption is detected, the design code

can be rewritten and that hotspot can be concentrated more to reduce the unwanted

power.

 Inputs required for NanoSim are the SPICE net-list of the design, stimulus file

giving the inputs for the design, configuration file that contains information that tells

NanoSim how to perform the simulation, technology file that describes the key

features of the process technology that NanoSim uses to predict the transistor behavior

in the circuit. SPICE net-list of the design is obtained using an extraction tool, the

 65

stimulus file is written by the designer according to the design, technology files are got

from the vendor dealing with the technology for which the design is built for and the

configuration file has the required commands instructing NanoSim to simulate in the

way designer wants.

3.8.1 Extracting SPICE net-list from Calibre

 First once the design is written and its functionality tested, it is run through

Design Compiler to get the gate-level net-list. The same gate-level net-list has been

used in the prior power estimation methods. Now the gate-level net-list has to be

imported to a place and route tool to get the routing done. Depending on the

technology, the technology file, the verilog description of all the standard cells along

with this gate-level net-list is imported into Cadence’s Silicon Ensemble. Once the

routing is done, the output that can be transformed into layout which is exported out in

the form of DEF file .This DEF format is imported into Cadence’s ICFB environment

to get the layout. As said in the previous section one of the main inputs for NanoSim

is the Spice net-list of the design. Depending on the complexity of the design the time

taken to generate the SPICE net-list is more and also the tool should be powerful

enough to generate SPICE net-list fast. Here comes the Extraction tool Calibre. As

shown in the Figure 3.8, the layout of the adder design under discussion has been

obtained from DEF using ICFB.

 66

Figure 3.8 Adder Layout

 67

3.8.1.1 Design Rule Check (DRC) of Adder Layout.

 Now the obtained layout has to be checked for any design rule errors. This is

done using Calibre. First the template file has to be imported which gives information

about the creation of the GDS file which has all the layout paths. Using this Calibre

checks the design for any errors and that all design rules have been followed. The

Figure 3.9 shows the final output after DRC check is done.

3.8.1.2 Layout vs. Schematic (LVS) check for Adder Layout

 Once the DRC check is over, the layout has to be checked if that is the

corresponding layout for the schematic of the design. When Calibre checks for layout

vs. schematic, it basically compares the net-list of the two. When the DRC check is

done, it already creates the net-list for the layout. In order to get the net-list of the

schematic, another Synopsys’s tool, NetTran has been used. This tool takes in the gate

level net-list of the design and gives us the net-list which corresponds to the schematic

of the design. Now the template pertaining to LVS check is imported into Calibre.

Now the LVS check will be performed. The following Figure 3.10 shows the LVS

check for adder.

 68

Figure 3.9 DRC check of Adder Design

 69

Figure 3.10 LVS check of Adder Design

 70

3.8.1.3 Net-list extraction for Adder

 Now that the DRC and LVS check are performed, the net-list required for

NanoSim has to be extracted. The template which tells Calibre where to look for the

extraction rule file is imported. The required net-list type is selected. It can be Flat

SPICE or Flat DSPF. Once they are selected, the operation PEX is performed to get

the required net-list. The time to generate net-list depends on the design. The

following Figure 3.11 is the output after extraction is done.

3.8.2 NanoSim inputs and Power reporting

 The following are the inputs required for NanoSim simulation.

a) Net-list file – This has information about the circuit to be simulated

b) Stimulus file – This has the Input stimulus to the circuit

c) Configuration command file – This file tells NanoSim how to

perform the simulation

d) Technology file – This has the look-up table for model

characterization

NanoSim accepts multiple net-lists. In our case, the net-list is a flat DSPF file

which has all the transistors and also RC parasitic values. SPICE net-list is given by

 –n option while running NanoSim.

