

ECE 651 Project Presentation

Custom IC Design Utilizing Silicon Ensemble, ProGenesis, and Full Custom Layout

Robert Greenwell

November 30th, 2004

Robert Greenwell 551 Presentation – 1

Schematic

GATE	Count		
AND2	1		
NAND2	2		
OR2	1		
XOR2	1		
NOR2	2		
НАХ	1		
MUX2	1		

Robert Greenwell 551 Presentation – 2

Truth Table

Robert Greenwell 551 Presentation – 3

Silicon Ensemble

- Using Silicon Ensemble two layouts were generated
 - A two-row layout (40 μm x 40 μm)
 - A single-row layout (20 μm x 78.4 μm)

Dual-Row Layout

ProGenesis

- Using ProGenesis two layouts were generated
 - An unfolded layout (23.2 μm x 64 μm)
 - A folded layout (20 μm x 164.8 μm)
- Note that ProGenesis folds every transistor, causing a substantial increase in area

Unfolded Layout

Folded Layout

Robert Greenwell 551 Presentation - 5

E C

Full Custom

- Utilizing full custom one layout was generated
 - A single-row layout (20 μm x 64 μm) was created

Simulations

• Load shaping inverters and 4 load-chains are simulated with each layout and the resulting delay is measured

Schematic w/ Load

Representative of unloaded simulations

Simulations

Load shaping inverters and 4 load-chains

Folded ProGenesis Simulation (w/ load) Unfolded ProGenesis Simulation (w/ load) Two-Row Silicon Ensemble (w/ load)

Simulations

• Load shaping inverters and 4 load-chains

Single-Row Silicon Ensemble (w/ load)

Full-Custom (w/ load)

Figures of Merit

• Table comparing the width, length, Area, and Delay for each of the layouts

Layout Type	W (µm)	L (µm)	Α (μm)^2	Delay (ps)
Progenesis (folded)	20	164.8	3296	697.9
Progenesis (unfolded)	23.2	64	1484.8	623.5
Silicon Ensemble (two rows)	40	40	1716	645.0
Silicon Ensemble (one row)	20	78.4	1568	643.6
Full Custom	20	64	1280	622.1

Conclusions/Lessons Learned

- ProGenesis is slow when tasked with generating [relatively] large layouts.
- When folding is activated in ProGenesis, all transistors are folded, resulting in a larger than expected layout
- Silicon Ensemble is sensitive when generating layout to scale factors that are not square
- The quickest method for generating layout is Silicon Ensemble, though it is also the largest (when ProGenesis is not folded)
- While custom layout takes longer than Silicon Ensemble, it is much quicker than ProGenesis, and the smallest of all the layouts