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Abstract 

 

New and complex systems are being implemented using highly advanced 

Electronic Design Automation (EDA) tools. As the complexity increases, the 

dissipation of power has emerged as one of the very significant design constraints. 

Low power designs are not only used in small size applications like cell phones and 

handheld devices but also in high-performance computing applications.  

Numerous tools have emerged in recent years to address this issue of power 

consumption and power optimization. With a vast number of these power 

measurement tools emerging, analyzing power consumed by digital circuits has not 

only become easier but also more effective methods are deployed to optimize digital 

circuits to dissipate less power. 

This thesis involves using Synopsys power measurement tools together with 

the use of synthesis and extraction tools to determine power consumed by various 

macros at different levels of abstraction including the Register Transfer Level (RTL), 

the gate and the transistor level. A comparison of the power calculated using different 

net-lists from different extraction tools has also been done. In general, it can be 

concluded that as the level of abstraction goes down the accuracy of power 

measurement increases depending on the tool used. 
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1 Introduction 

1.1    Overview of the Problem 

 

 With the increasing usage of hand-held wireless devices and Internet 

appliances, there is a corresponding increased need for employing low-power design 

methodologies. One of the important requirements to know during a design process is 

how much power the circuit should dissipate considering its application. So after the 

designer writes the required code, keeping in mind all the specifications that have been 

given to him, a power calculation needs to be done to confirm if the design meets the 

required specification. This is done prior to sending the chip for fabrication. So it is 

extremely important to get accurate power values using power determining tools 

running them at certain input conditions. 

 Numerous EDA (Electronic Design Automation) tools have been developed to 

not only determine power but also help in power reduction. Some of these tools are 

targeted specifically for use in the power domain. The usage of these tools is classified 

depending on the layer of abstraction they are used in. The three main layers of 

abstraction include the RTL (Register Transfer Level), the gate and the transistor 

level. Though there are numerous tools that can be used at each of these levels, this 

thesis mainly concentrates on using Synopsys tools. The various power values that can 

be calculated using these tools is given in brief in the next section with detailed 

information following in the subsequent chapter. 
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 1.2    Goals and contributions 

 

The main goal of this thesis is to calculate the power of several macros which 

vary in complexity from a 500-transistor net-list to one containing more than 150,000 

transistors. All these macros were developed by others as part of research at the 

Microelectronics Systems Laboratory at the University of Tennessee, Electrical and 

Computer Engineering Department. 

For each of the macros, power will be calculated at various levels of 

abstraction using four EDA tools supplied by Synopsys: Power Estimator, Power 

Compiler, PrimePower and NanoSim. The purpose and functionality of each of tools 

will be discussed in the later chapters. One of the major contributions will be to 

calculate the power using the transistor-level simulator, NanoSim and compare it with 

the value obtained from Prime Power which operates at the gate level.  A powerful 

and sophisticated extraction tool, Calibre, will be used to get the flat Spice-level net-

list of each of the macros. Finally, a macro table will be formed indicating the power 

values of each macro at each level, together with the simulated time taken using each 

of the tools. Scripts will be developed to implement the various results. The following 

Figure 1.1 shows the design flow involved in the thesis in calculating the power values 

at different levels of abstraction. The results obtained at each level are tabulated. 
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Figure 1.1 Design Methodology showing power calculation using different power tools 
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1.3   Outline of thesis 

  

Chapter 2 mainly reviews the literature related to the various tools that have 

been used in this work. Chapter 3 discusses the implementation of the work at 

different levels of abstraction namely, RTL level, Gate level and Transistor level. 

Chapter 4 gives the results gathered from the previous chapter. Chapter 5 presents 

conclusions and discusses possible future work. 
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2    Background 

2.1    Need for Low Power Design 

 

In the early 1970’s designing digital circuits for high speed and minimum area 

were the main design constraints. Most of the EDA tools were designed specifically to 

meet these criteria. Power consumption was also a part of the design process but not 

very visible. The reduction of area of digital circuits is not as big issue today because 

with new IC production techniques, many millions of transistors can be fit in a single 

IC. However, shrinking sizes of circuits have paved the way for reduced power 

consumption in order to have an extended battery life. Also in submicron 

technologies, there is a limitation on the proper functioning of circuits due to heat 

generated by power dissipation. Market forces are demanding low power for not only 

better life but also reliability, portability, performance, cost and time to market. This is 

very true in the field of personal computing devices, wireless communications 

systems, home entertainment systems, which are becoming popular now-a-days. 

Devices that are also used for high-performance computing particularly need to 

dissipate less power to function correctly and for a long period of time [1]. 

Keeping all these in mind, low power design has become one of the most 

important design parameters for VLSI (Very Large Scale Integration) systems.  
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  2.1.1    Design Flow with and without Power 

 

  A top-down ordinary VLSI design approach is illustrated in Figure 2.1. The 

figure summarizes the flow of steps that are required to follow from a system level 

specification to the physical design. The approach was aimed at performance 

optimization and area minimization. However, introducing the third parameter of 

power dissipation made the designers to change the flow as you shown in the right-

hand side of the Figure 2.1. 

In each of the design levels are two important power factors, namely power 

optimization and power estimation. Power optimization is defined as the process of 

obtaining the best design knowing the design constraints and without violating design 

specifications. In order to meet the design and required goal, a power optimization 

technique unique to that level should be employed. Power estimation is defined as the 

process of calculating power and energy dissipated with a certain percentage of 

accuracy and at different phases of the design process. Power estimation techniques 

evaluate the effect of various optimizations and design modifications on power at 

different abstraction levels. 

Generally a design performs a power optimization step first and then a power 

estimation step, but within a certain design level there is no specific design procedure. 

Each design level includes a large collection of low power techniques. Each may 

result in a significant reduction of power dissipation. However, a certain combination 

of low power techniques may lead to better results than another series of techniques. 
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Generally, power is consumed when capacitors in the circuits are either charged or 

discharged due to switching activities. So at higher levels of a system this power 

dissipation is conserved by reducing the switching activities which is done by shutting 

down portions of the system when they are not needed. Large VLSI circuits contain 

different components like a processor, a functional unit and controllers. The idea of 

power reduction is to stop any of the components of the processor when they are not 

needed so that less power will be dissipated when the processor is operating [2]. 

2.2     Basic Concepts for Power 

 

The power dissipation of digital CMOS circuits can be described by  

Pavg = P dynamic + P short-circuit + P leakage + P static 

Pavg is the average power dissipation, P dynamic is the dynamic power dissipation due to 

switching of transistors, P short-circuit  is the short-circuit current power dissipation when 

there is a direct current path from power supply down to ground , P leakage is the power 

dissipation due to leakage currents, P static  and is the static power dissipation [2]. 

 

 2.2.1    Static Power 

 

Static power is the power dissipated by a gate when it is not switching that is, 

when it is inactive or static. Ideally, CMOS (Complementary Metal Oxide 

Semiconductor) circuits dissipate no static (DC) power since in the steady state there 

 8



is no direct path from Vdd to ground. This scenario can never be realized in practice, 

since in reality the MOS transistor is not a perfect switch. There will always be 

leakage currents, subthreshold currents, and substrate injection currents, which give 

rise to the static component of power dissipation. The largest percentage of static 

power results from source-to-drain subthreshold voltage, which is caused by reduced 

threshold voltages that prevent the gate from completely turning off [2].    

2.2.2   Dynamic Power 

 

Dynamic power is the power dissipated when the circuit is active. A circuit is 

active anytime the voltage on net changes due to some stimulus applied to the circuit. 

In other words, dynamic power dissipation is caused by the charging. Because voltage 

on an input net can change without necessarily resulting in logic transition in the 

output, dynamic power can be dissipated even when an output net doesn’t change its 

logic state. This component of dynamic power dissipation is the result of charging and 

discharging parasitic capacitances in the circuit [2].   

 Dynamic power of a circuit is composed of  

a) Switching power  

b) Internal  power 
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2.2.2.1     Switching power 

 

The switching power of a driving cell is the power dissipated by the charging 

and discharging of the load capacitance at the output of the cell. The total load 

capacitance at the output of a driving cell is the sum of the net and gate capacitances 

on the driving output. The charging and discharging are result of logic transitions. 

Switching power increases as logic transitions increase. Therefore, the switching 

power of a cell is a function of both the total load capacitance at the cell output and the 

rate of logic transitions. Switching power comprises 70-90 percent of the power 

dissipation of an active CMOS circuit [2]. 

2.2.2.2     Internal power 

 

Internal power is any power dissipated within the boundary of a cell. During 

switching, a circuit dissipates internal power by the charging or discharging of any 

existing capacitances internal to the cell. Internal power includes power dissipated by 

a momentary short circuit between the P and N transistors of a gate, called short-

circuit power. In most simple library cells, internal power is due mostly to short-circuit 

power. Library developers can model internal power by using the internal power 

library group [2]. 
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2.2.3   Short-Circuit Power 

 

The short-circuit power consumption, P short-circuit, is caused by the current flow 

through the direct path existing between the power supply and the ground during the 

transition phase. 

2.2.4  Leakage Power 

 

The nMOS and PMOS transistors used in a CMOS logic circuit commonly 

have non-zero reverse leakage and sub-threshold currents. These currents can 

contribute to the total power dissipation even when the transistors are not performing 

any switching action. The leakage power dissipation, P leakage is caused by two types of 

leakage currents  

a) Reverse-bias diode leakage current  

b)   Subthreshold current through a turned-off transistor channel [23]. 