 71

Figure 3.11 Extraction output of Adder design

 72

If the file extension of the net-list is not .sp or .spi, then a different option is

given depending on the file extension. Next is the Stimulus file which has the input

stimulus for the circuit. The format used here is Vector stimulus which is one form of

EPIC stimulus. If the EPIC vector function is called in a file, then –n option is used

within NanoSim. In this case, the vector function call and vector stimulus are in two

separate files. On the other hand, the type and signal commands can be included in a

vector stimulus file directly and –nvec option is used while NanoSim is executed. Next

important input to NanoSim is the configuration file which instructs it how to perform

simulation. The accuracy and speed at which the results are obtained and simulated

largely depends on the input commands given in this file. The number of output files

generated as result of NanoSim execution also depends on the number of commands

given in this file. The input commands given fall into the categories of net-list

compilation, circuit modification, simulation control, circuit partitioning, simulation

accuracy, and output reporting and message control. Some of the commands given

during the simulation are given here

“set_print_format for=fsdb
 set_sim_tres 100ps
 set_sim_eou sim=4 model=4 net=4
 set_ckt_ctrl ba_process_fcap:1
 print_node_i VDD VSS
 report_block_powr x1 track_src=1 track_gnd=1 track_wasted=1 track_power=1
* “

The command “set_print_format” is used to tell NanoSim to give the output of

the simulation in the form of FSDB file which can be used to be viewed in a waveform

viewer. “set_sim_tres“ is used to define the time resolution for the simulation.

 73

Larger time resolution results in faster, but less accurate simulation. The variable to

control the simulation for accuracy and performance is given by “set_sim_eou”

command. Since the RC parasitic values are given in the net-list, “set_ckt_ctrl

ba_process_fcap:1” is used to make NanoSim take all the capacitance values

without ignoring them. “print_node_i” is used to print the node VDD and VSS.

“report_block_powr” is used to report the power after the simulation. Depending on

the flags given in this command, different power like RMS power, Average power of

the circuit will be displayed. Using “report” command, the value is also written to a

file. The output file .out and .fsdb are analyzed in waveform viewers like TurboWave,

CosmoScope or SimWave.

 74

4 Results and Discussion

This chapter gives details on the various results that have been obtained using

the different macros that were discussed earlier. Results are given in three main tables;

a) Comparison power table for Default macros Vs Best-PDA macros.

b) Power table for Default/ Best-PDA Ratios

c) Simulation time taken by NanoSim simulator for each Default and

Best-PDA macros.

Add-on tables for the above tables show the percentage of error for the

comparison table and for the ratio table. Tables comparing the difference in version of

the tools have also been created. The following Figure 4.1 shows the methodology of

calculating different power values at the different levels of abstraction. Detailed

methodology of how different power values are calculated using these tools has been

discussed in chapters two and three.

 The following section discusses the different power values that are obtained

using different power tools as shown in the above figure.

1. Power Estimator – P1 (RTL) :

Power Estimator is used to calculate power at the RTL level. The inputs for

Power Estimator are VHDL [1], RTL switching activity [4]. The input [4] is got from

ModelSim giving [1] + [2] as inputs.

 75

Figure 4.1 Design Methodology showing power calculations using different power tools

 76

2. Power Compiler – P2 (RTL) :

The second power value is calculated using Power Compiler at the RTL level.

The inputs to calculate power are Gate-level Net-list [3], RTL switching activity [4].

[3] is obtained from Design Compiler giving [1] as the input. [4] is obtained from

ModelSim giving [1] + [2] as inputs.

3. Power Compiler – P3 (Gate-level) :

The third power value is calculated using Power Compiler at the Gate-level.

The inputs to calculate power are Gate-level Net-list [3], Gate-level switching activity

[5], Parasitic information [6]. [3] is obtained from Design Compiler giving [1] as the

input. [5] is obtained from ModelSim using [2] + [3] as inputs. [3] is given as input to

Silicon Ensemble to do the Place and Routing and after that [6] is obtained running

HyperExtract in Silicon Ensemble.

4. PrimePower – P4 (Gate-level):

 The fourth power value is calculated using PrimePower at the Gate-level. The

inputs to calculate power are Gate-level Net-list [3], Testbench input in the form of

VCD file [7], Parasitic Information [6]. [7] is obtained giving [2] as input to NanoSim-

VCS. [3] and [6] are obtained as the same way as discussed in 3.

 77

5. NanoSim – P5 (Transistor level):

 The fifth power value is calculated using NanoSim at the Transistor level. The

inputs to calculate power are SPICE Net-list [9] , Input stimulus [10] and

Configuration file [11]. The output DEF [8] from Silicon Ensemble is input into

Virtuoso to get the layout which is then given as Input to Calibre to get SPICE Net-list

[9]. Input Stimulus [10] is given to NanoSim in the form of vector file obtained from

Testbench. Configuration file [11] is given for better simulation results.