2.3     Tools Used 

 

There has been a variety of tools involved in this thesis. Even though, this 

thesis is all about power calculations of macros which are done using tools; there are 

other tools that have been used prior to the usage of power tools to give the required 

input to the power tools. More emphasis is given to these tools that are mainly 

involved in power estimation. The usage of tools has been classified as Power tools 
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and Non-Power tools. 

2.3.1  Non-Power Tools 

 

 Non-power tools include Simulation tools, Synthesis tools, Layout tools, 

Extraction tools and Waveform viewers.  

The tools that are discussed in this chapter are some of the non-power tools 

involved in the entire design flow. A short description of each of these tools along 

with their working flow is given in this chapter to understand their functionality. The 

subsequent chapter discusses each of the power tools in detailed manner as most of the 

thesis involves the use of these power tools.  The following chapter also discusses the 

design flow from code writing to spice net-list simulation, clearly explaining the usage 

of these tools at the respective level. 

2.3.1.1     Simulation Tool  

 

 Initially, to start with the Verilog or VHDL code for a particular design is 

written and tested. Simulation is done using Mentor’s ModelSim for both VHDL and 

Verilog or other Verilog simulators. ModelSim is a simulation and a debugging tool 

for VHDL, Verilog, and other mixed-language designs from Mentor Graphics [21].  

The basic simulation flow is as shown in Figure 2.2. To start with a working library is 

created and the code is compiled using  
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Figure 2.2 ModelSim simulation flow 

 

the commands depending upon whether the code is VHDL or Verilog.  

Verilog Compiled Simulator (VCS) [22] from Synopsys is a high-performance, 

high-capacity Verilog simulator that incorporates advanced high-level abstraction, 

verification into an open platform. The basic work flow for VCS consists of two basic 

steps: 

a) Compiling source files into executable binary files 

b) Running the executable binary file  

This two step approach simulates the design faster and uses less memory than other 

interpretive simulators. The basic design flow is given in Figure 2.3. 

Verilog-XL [23] simulator from Cadence provides a powerful environment for 

designing and verifying the functional building blocks of complex ASICs (Application  
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Figure 2.3 VCS work flow 
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Specific Integrated Circuits) and SoC (Systems on Chip). This digital simulator not 

only allows to check the functional integrity of a design but also helps in finding the 

design flaw. This simulator processes models which are descriptions of design that are 

developed using Verilog. The design flow starts with a  design idea and ends with an 

verified design as shown in Figure  2.4. 

Normally, Verilog-XL compiles all the modules that are defined in a source 

text file. Those that are not instantiated in the source file become top-level modules. 

Creating libraries avoids this unnecessary origination of top-level modules, saving 

compile time and memory. So whenever Verilog-XL cannot find the module in the 

design description it searches the libraries associated with the design description for 

the definition. 

 

 

 

Figure 2.4 Verilog-XL design flow 
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2.3.1.2     Synthesis Tool 

 

Design Compiler [24] is the core of the Synopsys synthesis software products. 

It comprises tools that synthesize HDL designs into optimized technology-dependent, 

gate-level designs. It supports a wide range of flat and hierarchical design styles and 

can optimize both combinational and sequential designs for speed, area, and power. 

Design Compiler reads and writes design files in all the standard EDA formats, 

including Synopsys internal database (.db) and equation (.eqn) formats. In addition, 

Design Compiler provides links to EDA tools, such as place and route tools, and to 

post-layout resynthesis techniques, such as in-place optimization. Design Compiler 

products include DC Professional, DC Expert, DFT Compiler, DC Ultra, and DC 

Ultra Plus. 

 The basic Design Compiler synthesis process is given in Figure 2.5. 

 

 

 

Figure 2.5 Design Compiler synthesis process 
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These products help in producing fast, area efficient ASIC designs by employing user-

defined gate arrays, FPGA (Field Programmable Gate Arrays) or compiled libraries. 

The tools also help in exploring design tradeoffs involving design constraints such as 

timing, area and power under various loading, temperature and voltage conditions. 

 The Design Compiler is a powerful tool that other products can be run inside 

its environment using specific options. Some of the products that can be accessed are 

HDL compiler, Automated chip synthesis, FPGA compiler, Behavioral compiler and 

Power Compiler. 

 HDL compiler reads and writes Verilog or VHDL design files. The Verilog or 

VHDL compiler reads the HDL files and performs translation and architectural 

optimization of the designs. The appropriate HDL compiler is automatically called by 

Design Compiler when it reads an HDL design file.  

2.3.1.3     Place and Route Tool 

 

 Silicon Ensemble [24] is Cadence's Automatic Place and Route tool. Silicon 

Ensemble can perform the physical placement and routing of a net-list of standard 

cells. Its uses compaction algorithms for giving the most effective way of placing and 

routing cells. The output from Silicon Ensemble is a DEF (Design Exchange Format)  

file which can be later imported into Virtuoso to get the layout.  

            Silicon Ensemble is a stand alone tool that needs some intermediate 

files, that describe the various aspects of the design, in an appropriate format. These 

files are called LEF (Library Exchange Format) which describes the rules on how 
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wires can be drawn by the router and what the available cells and blocks look like. The 

other important file is DEF which is an output file from Silicon Ensemble that contains 

information on how the cells are connected along with the coordinates of where the 

blocks are placed with their wire informations. Another  important output file is SDF 

(Standard Delay format) file which is used to get timing information of the design. 

The basic flow from Silicon Ensemble is as shown in Figure 2.6. 

2.3.1.4     Layout Tool 

 

Virtuoso Layout Editor [25] from Cadence is a custom physical layout tool. It 

supports the physical implementation of custom digital, mixed-signal, and analog 

designs at the device, cell, and block levels. Apart from GDS (Graphical Data Stream) 

file from Silicon Ensemble, a DEF file is also created and imported into Virtuoso to 

check that the final layout is according to the design rules. The gate level net-list from 

Design Compiler can also be imported into Virtuoso to get the schematic for the 

VHDL or Verilog code written. LVS (Layout versus Schematic) is performed to prove 

that the layout created is only for that particular schematic.  

 Simulations using Verilog-XL and Spectre can be performed from this 

environment to check if the circuit is functionally correct. 
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2.3.1.5      Extraction Tool 

 

The Extraction tool used in this thesis is Mentor Graphic’s Calibre [37]. There 

are two versions of this tool; one is used for getting hierarchical parasitic extraction by 

xCalibre-H tool and other one is used for a flat net-list with RC parasitic extraction. 

Mostly xCalibre PX-C/PX- RC tool has been used to get flat net-list with RC 

extraction. 

 The xCalibre PX-X/PX-RC tool performs parasitic extraction on nets in 

transistor and cell-level IC designs. These designs produce either lumped or 

distributed net models suitable for resistance or capacitance net models. The tool 

creates net models for the design in the form of net-list. In other terms, in processing a 

design, the tool flattens the design’s hierarchy, and outputs a net-list with capacitance 

and resistance values or ASCII reports. The tool performs both layout-based and 

source-based extraction. It is mandatory to supply the tool with layout database, 

whereas the source database is optional. The following Figure 2.7 shows the extraction 

flow.  

The sequence involved in the process is to first prepare the design data, then 

prepare the SVRF (Standard Verification Rule Format) file, and then invoke the tool. 

Once the net-list and report files are generated, they are analyzed. One of the major 

advantages in using xCalibre is that it does DRC checking very fast compared to other 

extraction tools which largely helps in reducing time during a completion of layout 

verification. 
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The tool produced two outputs: 

a) Net-list 

b) Reports 

The outputs are controlled by the operations and statements in the SVRF file. 

The net-list contains the parasitic net models. These models are an extracted net’s 

parasitic capacitance and resistance values. The tool produces one parasitic model per 

net. Using the application two types of net-list can be produced. 

a) HSPICE 

b) DSPF (Delayed Standard Parasitic Format) 

The HPSICE or DSPF net-list are produced in one of the three modes: 
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• Simple – Net-list without parasitic data 

• Lumped (PX-C) – Net-list with lumped C data 

• Distributed (PX-RC) – Net-list with distributed RC data 

The tool also produces ASCII reports which list net capacitances, resistances, 

and delays. They contain only formatted parasitic data without net-list information or 

syntax. The following are the output report modes: 

• ASCII Distributed 

• ASCII Lumped 

• SDF 

 in accordance with the instructions specified in the rule file. Additionally, the tool can 

produce SDF suitable for analysis of pin-to-pin timing delays. 

2.3.1.6      Waveform Viewer 

   

  CosmoScope [38] from Synopsys is a graphical waveform analyzer tool that 

allows to view and analyze results in the form of waveforms displayed on graphs, or 

as values displayed as lists. Some of the tools that are included with CosmoScope are  

a) Signal Manager – which is used to open the files to plot them  

b) Measurement tool – Used for measurements that can be applied to a 

waveform 

c) Waveform calculator – calculator that interacts graphically with application 

 SimWave [39] from Synopsys is an interactive waveform display capable of 

displaying digital, analog, floating-point, enumerated, and string type signals. It can be 
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used as a post-processing tool or an interactive tool capable of showing simulation 

results while a simulation is still running. Users can open multiple windows for 

viewing unlimited signals in each of those windows. Some of the features of SimWave 

are  

a) Circuit development is accelerated using fast, clear displays 

b) Complex relationships can be understood easily due to waveforms 

c)    Circuit operation can be documented 

d)    Has got better search so that debugging is easier 

2.3.2   Power Tools 

 

This thesis involves the usage of Synopsys power tools. The power products 

are tools that comprise a complete methodology for low-power design. Synopsys 

power tools offer power analysis and optimization throughout the design cycle, from 

RTL to the gate level. Analyzing power early in the design cycle can significantly 

affect the quality of the design. Improvements made to the design while it is at RTL 

level can get even better results eventually. Not only these power tools do accurate 

measurements but also can help in calculating power quicker. 