6. NanoSim-VCS – P6 (Transistor level):

 The sixth power value is calculated using NanoSim-VCS at the Transistor level.

The inputs to calculate power are Gate-level Net-list [3], Testbench [2], SDF file [12] ,

SPICE Net-list [9] and Configuration file [11].

4.1 Power results – 16-bit Adder

The following section provides the results obtained for 16-bit adder macro

developed for Best-PDA. The simulation is done for 1024 input vectors, running at

frequency of 20 MHz (50 ns for 51200 ns). Simulation results of adder using

ModelSim along with the power reports from Power Estimator, Power Compiler,

PrimePower and NanoSim are shown in Figures 4.2 – 4.8. Waveform of the power

result obtained using CosmoScope after running PrimePower is also shown in Figure

4.6.

 78

Figure 4.2 ModelSim Simulation result for 16-bit adder

 79

Figure 4.3 Power Report using Power Estimator

 80

Figure 4.4 Power Report using Power Compiler with RTL Switching Activity

 81

Figure 4.5 Power Report using Power Compiler with Gate-level Switching

Activity

 82

Figure 4.6 Power Report using PrimePower

 83

Figure 4.7 Power Graph using CosmoScope
 84

Figure 4.8 Power Report using NanoSim

 85

 As shown in the Figures, the following are the power values obtained using

different power tools for Best_PDA Adder.

a) Power Estimator – 0.094 mw

b) Power Compiler with RTL Switching Activity – 0.046 mw

c) Power Compiler with Gate-level Switching Activity - 0.011 mw

d) PrimePower - 0.009 mw

e) NanoSim – 0.024 mw

4.2 Power Tables

Similarly, power reports for other macros are also determined and values

reported in a power table. There are three main power tables created to summarize the

values obtained from the power tools used in this thesis. Table 4.1 shows the values

obtained each of these tools for Default and Best_PDA version of the macros

considered in this thesis. The three levels of abstraction, Tools used and Type of

simulation performed is mentioned in the table. Table 4.2 shows the ratios of power

values between Default and Best-PDA macros. This table is used to show consistency

in the values of Default and Best_PDA for each of the macros. Table 4.3 shows

simulation time taken for Default vs. Best–PDA macros using NanoSim tool.

 86

Table 4.1 Comparison Table between Default vs. Best-PDA macros

 87

Table 4.2 Default/ Best-PDA Ratio

 88

Table 4.3 Simulation time taken for macros using NanoSim

 89

4.3 Power Graphs

This section summarizes all the comparison power values as Bar graphs for

better understanding. Fig 4.9 – 4.13 gives the bar graph for each of the macros.

Figure 4.9 Comparison between Adder macro’s Default and Best_PDA power

values

 90

Figure 4.10 Comparison between Multiplier macro’s Default and Best_PDA

power values

 91

Figure 4.11 Comparison between Complex Multiplier macro’s Default and

Best_PDA power values

 92

Figure 4.12 Comparison between FIR macro’s Default and Best_PDA power

values

 93

Figure 4.13 Comparison between Poly-FIR macro’s Default and Best_PDA

power values

 94

4.4 Analysis of obtained power values

This section discusses the percentage of error in the power values between the

different tools using Table 4.1 assuming the value obtained using Nanosim to be the

most accurate value or the one closer to reality. Percentage of error is calculated using

the following formula: (NanoSim value – Reported value from a specific tool) /

NanoSim value.

Table 4.4 shows the percentage of error for each of the macros both default and

Best_PDA using the above formula. Table 4.5 shows the percentage of error using the

Default vs. Best_PDA ratios. As seen in Table 4.4, there is a consistency in the error

percentage for smaller circuits, Adder, Multiplier and Complex Multiplier compared

to big circuits like FIR and Poly-FIR. As expected the power values using Power

Compiler using Gate-level switching activity and PrimePower are nearly the same.

The Power Estimator value shows a tremendous amount of deviation from NanoSim

value showing how inaccurate it would be to report power at the RTL level. More than

the percentage of error for the actual power values, we are interested how they differ

when it comes to ratio of Default vs. Best_PDA values. The percentage of error

moving down to lower abstraction level is not big compared to the error percentage as

we see in the power value table.