Power consumption is calculated at three levels of abstraction. The tools used 

at these levels are  

a) RTL Level  - RTL Power Estimator 

b) Gate Level – Power Compiler (based on switching activity), 

PrimePower 
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c) Transistor Level – NanoSim 

2.3.2.1     DesignPower 

 

DesignPower [29] is a power analysis tool that analyzes the design for 

switching power, internal cell power, and leakage power. The DesignPower tool 

analyzes the power of a gate-level design. It requires a gate-level net-list and some 

form of switching activity for the net-list. It computes average power consumption 

based on activity of nets in the design. DesignPower allows capturing the switching 

activity of primary inputs, primary outputs, and outputs of sequential elements during 

simulation.   

Power analysis using switching activity from RTL simulation provides a much 

faster turnaround than analysis through switching activity from gate-level simulation.  

DesignPower supports interfaces to Synopsys VHDL System Simulator (VSS), VCS 

and Verilog-XL simulator. 

2.3.2.2     RTL Power Estimator 

 

The RTL Power Estimator [29] enables one to obtain design power estimates 

early in the design process. Its presynthesis estimation capabilities analyze power 

consumption at the RTL. It covers both synthesizable and instantiated parts of the 

circuit. One of the advantages is that power information can be obtained using limited 

input. Since power is calculated at a very early stage in the design flow it helps in 
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estimating packaging and battery requirements. It is also used to identify the hotspots 

in a large, complex design. 

2.3.2.3     Power Compiler 

 

Power Compiler [29] is an add-on product to Design Compiler. The Power 

Compiler tool optimizes the design for power. Working in conjunction with the 

Design Compiler tool, Power Compiler provides simultaneous optimization for 

timing, power and area. In addition to the standard inputs to synthesis (RTL or gate-

level net-list, technology library, design constraints, and parasitics), Power Compiler 

uses two other inputs: Switching activity of design elements and power constraints. It 

contains all the analysis capabilities of DesignPower. 

 Power Compiler uses the same power analysis engine as DesignPower. This 

allows Power Compiler to the use the same switching activity for optimization that 

DesignPower uses for analysis. It accepts either user-defined switching activity, 

switching activity from simulation, or a combination of both. It provides RTL clock 

gating and optimizes the circuit based on circuit activity, capacitance, and transition 

times. Power Compiler cannot only be used as a standalone product but also can be 

used in coordination with Design Compiler, Module Compiler, Physical Compiler and 

Floor plan Manager. 
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2.3.2.3.1    Power Compiler Methodology 

  

 Power Compiler is used at RTL and Gate level to calculate power and do 

power optimization depending on the need. At each level of abstraction, simulation, 

analysis and optimization can be performed to refine the design before moving to the 

next lower level. Simulation and the resultant switching activity gives the analysis and 

optimization the necessary information to refine the design before going to next lower 

level of abstraction. The higher the level of design abstraction, the greater the power 

savings can be achieved. The following Figure 2.8 describes the power flow at each of 

the abstraction level. Figure 2.9 shows power flow from RTL to Gate level. 

Cell internal power and net toggling directly affect dynamic power of a design. 

To report or optimize power, Power Compiler requires toggle information for the 

design. This toggle information is called Switching Activity. 
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 Power Compiler models switching activity in terms of static probability and 

toggle rate. Static probability is the probability that a signal is at a certain logic state 

and is expressed as a number between 0 and 1. It is calculated during simulation of the 

design by comparing the time of a signal at a certain logic state to the total time of the 

simulation. Toggle rate is the number of logic-0-to-logic-1 and logic-1-to-logic-0 

transitions of a design object per unit of time. 

 The following Figure 2.10 shows the methodology of power calculation using 

the combination of Power Compiler and Design Compiler. The flow of data between 

the different steps and tools used are also shown. Before starting to calculate power 

using Power Compiler the desired gate-level net-list of the design should be first 

generated. The power methodology starts with the RTL design and finishes with a 

power-optimized gate-level net-list. Ultimately, Power Compiler is used to calculate 

power using the gate-level net-list produced by the Design Compiler or power-

optimized gate net-list produced by Power Compiler itself. As seen in the figure most 

of the processes that take place are using Design Compiler, but the simulation process 

that is shown is outside Design Compiler tool and is done as part of power calculation. 

The main purpose of simulation is to generate information about the switching activity 

of the design and create a file called Back-annotation. This file can contain switching 

activity from RTL simulation or gate-level simulation. Initially, the RTL design is 

given to the HDL compiler to create a technology-independent format called as 

GTECH design. This is as a result of analyzing and elaborating the design by HDL 

compiler. This formatted design is given as an input to Design Compiler. Before it is  
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compiled by the Design Compiler, “rtl2saif” command is used to create forward-

annotation file which is later used for simulation. The formatted design GTECH is 

later given as input to Design Compiler which produces an output which is given to 

Power Compiler. 

 The Forward-annotation SAIF file is given as an input to do RTL simulation 

which gives a back-annotation SAIF file which is used by Power Compiler. This 

forward annotated file contains directives that determine which design elements to be 

traced during simulation. Gate-level simulation can also use a library forward-

annotation file. This forward-annotation file used for gate level simulation has 

different information compared to RTL forward-annotation file. This file contains 

information from the technology library about cells with state and path-dependent 

power models. “Lib2saif” command is used to get this forward-annotation file. 

During power analysis, Power Compiler uses the annotated switching activity 

to evaluate the power consumption of the design. During power optimization, Power 

Compiler uses the annotated switching activity to make decisions about the design. 

2.3.2.3.1.1     Power Optimization 

 

Power optimization achieved at higher levels of abstraction (RTL) has an 

impact in reducing power in the final gate-level optimization. Power Compiler 

performs clock gating when the design is elaborated using “-gate_clock” option. 

Design generally has synchronous load-enable registers. These registers are formed 

using feedback loops by Design Compiler. 
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These registers maintain the same logic value through multiple cycles and 

unnecessarily use power. When the “-gate_clock” option is used HDL compiler 

introduces gates in the clock network before Design Compiler does its processing. 

During the next step, Design Compiler checks the gated clock introduced by HDL 

compiler and uses simple registers without synchronous load-enabled functionality 

thus saving power. RTL clock gating is achieved without affecting timing or area of 

the design.  

 At the gate level, Design Compiler and Power Compiler are used to create 

gate-level net-list optimized for power. Once the RTL clock gating is done, the next 

output is the gate-level net-list which will be optimized for power. First constraints are 

set for timing and area. Then the design is compiled using the Design Compiler. This 

creates a gate-level design on which the switching activity can be annotated using the 

back-annotation file. The back-annotation file is read into Power Compiler using 

“read_saif” command. After this power constraints are set to trigger power 

optimization by Power Compiler. Then the design is compiled using Power Compiler. 

Using the switching activity and power constraints, Power Compiler produces a gate-

level net-list which is optimized for timing, power and area. 

 Switching activity from RTL simulation provides good power optimization 

results. However, switching activity from gate level simulation provides much more 

accurate analysis and optimization. The power analysis of the gate-level design can be 

done at various points in the entire methodology. Once annotating the switching 

activity from the back-annotation file, power can be analyzed before compiling using 
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Power Compiler. This is done before power optimization. Once doing power 

optimization the power values can be compared. “report_power” is the command 

used to get detailed power results. 

2.3.2.4      PrimePower  

 

One of the tools apart from Power Compiler that is used to calculate gate level  

  power is PrimePower [31]. PrimePower is a dynamic gate-level simulation and 

analysis tool that accurately analyzes power dissipation of cell-based designs. 

PrimePower achieves a high level of accuracy with precise modeling of power 

dissipation. Because of this feature it is a very useful tool for circuit designers who 

develop products that are power-critical such as portable computing and 

telecommunications. It also provides a very comprehensive power analysis reports 

which can be seen interactively by the user and hence can analyze better. PrimePower 

also works with standard simulators like VCS.   

2.3.2.4.1   PrimePower Methodology 

 

The methodology involved using PrimePower consists of two phases;  

a) HDL Simulation 

b) Power profiling  

During the first phase which is HDL simulation, PrimePower interprets 

switching activity in the VCD (Verilog Change Dump) or PIF (PrimePower 
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Intermediate Format). Most of the simulators generate files in the VCD format using 

“$dumpvars ( )” command. The event information given by the VCD file is directly 

read by PrimePower during its input. VCD+ formatted file is generated using VCS 

simulator. The event information can be converted to VCD within PrimePower using 

“vpd2vcd” command. 

 The second phase involves power profiling gives a detailed power report. To 

generate the power profile, design connectivity, design switching activity and pin-to-

pin delay information are required. The ASCII based power reports, is used to view 

the power profile at the cell, block, or chip levels. The design activity is available in 

the VCD data file. The design connectivity is provided in the form of Verilog or 

VHDL net-list files, and pin-to-pin timing is derived from the Synopsys libraries and 

updated when parsing the VCD file. Based on these inputs and any additional net 

capacitance, PrimePower builds the power profile. The inputs given to the first phase 

i.e. HDL simulation are SDF file, Test bench file and Verilog library. This results in 

the generation of VCD file which is given to PrimePower along with Synopsys db file 

and Net-list. Depending on the mode of operation of PrimePower which are Batch 

mode, Interactive batch mode, or GUI mode power reports can be obtained. The GUI 

provides templates to set up the PrimePower commands, and a suite of analysis tools 

to view the results graphically. The command line mode is run using the command 

“pp_shell”. The “pp_shell” also provides script execution environment based on TCL 

(Tool Command Language). Interactive mode produces a set of text-formatted power 

 33



reports based on data that is entered interactively at command-line prompt. The 

analysis tool of PrimePower is based on PrimeTime. 