 95

Table 4.4 Percentage of Error on the actual power values for each macro

 96

Table 4.5 Percentage of Error on the Ratios of Default vs. Best_PDA for each macro

 97

4.5 Power value difference between Tool versions

 More than the difference in the power values between different power tools,

there is also a significant difference between different versions of the same tool. This

makes mentioning the version of the tool during any power reporting, very important.

A comparison table has been created showing difference in power values using

versions 2002 vs. 2003 for both Power Compiler and PrimePower. Table 4.6 shows

the power values between 2002 and 2003 version of Power Compiler. Lower value in

power of 2003 compared to its predecessor version shows how the algorithm of the

tool has been improved together with the usage of a different database file used for

power calculation. Table 4.7 shows the power values between 2002 and 2003 version

of PrimePower. 2003 version of the tool gives higher values compared to 2002

version. This shows a better power reporting algorithm used in the latest version of

PrimePower. An important point to be noted is that latest version of the tool need not

necessarily give a lower value. It shows the accuracy in power estimation as the tool

improves. The percentage difference between these versions are also calculated and

tabulated. The formula used to calculate the percentage of difference is

(2003 version – 2002 version) / (2003 version)

 98

Table 4.6 Power Compiler’s 2002 vs. 2003 version

 99

Table 4.7 PrimePower’s 2002 vs. 2003 version

 100

The following Table 4.8 shows the version of the different power tools used in this

project.

Table 4.8 Tool versions

Tool Versions

Tool Version

Design Compiler 2003.06 SP1

PrimePower 2003.06 SP1

NanoSim 2003.03-SP2

VCS 7.0.2

Cadence ICFB 4.4.6

Silicon Ensemble 05.30-s173

Calibre 9.3_1.1

HyperExtract 4.5.0

ModelSim SE vsim 5.7d

 101

4.6 Discussion about PrimePower vs. NanoSim power calculations

A study has been made to compare the power results between PrimePower and

NanoSim as these tools give the closest power to reality. In the case of the adder, the

standard cell ADDFX2 has been used multiple times to realize the function of a 16-bit

adder. A 4 bit adder was first drawn using this standard cell and the entire path from

schematic creation to power calculation using PrimePower and NanoSim was

performed. 20 input vectors were used to test the power using PrimePower and

NanoSim and the following table lists the values.

Table 4.9 4-bit adder power values using PrimePower and NanoSim

4-bit Adder power estimation for 20 input vectors

Tool used Power Estimation

PrimePower 5.424 µw

NanoSim – VCS 5.611 µw

NanoSim 5.901 µw

 102

As shown in the table, the power values for a 4-bit adder between PrimePower and

NanoSim are nearly the same. Likewise, the whole path from schematic creation to

power calculation using PrimePower and NanoSim has been performed for 16-bit

adder constructed using ADDFX2.

4.6.1 Steps involved in calculating power using PrimePower and NanoSim

First using the ADDFX2 symbol, a 16-bit schematic has been drawn as shown

in Figure 4.14. Gate-level net-list is obtained using a simulator. The gate-level net-list,

tsmc18.v file (the Verilog file containing descriptions of all the standard cells of

tsmc18 library) along with the tsmc18’s LEF file, were imported into Silicon

Ensemble to do the place and routing. Once the place and routing was done,

HyperExtract was used to get the parasitic values for the entire circuit. Then DEF and

Standard Delay Format file were exported from Silicon Ensemble. The DEF file was

used in the ICFB environment to get the layout which is shown in Figure 4.15. Once

the layout has been generated, Calibre was used to extract the circuit to get the SPICE

net-list for the 16-bit adder.

 Now power calculation using PrimePower and NanoSim were performed for

different input vectors for comparison purposes. The inputs required for PrimePower

were Testbench to get the VCD file, DSPF file using HyperExtact and the Gate-level

net-list. Using these as the input, power value for 16-bit adder was estimated. The

SPICE net-list along with input stimulus was used to estimate the power using

NanoSim.

 103

Figure 4.14 16-bit adder schematic using ADDFX2

 104

Figure 4.15 16-bit adder Layout using ADDFX2

 105

Table 4.10 lists the comparison values. The closeness of the values between

PrimePower and NanoSim confirms that the procedure of estimating power using

these tools for all the macros were correct.