 Power analysis is performed using PrimePower to determine the power 

consumption of the chip based on the switching activity. PrimePower is event based, 

so for every event it determines the supply current and leakage current dissipated 

given the states and dynamic conditions. PrimePower calculates both static and 

dynamic power. Static power is often referred to as Leakage power. PrimePower can 

also be used to determine Glitch power. If two toggles are very close to each other, 

and the time interval of two toggles is less than the rise and fall transition time of that 

particular pin, then these two toggles form a glitch. The following Figure 2.11 gives 

the methodology involved in PrimePower. 

2.3.2.5      NanoSim  

 

 NanoSim [26] is one of the most powerful power tools by Synopsys. NanoSim 

is a dynamic transistor level simulator. It is a dynamic power/timing analysis tool. It is  

a combination of two previous simulators, PowerMill and TimeMill. Some of the 

important features of using NanoSim are 

 a)   It is faster than Spice 

 b)   It can handle full chip net-list with extracted parasitic 

 c)   It can do concurrent simulation with mixed net-list types like spice, 

Verilog,   EPIC, Spectre, EDIF and CSPF. 
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2.3.2.5.1     NanoSim Methodology  

 

NanoSim has a great deal of configuration commands that can give user a great 

deal of control over the simulation. Simulation results would significantly be affected 

either if the user does not provide a specific command or a command is not used 

appropriately. Accuracy of the results will also vary depending upon the use of the 

commands. NanoSim can report the following  

a)   Top-level and block-level power analysis 

b)   DC path report 

c)   Floating node report 

Power analysis includes average, RMS and peak current reports in text format 

and also reports average, RMS and instantaneous current as waveform information 

that can be input in a waveform viewer and be analyzed.  It can also report elements 

with excessive current. The DC path analysis reports conducting paths between 

specified voltage source nodes. It can also report nodes that stay in a high impedance 

longer than a certain period of time. NanoSim can also check a circuit for several 

unusual topological conditions that could result in DC leakage paths. Figure 2.12 sums 

up the inputs required and outputs that can be generated. 
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2.3.3 Comparison of Power Tools  

 

The three important tools used in this thesis are Power Compiler, PrimePower, 

and NanoSim. Power Compiler is used at RTL and Gate level. PrimePower is used at 

Gate level and NanoSim is used at Transistor level. Both Power Compiler and 

PrimePower provide low power spectrum tools. Power Compiler provides analysis 

and power optimization at both RTL and gate level. PrimePower provides analysis at 
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gate level. Power Compiler provides power optimizations using clock gating and gate 

level optimizations whereas PrimePower doesn’t provide power optimization.  

Power  analysis by PrimePower is much more in detail compared to the one given by 

Power Compiler. NanoSim comes in the last category power analysis which is 

transistor level. NanoSim not only gives power values depending on the inputs but also 

simulates the design to check the functionality. Power values get more accurate as we 

go down the level of abstraction and NanoSim gives the most accurate results. The 

following Figure 2.14 summarizes the same. 
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3 Experimental Design 

3.1     Macros 

 

The following macros were developed as part of a research project with the  

DARPA (Defense Advanced Research Projects Agency) and Boeing. The research 

work involved was to create macros for best PDA (Power, Delay, and Area) by 

exploring the best possible approach to improve those parameters. This thesis involves 

calculating the power of these macros. 

The following are the macros used in this experiment  

a) 16-bit Optimized Adder 

b) 16-bit Optimized Multiplier 

c) 16-bit Optimized Complex Multiplier 

d) FIR (Finite Impulse Response) macro with best PDA developed using 

Clock Tree 

e) Poly FIR with best PDA developed using Clock Tree 

These macros were built for TSMC-0.18 micron process. 

3.2     Power Estimation Techniques 

 

Power values for each of these macros are done using four power tools of  

Synopsys spread through three levels of abstraction, RTL level, Gate level and 

Transistor level and in overall 5 different values for a macro being calculated. Power 
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calculation for each of the tools at a specific level is done using a different 

methodology and with other non-power tools involved. One of the major non-power 

tools involved in this is an extraction tool. A table is built summarizing all the values. 

 The first method of power calculation is done using Power Estimator which is 

used at the RTL level. The second method involves using Power Compiler with RTL 

level switching activity and the third method involves using Power Compiler with 

Gate Level switching activity. The fourth method is by using PrimePower which also 

comes at Gate level. The final and the most accurate fifth method is by using NanoSim 

which is at the transistor level. The accuracy of the power values obtained using these 

tools gets better as we move from RTL level to transistor level. This is because the 

information required for calculating accurate power of a macro is given in more detail 

as the level goes to the lower levels of abstraction and also the tools involved get more 

complex at those levels. Finally, a table is made with power values filled for each of 

the macros together with the simulation time required to get those. 

3.3     Basic design flow  

 

The following Figure 3.1 gives a basic idea of the design flow that takes place 

from code writing of the macro to sending the final macro output for fabrication. 

Initially to start with the VHDL or Verilog hardware description language is used to 

describe the design. The design is verified using one of the different simulators to test 

its functionality. Once the test is fine, the next process of creating the net-list is carried 

out. The gate-level net-list is created using Design Compiler. The gate-level net-list  
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along with information about the standard cells are given to Silicon Ensemble to do 

place and routing of the design. SDF file is exported from Silicon Ensemble to do 

gate-level back-annotation simulation to verify the net-list .Once that is confirmed 

another exported file from Silicon Ensemble; DEF is imported into ICFB’s Virtuoso 

layout editor to get the layout. Also the gate-level net-list obtained from Design 

Compiler is imported into ICFB’s Schematic viewer to get the schematic for the 

design. DRC (Design Rule Check) is performed for the layout that is obtained from 

ICFB. The layout and Schematic is compared using a test called to confirm that the 

correct layout is obtained for the design. Pre-layout simulation of the schematic and 

Post-Layout simulation of the layout are also done to confirm the functionality. Post-

layout simulation also helps in finding the delay and other details in the design. Then 

in order to send the design for fabrication, GDS file is exported from ICFB. 

In this thesis all the processes in the design flow are carried out.  Additionally, the 

power tools are used to estimate power at different levels depending on the tool used 

at a specific level of abstraction. The next sections in this chapter describe the process 

and methodology used in each of the power tools and how the power is calculated. 

The following are the different methods of calculating power  

a) Power Estimator using RTL level switching activity ( Pre-Synthesis) 

b) Power Compiler using Gate level net-list with RTL level switching activity 

c) Power Compiler using Gate level net-list with Gate-level switching activity 

d) PrimePower using VCD and Gate-level net-list  

e) NanoSim using Spice net-list and Vector file as stimulus  
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3.4      Power Estimation at the Register Transfer Level 

 

The RTL Power Estimator enables to obtain design power estimates early in 

the design process. Its pre-synthesis simulation capabilities enable to analyze the 

power consumption of the design at the RTL. These Architectural or RTL level tools 

can be used to quickly understand which modules in the entire design consume the 

largest amount of power. This is also the best level to evaluate the usage of clock 

gating strategies which are primarily used to reduce power consumption. The run time 

efficiency of running the tools at this level is also used to calibrate the fastness of the 

tool. Some of the features of using Power Estimator are 

  

a) Obtain quick  power estimation early in the design 

b) Perform architectural tradeoffs early in the design flow 

c) Identity the hotspots in the design so that more concentration can be put 

forth to reduce power in those areas. 

3.4.1   Methodology 

 

The following is the approach that has been followed to calculate power using  

Power Estimator which is part of the Power Compiler tool. Figure 3.2 gives the flow. 

As shown in the figure, the RTL design is first taken. There are two flows from the  
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RTL design. One is the RTL code which is simulated using ModelSim simulator to get 

Back Switching SAIF file which contains the switching activity of the design and it is 

used to create power model for the design using “create_power_model” command. 

Then the design is annotated using the back annotated switching activity and power is 

reported using “report_rtl_power” command. All the commands can be added up in a 

script which can be used by invoking “pp_shell” command. 

3.4.2 Capturing Forward and Backward Switching Activity 

 

Power Compiler requires information about the switching activity of the 

design to do power analysis. The forward and back-annotation files are in SAIF 

format. SAIF is an ASCII format developed at Synopsys to facilitate the interchange 

of information between simulators and Synopsys power tools. Some of the power 

tools cannot understand SAIF file so in that case VCD file is used. Depending on the 

tool, either RTL level switching activity or Gate-level switching activity is used. 

Power Compiler has a methodology that enables the use of switching activity from 

RTL simulation as well as from Gate-level simulation. Using gate-level simulation the 

power values are much more accurate but doing that is time consuming. During RTL 

and gate level simulation the designer can direct the simulator to monitor and write out 

the switching activity of certain important elements in the design. For accurate 

analysis, synthesis-invariant elements should be closely monitored during RTL 

simulation. These are the elements that are not changed during simulation like primary 

inputs, sequential elements, black boxes, three-state devices and hierarchical ports. 
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3.4.2.1     SAIF file and RTL simulation 

 

A SAIF forward-annotation file directs the simulation to monitor primary 

inputs and other synthesis-invariant elements. The backward SAIF file generated from 

the simulation contains the resultant switching activity of the elements monitored 

during the RTL simulation. Synopsys power tools can read the information in the 

back-annotation file and annotate it on the compiled design. The following steps as 

shown in the Figure 3.3 are done to get forward and finally the back switching activity 

file  

a) Set the variable “power_preserve_rtl_hier_name = true” 

b) Create a SAIF forward-annotation file from “dc_shell” 

c) Include the SAIF forward-annotation file in simulation using ModelSim  

d) Write a SAIF back-annotation file from simulation 

e) Read the SAIF back-annotation file to annotate the design from “dc_shell” 

As the design is analyzed and elaborated, HDL compiler creates a technology-

independent design called GTECH design. Using GTECH design, HDL compiler 

creates the SAIF forward-annotation file when invoking the “rtl2saif” command.  