Table 4.10 Comparison of power values for 16-bit adder using ADDFX2

Comparison of power values for 16-bit adder using ADDFX2

Power Estimation Tool used

100 vectors 500 vectors 1024 vectors

PrimePower 22.87 µw 25.28 µw 26.23 µw

NanoSim – VCS 25.23 µw 28.56 µw 29.93 µw

NanoSim 24.82 µw 27.46 µw 28.22 µw

 106

5 Summary, Conclusions and Future Work

5.1 Summary

 Power Estimation for different macros from RTL level to Transistor level

using different power estimation tools has been performed. The methodology

involving the usage of these tools at different levels of abstraction has been shown

with examples. Scripts have been developed for each of these levels to automate the

flow for each of the macros involved. A table has been formed documenting the

results of power for each of the macros developed for best Power, Delay and Area and

also a comparison table has also been formed comparing the power values between

Default macros Vs. Best PDA macros.

5.2 Conclusions

 It can be concluded from these power estimations at different levels of

abstraction how inaccurate values at RTL are compared to Transistor level. The

deviations in the measurement can be seen in the tables for each of the macros. Power

estimation at that level is done mainly because we can get faster results and can be

used to decide on optimizing the circuit depending on the specification. Secondly, a

study has been made between the power values obtained between PrimePower and

NanoSim because they give the most accurate results at the Gate and Transistor level

respectively. The study proves that the methodology of calculating power is correct

 107

taking into example, ADDER circuit. There had been a lot of experiments conducted

while performing power calculations using NanoSim. It can be concluded from those

experiments that proper usage of NanoSim needs to be done keeping in the mind what

circuit we are performing the simulations on, how much of accuracy is needed in the

measurements and how fast we need the results. Careful understanding of all these are

to be deployed to get the best results from the High-Speed circuit simulator. The

tabulation of percentage of error tables shows how dramatic values can change from

RTL to Transistor level for the actual values when compared to the Ratio of Default

vs. Best_PDA values. Since the thesis is about power estimation, it would have been

good to compare the values of Default vs. Best_Power macros than Best_PDA. PDA

macros are developed so they have got the best Power, Area and Delay product. For

bigger circuits this value has proved to be more than their Default macros. The power

results obtained using Power Estimator (P1), Power Compiler using RTL Switching

Activity (P2), Power Compiler using Gate-Level Switching Activity (P3) and

PrimePower (P4) used power characterized library provided by Artisan whereas

except for the technology file from TSMC18, the rest of the inputs given to NanoSim

to calculate P5 were provided by researchers at our Microelectronic Systems

Laboratory.

 Different versions of the same macros were developed as part of the DARPA

project. They are Macro with Minimum Area, Macro with Minimum Power, Macro

with Minimum Delay and Macro with Best Power, Area and Delay.

It has been concluded after seeing FIR results in which Power for Best PDA macro

 108

was greater than the Baseline macro that we should have compared the power values

between Default and Minimum Power macros. Power, Area and Delay being the three

major constraints in designing digital circuits there are applications like tactical

missile applications and other defense related projects that would require circuits to be

kept in a smaller area, dissipate power and perform really fast. Keeping this mind

checking power in a Best_PDA macro is afterall useful to be implemented in these

devices.

Some other conclusions are since power values are dependent not only the macro but

also on the tools used, versions of the tool, power characterized library used, the input

stimulus used and what the output load is, it would be only valid to compare results

from different EDA power tools only if the above are identical. Seeing the large

difference between power estimation at RTL level using Power Estimator and

NanoSim at the Transistor level, it is concluded that Power Estimator values are useful

only to start the power estimation flow from a top level abstraction. It would not be

possible to get to any specific conclusion analyzing the results of Power Estimator

other than trying to rewrite the RTL code (VHDL or Verilog) to get lesser power value

as much as possible. The values obtained using NanoSim are considered to be the true

values since all the inputs given to the tool contain fine information about the circuits

and it would be logical to compare it with the testing of the real chips in the lab. The

power values obtained by the other tools are used only to select the best possible

netlist that are capable of giving less power when realized into real chips.

.

 109

5.3 Future Work

 As seen in the conclusion, the real power comparison should have been

between Default vs. Best_Power macros. With the flow of power estimation already

developed as part of this work, Timing analysis for macros can also be performed.