The following is the methodology followed using RTL simulation and SAIF 

files. 
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3.4.2.2    SAIF forward-annotation file  

 

The following script has been used to create forward annotation file for 

“adder” design. 

 “ power_preserve_rtl_hier_names = true 
   analyze -f vhdl {adder_16.vhd} 
   elaborate adder_16 
   link 
   rtl2saif -output adder_forward.saif -design adder_16   “ 

 The following is the explanation of each of the command lines in the script. To 

start with the “dc_shell” command is used to invoke the Design Compiler. 

a) power_preserve_rtl_hier_names = true  

 This variable is set true to preserve the hierarchy information of the RTL 

objects in the RTL design. 

b) analyze -f vhdl {adder_16.vhd} 
 elaborate adder_16 
 
 The analyze and elaborate commands read the RTL design into active memory 

and converts it to a technology-independent format called the GTECH design. 

c) link 

 The link command resolves instantiated references of the sub designs. 

d) rtl2saif -output adder_forward.saif -design adder_16    

 The rtl2saif command creates the forward-annotation file using the GTECH 

format created during the analysis and elaboration of the RTL design. Here 

“adder_forward.saif” is the forward-annotation file for adder. 
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3.4.2.3    Creating Backward SAIF file 

 

 Now for Power Estimator to report power, Backward SAIF file is required 

which is obtained using Forward SAIF file. ModelSim simulator is used to create the 

backward SAIF file. First, the VHDL of adder along with the test bench are compiled 

and then the ModelSim simulator is invoked. Forward switching activity file generated 

by “rtl2saif” command as part of the Design Compiler is also fed to the simulator. 

The “read_rtl_saif” command reads the SAIF forward-annotation file and registers 

design objects for monitoring. The next subsection describes about the toggle 

command methodology in detail. The “toggle_report” command creates a SAIF back-

annotation file from simulation. The back-annotation file contains information about  

the switching activity of the synthesis-invariant elements in the design. The 

“read_saif” dc_shell command back-annotates the information from the SAIF file 

onto the current design. Figure 3.4 shows the steps involved in creating the backward 

SAIF file. 

3.4.2.3.1 Toggle command Methodology 

 

 The following is the overview of the toggle command methodology that is 

exclusively used in ModelSim simulator to get the back-annotation file. The following 

flow is same for RTL simulation and Gate level simulation to finally get a back-

annotation file.  This step is the main step in obtaining the switching activity of the 

design. 
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 As seen in the Figure 3.5, first “read_rt_saif” command is used to read in the 

forward switching activity file Then “set_toggle_region” command is used to set the 

toggle region making the simulator to monitor the design objects within those regions. 

Then “toggle_start” and “toggle_stop” commands are used to Start and Stop the 

toggle monitoring respectively. “toggle_report” is used to write out the back-

annotation file. 

3.4.3 Power reporting using Power Estimator 

 

  The following script has been used to get the power report. 

“ 
target_library = link_library = 
/sw/CDS/ARTISAN/TSMC18/aci/sc/synopsys/typical.db} 
create_power_model -format vhdl -hdl {adder_16.vhd} -top_design adder_16 
read_saif -input FB.saif -instance adder_16 -rtl_direct 
report_activity 
report_rtl_power > power_report_PE “ 

 

Here the “FB.saif” file is the back-annotation switching activity file obtained from 

ModelSim. Assuming all the above commands are put inside a script, it can be run 

using the following command from the UNIX command prompt. 

“pe_shell –f <script name> “ 

The power report for the adder design gets written to “power_report_PE” file.  
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3.5  Power Estimation using Power Compiler with RTL switching activity 

 

 Power estimation at gate level using gate level power estimation tools is the 

next accurate method in calibrating power. These tools operate on the gate level net-

list of the design together with the gate level power library. The power library consists 

of power models for each of the gates like inverters, NAND gates, and flip-flops. 

These models consists information about the parameters that contribute to power 

dissipation in each of the standard cells. In this thesis, Power Compiler is used as the 

gate level power estimation tool. Power Compiler not only estimates the power but 

also helps in optimizing the design for lower power. The gate level power 

consumption checks the power being consumed by logic transitions on wires and by 

capacitances and short circuits internal to gates during an input transition. In the case 

of smaller design, the designer can do some gate level changes to reduce power after 

estimating. If it is a larger design then it would be difficult for the designer to check all 

the gate-level changes. At this point, Power optimization tools come in handy. Power 

Compiler is also an optimization tool.  

3.5.1 Methodology 

 

In this method of power estimation, Power Compiler is used with the same 

RTL back-annotation switching activity used for power estimation using Power 

Estimator but instead of RTL code, it uses gate-level net-list of the design. 
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.  Also for getting better power result, parasitic information of the system is also 

provided. In this case DSPF is obtained from Place and route tool, Silicon Ensemble 

using HyperExtract Extraction tool. The gate-level net-list is obtained from Design 

Compiler.  The following script has been used to report power. 

“ 
read -f verilog -net-list adder_16_bestPDA.v 
current_design adder_16 
create_clock -name clk -period 50 -waveform {0 25} 
set_load 0.005410 SUM[*] 
read_parasitics -format DSPF adder_16_bestPDA.dspf   -elmore 
read_saif -input FB.saif -instance adder_16 
report_power > power_report_RTL “  
 

As shown in the script first the gate-level net-list of the adder design obtained from 

Design Compiler is read inside the “dc_shell” environment. Depending on the clock 

frequency used, it has been assigned using the “create_clock” command. The parasitic 

is read in the form of DSPF file using “read_parasitics” command. Then the 

backward SAIF file is loaded using “read_saif” command. Then finally 

“report_power” command is used to report the power. Depending on the design, 

extra commands may be required in this script especially for designs having a clock 

tree. Designs having clock tree will report high fanouts when run in this environment. 

Additional commands will enable to remove the high fanouts.  

3.6  Power Estimation using Power Compiler with Gate-level Switching activity 

 

 Another method of calculating power of a design which is more accurate than 

the previous Power Compiler method is to use gate-level net-list with gate-level 
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switching activity. This method is better than the previous method because it uses the 

gate level net-list to get the switching activity of the design, but the time taken to do 

this procedure is more than previous two methods. 

3.6.1 Creating Gate-level Switching Activity 

 

 The following Figure 3.6 shows the flow required to get the Back annotation 

gate level switching activity which will be later used to calculate power. The main 

difference between RTL back annotation switching activity and gate-level switching 

activity is that here gate level net-list is given as the input to the ModelSim simulator 

along with the testbench and the do file which contains all the toggle region definition 

and the actual running of the simulation and the  reporting of the toggle activity. The 

resultant back-annotation SAIF file is read back to Power Compiler and power is 

reported. The do file that is used to capture switching activity follows the same 

procedure as RTL switching activity  like defining the reading the forward SAIF file, 

defining the region for counting toggle information, starting and stopping the 

monitoring switching activity and finally using “toggle_report” command to report 

the activity in a SAIF file format. 

 “ 
  read -f verilog -net-list adder_16_bestPDA.v 
 current_design adder_16 
 create_clock -name clk -period 50 -waveform {0 25} 
 set_load 0.005410 SUM [*] 
 read_parasitics -format DSPF adder_16_bestPDA.dspf   -elmore 
 read_saif -input backgateadder.saif -instance testbench/design 
 report_power > power_report_Back   “ 
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Figure 3.6 Gate-level backward switching activity
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First the gate level net-list is read into dc_shell environment. Once the net-list 

is read the top level of the design is made as the current design to work on it. Then the 

clock is created depending on the frequency is run while calculating the power. Then a 

certain load is given to the output port which in this case is SUM. Then the parasitic 

values are read into as DSPF form. Then the backward annotation file is read which 

has the switching activity of the design. The switching activity file gives information 

to the tool at which points there is switching in the design. This is useful to report 

power of the design. “report_power” command is used to report the power of the 

design. This method gives power values much more accurate the other previous 

methods. Next method discussed is by using another Gate-level Power Estimator 

using almost the same input files except that it takes in the switching activity as VCD 

format. This tool is supposed to give almost equal power compared to Power 

Compiler using Gate level switching activity. 

3.7  Power Estimation using PrimePower 

 

 PrimePower is a dynamic gate-level simulation and analysis tool that 

accurately analyzes power dissipation of cell-based designs. Let us see some of the 

differences between Power Compiler and PrimePower since both are Synopsys power 

tools used to calculate power at gate-level of a design. Not only does Power Compiler 

determine power at the gate-level, it can also calibrate power at the RTL level. Power 

Compiler can be used to do power optimization using clock gating, operand isolation 

whereas PrimePower cannot be used to do power optimization. Power Compiler 
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reports for average power and are performed at the block level. PrimePower provides 

full chip power analysis that can include non-synthesizable cells such as I/O and 

memories. The output from Prime Power’s power report can be viewed in waveform 

viewers to analyze the determined power. PrimePower also helps in determining 

instantaneous power analysis that helps in identifying the hot spots in the design. It 

can read in VCD file that provides time-based simulation events. The methodology in 

PrimePower has already been discussed here.  

3.7.1 Methodology 

 

The following Figure 3.7 discusses the PrimePower analysis flow to perform 

power analysis of the design.  The steps are here  

a) Read the design data which includes the gate-level net-list and associated 

technology libraries 

b) Read in the activity file in the form of VCD 

c) Specify the environment and analysis conditions such as operating 

conditions and calculate the power consumption 

d) Examine the power results using waveform viewers. 

The first step is to read in the gate-level design description and the associated 

technology library information. PrimePower accepts design descriptions and library 

information in the form of .db (Synopsys database) format and gate-level net-list in 

Verilog, and VHDL format. “read_db” command is used inside PrimePower shell to 

read in the database formats. “read_verilog” command is used to read in the verilog  
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gate-level net-list and “read_vhdl” command is used to read in the VHDL gate-level 

net-list.  

After the design files are read in, the “link_design” command helps in building 

a reference between all the modules in the hierarchy and creates an internal 

representation for the tool to do power analysis. Then the activity file is read in using 

“read_vcd” command. 

Then the operating environment and conditions are specified using various 

commands like “set_operating_conditions”, “set_load”, etc. The 

“set_operating_conditions” command specifies the operating condition for analysis, 

so that PrimePower can use the appropriate set of parameter values in the technology 

library. “set_load” command is used to specify the amount of capacitance on a port or 

net. One of the most important inputs to PrimePower is DSPF file or any parasitic file 

obtained from place and routing tool. PrimePower uses “read_parasitics” to back-

annotate the design with detailed parasitic resistance and capacitance information. 

Also the characteristics of the design can be verified using “report_design”, 

“report_port”, “report_net” commands. If the output of PrimePower needs to be 

viewed in a waveform then for that “set_waveform_options” is used. After all the 

design files and constraints are set, “calculate_power” command is used to calculate 

power. “report_power” is finally used to report the power. 
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3.7.2 Generating PrimePower inputs 

 

 The three inputs required for PrimePower are  

a) Gate-Level net-list  

b) Switching activity file in the form of VCD file  

c) Standard parasitic file in the form of DSPF or any other standard 

formats 

Gate-level net-list is obtained from Design Compiler in the “dc_shell” 

environment. Standard parasitic file is obtained from Cadence place and route tool, 

Silicon Ensemble.  

VCD files are generated by many methods. One of the methods is to use 

“$dumpfile (<filename>) “and “$dumpvars (<level>, <module>)” commands in 

standard simulators. Second method is by using another simulator VCS. Using the 

gate-level net-list and the testbench associated with it “vcs <testbench name> <net-

list name>” command can be used to generate the VCD file. The accuracy in creating 

these files is important as they directly affect the power values. Other formats of VCD 

are compressed VCD, gzipped VCD. These activity files are converted to VCD once 

they are given as input to PrimePower. They are done using appropriate tools 

associated with PrimePower. “read_vcd” command is used to read in the VCD file. 

Options are available with the reading of the VCD file. 
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3.7.3 Power Calculation 

 

 Power analysis by PrimePower depends on the conditions specified such as 

input transitions, port capacitance, wire load models and operating conditions. 

“set_input_transitions” command defines a fixed transition time for input ports. 

PrimePower uses the specified transition time in calculating the power of logic driven 

by the port. “set_load” is used to set load capacitance on ports. Wire load models are 

also specified using “set_wire_load” command. If the design has got clock tree, 

“create_clock” command is used to define the clock. Finally, after setting all the 

parameters, “calculate_power” is used to calculate power. There can be time limit set 

in this function so that PrimePower can be asked to calculate power only during those 

time intervals. 

3.7.4 Power Reporting 

 

 PrimePower can give a detailed power report using the power reporting 

commands. The power dissipation report (*.rpt) is produced by default. Some of the 

powers that it can report are  

a) Total power = Total dynamic and leakage power 

b) Dynamic power = Total power consumption due to switching capacitances, 

glitches 

c) Leakage power = Reverse-biased junction leakage and sub-threshold 

leakage. 
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d) Internal power = Dynamic power consumed inside a cell  

e) Glitch power = Power dissipated into detectable glitches at the nets 

Also the one of the forms of output as result of power analysis is an fsdb file. This file 

can be opened in a waveform viewer to view the consumption of power at the time 

intervals. 

 The following is the script used to calculate power for adder circuit. 

“set search_path {. /sw/CDS/ARTISAN/TSMC18/aci/sc/synopsys} 

 set link_library {* typical.db} 
#-------------------------------------------------------------------------- 
#       Load Design and Activity Files 
#-------------------------------------------------------------------------- 
read_verilog {adder_16_bestPDA.v} 
current_design adder_16 
link 
set_hier_sep / 
read_vcd  -strip_path testbench/adder_16  adder_16_vcd.vcd 
#-------------------------------------------------------------------------- 
#       Apply Default Parameters 
#-------------------------------------------------------------------------- 
set_input_transition .1 inst_A[*] 
set_input_transition .1 inst_B[*] 
set_operating_conditions typical 
set_load 0.05410 "SUM[*]" 
-------------------------------------------------------------------------- 
#       Back annotation: Uncomment the commands which apply 
#-------------------------------------------------------------------------- 
read_parasitics adder_16_bestPDA.dspf 
# current_instance fillin 
# source fillin 
#--------------------------------------------------------------------------  
#       Power Analysis and Waveform Generation 
#-------------------------------------------------------------------------- 
#set_operating_conditions fillin 
set_waveform_options    -interval 0.01 -file adder_16_bestPDA -format fsdb 
calculate_power         -waveform -reset_neg_power 
report_power            -file adder_16_bestPDA -threshold 0 -sortby power -leaf 
#-------------------------------------------------------------------------- 
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#       report capacitance 
#-------------------------------------------------------------------------- 
#report_wire fillin 
quit “ 
 

3.8  Power Estimation using NanoSim 

 

  The next power estimation of a design can be performed using a 

transistor-level power estimation tool.  Transistor level power analysis tools are very 

accurate and values obtained from them are very reliable for design engineers. The 

transistor level of abstraction is also acceptable to get the power values. The tool used 

in this thesis is NanoSim. NanoSim is a high-speed, high-capacity circuit simulator that 

combines best-in-class circuit simulation technologies from Synopsys’s PowerMill 

and TimeMill. NanoSim simulates block and full chip current and power behavior and 

is much faster than HSPICE and comes into 2-5% of accuracy of SPICE. It is also 

used to diagnose the design flaws by checking the areas where power is consumed 

more. Once the specific area of high power consumption is detected, the design code 

can be rewritten and that hotspot can be concentrated more to reduce the unwanted 

power. 

 Inputs required for NanoSim are the SPICE net-list of the design, stimulus file 

giving the inputs for the design, configuration file that contains information that tells 

NanoSim how to perform the simulation, technology file that describes the key 

features of the process technology that NanoSim uses to predict the transistor behavior 

in the circuit. SPICE net-list of the design is obtained using an extraction tool, the 
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stimulus file is written by the designer according to the design, technology files are got 

from the vendor dealing with the technology for which the design is built for and the 

configuration file has the required commands instructing NanoSim to simulate in the 

way designer wants. 

3.8.1 Extracting SPICE net-list from Calibre 

  

 First once the design is written and its functionality tested, it is run through 

Design Compiler to get the gate-level net-list. The same gate-level net-list has been 

used in the prior power estimation methods. Now the gate-level net-list has to be 

imported to a place and route tool to get the routing done. Depending on the 

technology, the technology file, the verilog description of all the standard cells along 

with this gate-level net-list is imported into Cadence’s Silicon Ensemble. Once the 

routing is done, the output that can be transformed into layout which is exported out in 

the form of DEF file .This DEF format is imported into Cadence’s ICFB environment 

to get the layout.  As said in the previous section one of the main inputs for NanoSim 

is the Spice net-list of the design. Depending on the complexity of the design the time 

taken to generate the SPICE net-list is more and also the tool should be powerful 

enough to generate SPICE net-list fast. Here comes the Extraction tool Calibre. As 

shown in the Figure 3.8, the layout of the adder design under discussion has been 

obtained from DEF using ICFB. 
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Figure 3.8 Adder Layout 
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3.8.1.1     Design Rule Check (DRC) of Adder Layout. 

  

 Now the obtained layout has to be checked for any design rule errors. This is 

done using Calibre. First the template file has to be imported which gives information 

about the creation of the GDS file which has all the layout paths. Using this Calibre 

checks the design for any errors and that all design rules have been followed. The 

Figure 3.9 shows the final output after DRC check is done. 

3.8.1.2     Layout vs. Schematic (LVS) check for Adder Layout 

 

 Once the DRC check is over, the layout has to be checked if that is the 

corresponding layout for the schematic of the design. When Calibre checks for layout 

vs. schematic, it basically compares the net-list of the two. When the DRC check is 

done, it already creates the net-list for the layout. In order to get the net-list of the 

schematic, another Synopsys’s tool, NetTran has been used. This tool takes in the gate 

level net-list of the design and gives us the net-list which corresponds to the schematic 

of the design. Now the template pertaining to LVS check is imported into Calibre. 

Now the LVS check will be performed. The following Figure 3.10 shows the LVS 

check for adder. 
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Figure 3.9  DRC check of Adder Design 
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Figure 3.10 LVS check of Adder Design 
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3.8.1.3     Net-list extraction for Adder 

 

 Now that the DRC and LVS check are performed, the net-list required for 

NanoSim has to be extracted. The template which tells Calibre where to look for the 

extraction rule file is imported. The required net-list type is selected. It can be Flat 

SPICE or Flat DSPF. Once they are selected, the operation PEX is performed to get 

the required net-list. The time to generate net-list depends on the design. The 

following Figure 3.11 is the output after extraction is done. 