Various comparisons of power estimation can be reported. Placement and Routing of

the macros can be done using Synopsys tools as apposed to Cadence tools and power

values obtained as the result of that can be compared. Other comparison like getting

net-list using a different extraction tool can also be done. With the use of sophisticated

power measuring equipments, each of the macros can be tested for power in real time

for the same input vectors used here and values can be compared with the tool’s

estimation. For simulating bigger circuits with many input stimulus, NanoSim

simulations can be run in parallel on multiple processors partitioning the

stimulus for faster results. This method of speeding up is required after

seeing that the results of FIR took around three weeks.

 110

References

 111

References

[1] W. Goh, S. Rofail, and K. Yeo, “Low-Power Design: An Overview”, Prentice

Hall.

[2] D. Soudris, C. Piguet, and C. Goutis, ”Designing CMOS Circuits for Low

Power”, Kluwer Academic Publishers, 2002.

[3] A. Bellaouar, and M. Elmasry, “Low-Power Digital VLSI Design: Circuits and

Systems”, Kluwer Academic Publishers, 1995.

[4] F. Najm, “A Survey of Power Estimation Techniques in VLSI Circuits”, IEEE

Transactions on VLSI Systems, vol. 2, pp. 446-455, 1994.

[5] J. Rabaey, “Digital Integrated Circuits: A Design Perspective”, Prentice Hall,

1996.

[6] N. H. E. Weste, and K. Eshraghian, “Principles of CMOS VLSI Design”,

Addison Wesley, 1994.

[7] A. Chandrakasan, and R.W. Brodersen, “Low Power Digital CMOS Design”,

Kluwer Academic Publishers, 1995.

[8] A. Raghunathan, N. K. Jha and S. Dey, “High-Level Power Analysis and

Optimization” , Kluwer Academic Publishers, 1998.

[9] A. Chandrakasan, and R.W. Brodersen, “Minimizing Power Consumption in

Digital CMOS Circuits”, Proceedings of IEEE 83(4), April 1995.

 112

http://www.phptr.com/authors/bio.asp?a=77c96a88-74a2-4431-8671-22b610e13a2f
http://www.phptr.com/authors/bio.asp?a=8f7b64b2-0f58-460d-8cad-3e0830cc7075
http://www.phptr.com/authors/bio.asp?a=a8e3dae3-ff0b-40a3-839e-1d582ce3a1fc

[10] D. Singh, J. Rabaey, M. Pedram, F. Catthoor, S.Rajgopal, N. Sehgal, and T.

Mozdzen, “Power-conscious CAD tools and methodologies: a perspective,”

Proceedings of the IEEE, pp. 570-594, April 1995.

[11] P. Landman, R. Mehra, and J. Rabaey, “An Integrated CAD Environment for

Low-Power Design”, IEEE Design and Test of Computers, pp. 72-82,

Summer 1996.

[12] P. Landman and J. Rabaey, “Power Estimation for High Level Synthesis”, In

Proceedings of the European Design Automation Conference, pages 361–366,

Paris, Feb. 1993.

[13] C-Y. Tsui, J. Monteiro, M. Pedram, S. Devadas, A. M.Despain, and B. Lin,

“Power Estimation in Sequential Logic Circuits", IEEE Trans. on VLSI

Systems , Vol. 3, No. 3, pp. 404-416, 1995.

[14] C. M. Huizer, "Power Dissipation Analysis of CMOS VLSI Circuits by means

of Switch-Level Simulation", IEEE European Solid State Circuits Conf., pp.

61-64, 1990.

[15] M. Nemani, and F. Najm, "Towards a High-Level Power Estimation

Capability “, IEEE Trans. on CAD, Vol. 15, No. 6, pp. 588-598, 1996.

[16] K. Keutzer, and P. Vanbekbergen, "The Impact of CAD on the Design of Low

Power Digital Circuits", IEEE Symposium on Low Power Electronics, San

Diego CA, Oct. 1994.

 113

[17] L. Benini, R. Hodgson, and P. Siegel, “System-Level Power Estimation and

Optimization”, International Symposium on Low Power Electronics and

Design, pp. 173-178, Aug. 1998.

[18] K. Roy and S. Prasad, “Low Power CMOS VLSI: Circuit Design”, John Wiley

& Sons, 1999.

[19] G. K. Yeap, and F. N. Najm , “Low Power VLSI Design and Technology”.

[20] R. Jacob Baker, Harry W. Li, David E. Boyce, “CMOS Circuit Design,

Layout, and Simulation”.