3.8.2 NanoSim inputs and Power reporting 

 

 The following are the inputs required for NanoSim simulation. 

a) Net-list file – This has information about the circuit to be simulated 

b) Stimulus file – This has the Input stimulus to the circuit  

c) Configuration command file – This file tells NanoSim how to 

perform the simulation 

d) Technology file – This has the look-up table for model 

characterization 

NanoSim accepts multiple net-lists. In our case, the net-list is a flat DSPF file 

which has all the transistors and also RC parasitic values. SPICE net-list is given by 

 –n option while running NanoSim. 

 

 71



 

 

Figure 3.11 Extraction output of Adder design 
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If the file extension of the net-list is not .sp or .spi, then a different option is 

given depending on the file extension. Next is the Stimulus file which has the input 

stimulus for the circuit. The format used here is Vector stimulus which is one form of 

EPIC stimulus. If the EPIC vector function is called in a file, then –n option is used 

within NanoSim. In this case, the vector function call and vector stimulus are in two 

separate files. On the other hand, the type and signal commands can be included in a 

vector stimulus file directly and –nvec option is used while NanoSim is executed. Next 

important input to NanoSim is the configuration file which instructs it how to perform 

simulation. The accuracy and speed at which the results are obtained and simulated 

largely depends on the input commands given in this file. The number of output files 

generated as result of NanoSim execution also depends on the number of commands 

given in this file. The input commands given fall into the categories of net-list 

compilation, circuit modification, simulation control, circuit partitioning, simulation 

accuracy, and output reporting and message control. Some of the commands given 

during the simulation are given here  

“set_print_format for=fsdb 
 set_sim_tres 100ps 
 set_sim_eou sim=4 model=4 net=4 
 set_ckt_ctrl ba_process_fcap:1 
 print_node_i VDD VSS 
 report_block_powr x1 track_src=1 track_gnd=1 track_wasted=1 track_power=1 
* “ 
 

The command “set_print_format” is used to tell NanoSim to give the output of 

the simulation in the form of FSDB file which can be used to be viewed in a waveform 

viewer. “set_sim_tres“   is used to define the time resolution for the simulation. 
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Larger time resolution results in faster, but less accurate simulation. The variable to 

control the simulation for accuracy and performance is given by “set_sim_eou” 

command. Since the RC parasitic values are given in the net-list, “set_ckt_ctrl 

ba_process_fcap:1”   is used to make NanoSim take all the capacitance values 

without ignoring them. “print_node_i” is used to print the node VDD and VSS. 

“report_block_powr” is used to report the power after the simulation. Depending on 

the flags given in this command, different power like RMS power, Average power of 

the circuit will be displayed. Using “report” command, the value is also written to a 

file. The output file .out and .fsdb are analyzed in waveform viewers like TurboWave, 

CosmoScope or SimWave. 
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4 Results and Discussion 

 

This chapter gives details on the various results that have been obtained using 

the different macros that were discussed earlier. Results are given in three main tables;   

a) Comparison power table for Default macros Vs Best-PDA macros.  

b) Power table for Default/ Best-PDA Ratios 

c) Simulation time taken by NanoSim simulator for each Default and 

Best-PDA macros. 

Add-on tables for the above tables show the percentage of error for the 

comparison table and for the ratio table. Tables comparing the difference in version of 

the tools have also been created. The following Figure 4.1 shows the methodology of 

calculating different power values at the different levels of abstraction. Detailed 

methodology of how different power values are calculated using these tools has been 

discussed in chapters two and three. 

 The following section discusses the different power values that are obtained 

using different power tools as shown in the above figure. 

1. Power Estimator – P1 (RTL) :   

Power Estimator is used to calculate power at the RTL level. The inputs for 

Power Estimator are VHDL [1], RTL switching activity [4]. The input [4] is got from 

ModelSim giving [1] + [2] as inputs. 
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Figure 4.1 Design Methodology showing power calculations using different power tools
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2. Power Compiler – P2 (RTL) : 

The second power value is calculated using Power Compiler at the RTL level. 

The inputs to calculate power are Gate-level Net-list [3], RTL switching activity [4]. 

[3] is obtained from Design Compiler giving [1] as the input. [4] is obtained from 

ModelSim giving [1] + [2] as inputs. 

 

3. Power Compiler – P3 (Gate-level) :   

The third power value is calculated using Power Compiler at the Gate-level.  

The inputs to calculate power are Gate-level Net-list [3], Gate-level switching activity 

[5], Parasitic information [6]. [3] is obtained from Design Compiler giving [1] as the 

input. [5] is obtained from ModelSim using [2] + [3] as inputs. [3] is given as input to 

Silicon Ensemble to do the Place and Routing and after that [6] is obtained running 

HyperExtract in Silicon Ensemble. 

 

4. PrimePower – P4 (Gate-level):  

 The fourth power value is calculated using PrimePower at the Gate-level. The 

inputs to calculate power are Gate-level Net-list [3], Testbench input in the form of 

VCD file [7], Parasitic Information [6]. [7] is obtained giving [2] as input to NanoSim-

VCS. [3] and [6] are obtained as the same way as discussed in 3. 
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5. NanoSim – P5 (Transistor level):  

 The fifth power value is calculated using NanoSim at the Transistor level. The 

inputs to calculate power are SPICE Net-list [9] , Input stimulus [10] and 

Configuration file [11]. The output DEF [8] from Silicon Ensemble is input into 

Virtuoso to get the layout which is then given as Input to Calibre to get SPICE Net-list 

[9]. Input Stimulus [10] is given to NanoSim in the form of vector file obtained from 

Testbench. Configuration file [11] is given for better simulation results. 

6. NanoSim-VCS – P6 (Transistor level): 

 The sixth power value is calculated using NanoSim-VCS at the Transistor level. 

The inputs to calculate power are Gate-level Net-list [3], Testbench [2], SDF file [12] , 

SPICE Net-list [9] and Configuration file [11]. 

4.1 Power results – 16-bit Adder 

      

The following section provides the results obtained for 16-bit adder macro 

developed for Best-PDA.  The simulation is done for 1024 input vectors, running at 

frequency of 20 MHz (50 ns for 51200 ns).  Simulation results of adder using 

ModelSim along with the power reports from Power Estimator, Power Compiler, 

PrimePower and NanoSim are shown in Figures 4.2 – 4.8. Waveform of the power 

result obtained using CosmoScope after running PrimePower is also shown in Figure 

4.6.  
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Figure 4.2    ModelSim Simulation result for 16-bit adder  
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Figure 4.3    Power Report using Power Estimator 
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Figure 4.4    Power Report using Power Compiler with RTL Switching Activity 
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Figure 4.5    Power Report using Power Compiler with Gate-level Switching 

Activity 
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Figure 4.6    Power Report using PrimePower 
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Figure 4.7    Power Graph using CosmoScope 
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Figure 4.8    Power Report using NanoSim 
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 As shown in the Figures, the following are the power values obtained using 

different power tools for Best_PDA Adder. 

a) Power Estimator – 0.094 mw 

b) Power Compiler with RTL Switching Activity – 0.046 mw 

c) Power Compiler with Gate-level Switching Activity  - 0.011 mw 

d) PrimePower  - 0.009 mw 

e) NanoSim – 0.024 mw  

4.2       Power Tables 

 

Similarly, power reports for other macros are also determined and values 

reported in a power table. There are three main power tables created to summarize the 

values obtained from the power tools used in this thesis. Table 4.1 shows the values 

obtained each of these tools for Default and Best_PDA version of the macros 

considered in this thesis. The three levels of abstraction, Tools used and Type of 

simulation performed is mentioned in the table. Table 4.2 shows the ratios of power 

values between Default and Best-PDA macros. This table is used to show consistency 

in the values of Default and Best_PDA for each of the macros. Table 4.3 shows 

simulation time taken for Default vs. Best–PDA macros using NanoSim tool. 
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Table 4.1     Comparison Table between Default vs. Best-PDA macros 
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Table 4.2     Default/ Best-PDA Ratio 
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Table 4.3    Simulation time taken for macros using NanoSim 
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4.3     Power Graphs 

 

This section summarizes all the comparison power values as Bar graphs for 

better understanding. Fig 4.9 – 4.13 gives the bar graph for each of the macros. 

 

 

 

 

Figure 4.9      Comparison between Adder macro’s Default and Best_PDA power 

values 
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Figure 4.10      Comparison between Multiplier macro’s Default and Best_PDA 

power values 
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Figure 4.11      Comparison between Complex Multiplier macro’s Default and 

Best_PDA power values 
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Figure 4.12    Comparison between FIR macro’s Default and Best_PDA power 

values 
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Figure 4.13      Comparison between Poly-FIR macro’s Default and Best_PDA 

power values 
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4.4    Analysis of obtained power values 

 

This section discusses the percentage of error in the power values between the 

different tools using Table 4.1 assuming the value obtained using Nanosim to be the 

most accurate value or the one closer to reality.  Percentage of error is calculated using 

the following formula:  (NanoSim value – Reported value from a specific tool) / 

NanoSim value. 

Table 4.4 shows the percentage of error for each of the macros both default and 

Best_PDA using the above formula. Table 4.5 shows the percentage of error using the 

Default vs. Best_PDA ratios. As seen in Table 4.4, there is a consistency in the error 

percentage for smaller circuits, Adder, Multiplier and Complex Multiplier compared 

to big circuits like FIR and Poly-FIR. As expected the power values using Power 

Compiler using Gate-level switching activity and PrimePower are nearly the same. 

The Power Estimator value shows a tremendous amount of deviation from NanoSim 

value showing how inaccurate it would be to report power at the RTL level. More than 

the percentage of error for the actual power values, we are interested how they differ 

when it comes to ratio of Default vs. Best_PDA values. The percentage of error 

moving down to lower abstraction level is not big compared to the error percentage as 

we see in the power value table. 
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Table 4.4     Percentage of Error on the actual power values for each macro 
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Table 4.5     Percentage of Error on the Ratios of Default vs. Best_PDA for each macro 
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4.5 Power value difference between Tool versions 

  

 More than the difference in the power values between different power tools, 

there is also a significant difference between different versions of the same tool. This 

makes mentioning the version of the tool during any power reporting, very important. 

A comparison table has been created showing difference in power values using 

versions 2002 vs. 2003 for both Power Compiler and PrimePower. Table 4.6 shows 

the power values between 2002 and 2003 version of Power Compiler. Lower value in 

power of 2003 compared to its predecessor version shows how the algorithm of the 

tool has been improved together with the usage of a different database file used for 

power calculation. Table 4.7 shows the power values between 2002 and 2003 version 

of PrimePower. 2003 version of the tool gives higher values compared to 2002 

version. This shows a better power reporting algorithm used in the latest version of 

PrimePower. An important point to be noted is that latest version of the tool need not 

necessarily give a lower value. It shows the accuracy in power estimation as the tool 

improves. The percentage difference between these versions are also calculated and 

tabulated. The formula used to calculate the percentage of difference is  

(2003 version – 2002 version) / (2003 version) 
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Table 4.6   Power Compiler’s 2002 vs. 2003 version 
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Table 4.7    PrimePower’s 2002 vs. 2003 version  
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The following Table 4.8 shows the version of the different power tools used in this 

project. 

 

Table 4.8    Tool versions 

 

Tool Versions 

Tool  Version 

Design Compiler 2003.06 SP1 

PrimePower 2003.06 SP1 

NanoSim 2003.03-SP2 

VCS 7.0.2 

Cadence ICFB 4.4.6 

Silicon Ensemble 05.30-s173 

Calibre 9.3_1.1 

HyperExtract 4.5.0 

ModelSim SE vsim 5.7d 
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4.6   Discussion about PrimePower vs. NanoSim power calculations 

 

A study has been made to compare the power results between PrimePower and  

NanoSim as these tools give the closest power to reality. In the case of the adder, the 

standard cell ADDFX2 has been used multiple times to realize the function of a 16-bit 

adder. A 4 bit adder was first drawn using this standard cell and the entire path from 

schematic creation to power calculation using PrimePower and NanoSim was 

performed. 20 input vectors were used to test the power using PrimePower and 

NanoSim and the following table lists the values. 

 

Table 4.9   4-bit adder power values using PrimePower and NanoSim 

 

4-bit Adder  power estimation for 20 input vectors 

Tool used Power Estimation 

PrimePower 5.424 µw 

NanoSim – VCS 5.611 µw 

NanoSim 5.901 µw 
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As shown in the table, the power values for a 4-bit adder between PrimePower and 

NanoSim are nearly the same. Likewise, the whole path from schematic creation to 

power calculation using PrimePower and NanoSim has been performed for 16-bit 

adder constructed using ADDFX2. 

4.6.1 Steps involved in calculating power using PrimePower and NanoSim 

 

First using the ADDFX2 symbol, a 16-bit schematic has been drawn as shown  

in Figure 4.14. Gate-level net-list is obtained using a simulator. The gate-level net-list, 

tsmc18.v file (the Verilog file containing descriptions of all the standard cells of 

tsmc18 library) along with the tsmc18’s LEF file, were imported into Silicon 

Ensemble to do the place and routing. Once the place and routing was done, 

HyperExtract was used to get the parasitic values for the entire circuit. Then DEF and 

Standard Delay Format file were exported from Silicon Ensemble. The DEF file was 

used in the ICFB environment to get the layout which is shown in Figure 4.15.  Once 

the layout has been generated, Calibre was used to extract the circuit to get the SPICE 

net-list for the 16-bit adder.  

 Now power calculation using PrimePower and NanoSim were performed for 

different input vectors for comparison purposes. The inputs required for PrimePower 

were Testbench to get the VCD file, DSPF file using HyperExtact and the Gate-level 

net-list. Using these as the input, power value for 16-bit adder was estimated.  The 

SPICE net-list along with input stimulus was used to estimate the power using 

NanoSim. 
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Figure 4.14    16-bit adder schematic using ADDFX2 
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Figure 4.15    16-bit adder Layout using ADDFX2 
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Table 4.10 lists the comparison values. The closeness of the values between 

PrimePower and NanoSim confirms that the procedure of estimating power using 

these tools for all the macros were correct. 

 

Table 4.10    Comparison of power values for 16-bit adder using ADDFX2  

 

Comparison of power values for 16-bit adder using ADDFX2 

Power Estimation Tool used 

100 vectors 500 vectors 1024 vectors 

PrimePower 22.87 µw 25.28 µw 26.23 µw 

NanoSim – VCS 25.23 µw 28.56 µw 29.93 µw 

NanoSim 24.82 µw 27.46 µw 28.22 µw 
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5 Summary, Conclusions and Future Work 

5.1   Summary 

 

 Power Estimation for different macros from RTL level to Transistor level 

using different power estimation tools has been performed. The methodology 

involving the usage of these tools at different levels of abstraction has been shown 

with examples. Scripts have been developed for each of these levels to automate the 

flow for each of the macros involved. A table has been formed documenting the 

results of power for each of the macros developed for best Power, Delay and Area and 

also a comparison table has also been formed comparing the power values between 

Default macros Vs. Best PDA macros.  

5.2   Conclusions 

  

 It can be concluded from these power estimations at different levels of 

abstraction how inaccurate values at RTL are compared to Transistor level. The 

deviations in the measurement can be seen in the tables for each of the macros. Power 

estimation at that level is done mainly because we can get faster results and can be 

used to decide on optimizing the circuit depending on the specification.  Secondly, a 

study has been made between the power values obtained between PrimePower and 

NanoSim because they give the most accurate results at the Gate and Transistor level 

respectively. The study proves that the methodology of calculating power is correct 
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taking into example, ADDER circuit. There had been a lot of experiments conducted 

while performing power calculations using NanoSim. It can be concluded from those 

experiments that proper usage of NanoSim needs to be done keeping in the mind what 

circuit we are performing the simulations on, how much of accuracy is needed in the 

measurements and how fast we need the results. Careful understanding of all these are 

to be deployed to get the best results from the High-Speed circuit simulator. The 

tabulation of percentage of error tables shows how dramatic values can change from 

RTL to Transistor level for the actual values when compared to the Ratio of Default 

vs. Best_PDA values. Since the thesis is about power estimation, it would have been 

good to compare the values of Default vs. Best_Power macros than Best_PDA. PDA 

macros are developed so they have got the best Power, Area and Delay product. For 

bigger circuits this value has proved to be more than their Default macros. The power 

results obtained using Power Estimator (P1), Power Compiler using RTL Switching 

Activity (P2), Power Compiler using Gate-Level Switching Activity (P3) and 

PrimePower (P4) used power characterized library provided by Artisan whereas 

except for the technology file from TSMC18, the rest of the inputs given to NanoSim 

to calculate P5 were provided by researchers at our Microelectronic Systems 

Laboratory.  

 Different versions of the same macros were developed as part of the DARPA 

project. They are Macro with Minimum Area, Macro with Minimum Power, Macro 

with Minimum Delay and Macro with Best Power, Area and Delay. 

It has been concluded after seeing FIR results in which Power for Best PDA macro 
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was greater than the Baseline macro that we should have compared the power values 

between Default and Minimum Power macros. Power, Area and Delay being the three 

major constraints in designing digital circuits there are applications like tactical 

missile applications and other defense related projects that would require circuits to be 

kept in a smaller area, dissipate power and perform really fast. Keeping this mind 

checking power in a Best_PDA macro is afterall useful to be implemented in these 

devices. 

Some other conclusions are since power values are dependent  not only the macro but 

also on the tools used, versions of the tool, power characterized library used, the input 

stimulus used and what the output load is, it would be only valid to compare results 

from different EDA power tools only if the above are identical. Seeing the large 

difference between power estimation at RTL level using Power Estimator and 

NanoSim at the Transistor level, it is concluded that Power Estimator values are useful 

only to start the power estimation flow from a top level abstraction. It would not be 

possible to get to any specific conclusion analyzing the results of Power Estimator 

other than trying to rewrite the RTL code (VHDL or Verilog) to get lesser power value 

as much as possible. The values obtained using NanoSim are considered to be the true 

values since all the inputs given to the tool contain fine information about the circuits 

and it would be logical to compare it with the testing of the real chips in the lab. The 

power values obtained by the other tools are used only to select the best possible 

netlist that are capable of giving less power when realized into real chips. 

. 
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5.3    Future Work 

 

 As seen in the conclusion, the real power comparison should have been 

between Default vs. Best_Power macros. With the flow of power estimation already 

developed as part of this work, Timing analysis for macros can also be performed. 

Various comparisons of power estimation can be reported.  Placement and Routing of 

the macros can be done using Synopsys tools as apposed to Cadence tools and power 

values obtained as the result of that can be compared. Other comparison like getting 

net-list using a different extraction tool can also be done. With the use of sophisticated 

power measuring equipments, each of the macros can be tested for power in real time  

for the same input vectors used here and values can be compared with the tool’s 

estimation. For simulating bigger circuits with many input stimulus, NanoSim 

simulations can be run in parallel on multiple processors partitioning the 

stimulus for faster results. This method of speeding up is required after 

seeing that the results of FIR took around three weeks. 
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