[21] ModelSim SE User’s Manual, Version 5.71, June 2003.

[22] VCS/VCSi User Guide, Version 7.0.2, September 2003.

[23] Verilog-XL User Guide, Product Version 3.4.

[24] Cadence’s Silicon Ensemble,

http://www.cadence.com/products/digital_ic/sepks/index.aspx.

[25] Cadence’s Virtuoso Layout Editor,

http://www.cadence.com/datasheets/4888_VirtuosoLE_DSfnl.pdf.

[26] Profilic tools,

 http://www.prolificinc.com/progenesis.html.

[27] Synopsis’s Design Compiler,

http://www.synopsys.com/products/logic/design_compiler.html.

[28] Synopsys’s Power Compiler,

http://www.synopsys.com/products/power/power_ds.pdf.

[29] Power Compiler User Guide, Version U-2003.03, March 2003.

 114

http://www.cadence.com/products/digital_ic/sepks/index.aspx
http://www.cadence.com/datasheets/4888_VirtuosoLE_DSfnl.pdf
http://www.synopsys.com/products/logic/design_compiler.html
http://www.synopsys.com/products/power/power_ds.pdf

[30] PrimePower Manual, Release U-2003.06-QA, June 2003.

[31] Synopsys’s PrimePower,

http://www.synopsys.com/products/power/PrimePower_ds.pdf

[32] Synopsis’s NanoSim,

http://www.synopsys.com/products/mixedsignal/NanoSim/NanoSim.html

[33] NanoSim User Guide, U-2003.03, March 2003 Version

[34] NanoSim Quick Reference Guide, Version V-2003-12, December 2003.

[35] NanoSim Integration with VCS Manual, Version U-2003.03, March 2003.

[36] Circuit Simulation and Analysis Tools Reference Guide, Version U-2003.03,

March 2003.

[37] Using the X-Calibre PX-C/PX-RC Tool , Mentor Graphic’s Calibre 2002.1

[38] CosmoScope Reference Manual, Version V-2003.12. December 2003.

[39] SimWave User Guide, Version 3.18.

 115

http://www.synopsys.com/products/power/primepower_ds.pdf
http://www.synopsys.com/products/mixedsignal/nanosim/nanosim.html

 116

VITA

Ashwin Balakrishnan was born in Neyveli, India. He did his schooling in

Jawahar Higher Secondary School, Neyveli. He then went to the Crescent Engineering

College affiliated to University of Madras, Chennai and obtained his Bachelor of

Engineering degree in Electronics and Communication Engineering in 2001. Since

August 2001, he has attended graduate school at the University of Tennessee,

Knoxville and plans to graduate with a Master’s degree in Electrical Engineering in

August 2004. He has held Graduate Research Assistant positions at the Department of

Electrical and Computer Engineering, Innovative Computing Laboratory at the

Department of Computer Science and UT Telehealth Network.

	List of Tables
	List of Figures
	List of Acronyms
	Introduction
	1.1 Overview of the Problem
	1.2 Goals and contributions
	
	
	
	
	Figure 1.1 Design Methodology showing power calculation using different power tools

	1.3 Outline of thesis

	2 Background
	Need for Low Power Design
	2.1.1 Design Flow with and without Power
	
	
	
	Figure 2.1VLSI design flows

	Basic Concepts for Power
	2.2.1 Static Power
	Dynamic Power
	Switching power
	Internal power

	Short-Circuit Power
	Leakage Power

	Tools Used
	Non-Power Tools
	Simulation Tool
	
	
	Figure 2.2ModelSim simulation flow
	Figure 2.3VCS work flow
	Figure 2.4Verilog-XL design flow

	Synthesis Tool
	
	
	Figure 2.5Design Compiler synthesis process

	Place and Route Tool
	Layout Tool
	
	
	Figure 2.6Silicon Ensemble work flow

	Extraction Tool
	
	
	Figure 2.7xCalibre Extraction flow

	Waveform Viewer

	Power Tools
	DesignPower
	RTL Power Estimator
	Power Compiler
	Power Compiler Methodology
	
	Figure 2.8Power flow at each of the abstraction level
	Figure 2.9Power flow from RTL to Gate level
	Figure 2.10Power methodology in Power Compiler

	2.3.2.3.1.1 Power Optimization

	PrimePower
	PrimePower Methodology

	NanoSim
	
	
	Figure 2.11PrimePower Methodology Flow

	2.3.2.5.1 NanoSim Methodology
	
	
	
	
	Figure 2.12NanoSim Input/Output flow

	NanoSim Integration with VCS
	
	
	Figure 2.13NanoSim-VCS flow

	Comparison of Power Tools
	
	
	
	
	Figure 2.14Power tools comparison chart

	Experimental Design
	Macros
	Power Estimation Techniques
	Basic design flow
	
	
	
	
	Figure 3.1Design Flow

	Power Estimation at the Register Transfer Level
	Methodology
	
	
	
	Figure 3.2Power Analysis flow in Power Estimator

	Capturing Forward and Backward Switching Activity
	SAIF file and RTL simulation
	
	
	Figure 3.3Methodology using RTL simulation and SAIF file

	SAIF forward-annotation file
	Creating Backward SAIF file
	Toggle command Methodology
	
	Figure 3.4 RTL backward switching activity using ModelSim

	Power reporting using Power Estimator
	
	
	
	Figure 3.5Toggle command Methodology

	Power Estimation using Power Compiler with RTL switching activity
	Methodology

	Power Estimation using Power Compiler with Gate-level Switching activity
	Creating Gate-level Switching Activity
	
	
	
	Figure 3.6Gate-level backward switching activity using ModelSim

	Power Estimation using PrimePower
	Methodology
	
	
	
	Figure 3.7PrimePower Analysis flow

	Generating PrimePower inputs
	Power Calculation
	Power Reporting

	Power Estimation using NanoSim
	Extracting SPICE net-list from Calibre
	
	
	
	Figure 3.8Adder Layout

	Design Rule Check (DRC) of Adder Layout.
	Layout vs. Schematic (LVS) check for Adder Layout
	
	
	Figure 3.9 DRC check of Adder Design
	Figure 3.10LVS check of Adder Design

	Net-list extraction for Adder

	NanoSim inputs and Power reporting
	
	
	
	Figure 3.11Extraction output of Adder design

	Results and Discussion
	
	
	
	
	
	Figure 4.1Design Methodology showing power calculations using different power tools

	Power results – 16-bit Adder
	
	
	
	
	Figure 4.2 ModelSim Simulation result for 16-bit adder
	Figure 4.3 Power Report using Power Estimator
	Figure 4.4 Power Report using Power Compiler with RTL Switching Activity
	Figure 4.5 Power Report using Power Compiler with Gate-level Switching Activity
	Figure 4.6 Power Report using PrimePower
	Figure 4.7 Power Graph using CosmoScope
	Figure 4.8 Power Report using NanoSim

	Power Tables
	
	
	
	
	
	Table 4.1 Comparison Table between Default vs. Best-PDA macros
	Table 4.2 Default/ Best-PDA Ratio
	Table 4.3 Simulation time taken for macros using NanoSim

	Power Graphs
	
	
	
	
	Figure 4.9 Comparison between Adder macro’s
	Figure 4.10 Comparison between Multiplier ma
	Figure 4.11 Comparison between Complex Multi
	Figure 4.12 Comparison between FIR macro’s Def
	Figure 4.13 Comparison between Poly-FIR macr

	Analysis of obtained power values
	
	
	
	
	
	Table 4.4 Percentage of Error on the actual power values for each macro
	Table 4.5 Percentage of Error on the Ratios of Default vs. Best_PDA for each macro

	4.5Power value difference between Tool versions
	
	
	
	
	
	Table 4.6 Power Compiler’s 2002 vs. 2003 versio
	Table 4.7 PrimePower’s 2002 vs. 2003 version
	Table 4.8 Tool versions

	4.6 Discussion about PrimePower vs. NanoSim power calculations
	
	
	
	
	
	Table 4.9 4-bit adder power values using PrimePower and NanoSim

	4.6.1Steps involved in calculating power using PrimePower and NanoSim
	
	
	
	Figure 4.14 16-bit adder schematic using ADDFX2
	Figure 4.15 16-bit adder Layout using ADDFX2
	Table 4.10 Comparison of power values for 16-bit adder using ADDFX2

	Summary, Conclusions and Future Work
	Summary
	5.2 Conclusions
	5.3 Future Work

	References
	VITA

