# **Homework-4**

# Implementing a Leon based SoC

# **1. Setting Up The Files**

We will use leon2-1.0.12 for this homework. All files for this version can be found at :

/home/rishi/soc/soc.tar.gz

From your home directory proceed as follows.

- > mkdir hw4
- > cd hw4
- > cp /home/rishi/soc/soc.tar.gz .
- > gunzip -c soc.tar.gz | tar -xvf -

The LEON model has the following directory structure:

| soc            | top directory                    |
|----------------|----------------------------------|
| soc/Makefile   | top-level Makefile               |
| soc/leon/      | LEON vhdl model                  |
| soc/modelsim/  | Modelsim simulator support files |
| soc/pmon       | Boot-monitor                     |
| soc/syn        | Synthesis support files          |
| soc/tbench     | LEON VHDL test bench             |
| soc/tsource    | LEON test bench (C source)       |
| soc/aes        | AES vhdl model + AMBA wrapper    |
| soc/fir        | FIR vhdl model + AMBA wrapper    |
| soc/org_edit   | Original & modified files        |
| soc/ram_tsmc25 | ARTISAN RAM models               |

- ≻ cd soc
- cp /home/rishi/soc/soc/modelsim.ini .
- > cd tsource
- cp ram.dat ram\_backup.dat
- ≻ cd ..

⊳

#### Editing the top-level Makefile:

pico Makefile Go to the bottom of the Makefile where you can see this... clean: cd leon; make clean cd tbench; make clean cd tkconfig; make clean cd tsource; make clean -rm dumpdata.txt trnscrpt transcript vsim.wlf vsim.wav

Instead of above it should be like this. (We don't want to delete the files of tkconfig,tsource every time).

clean:

cd leon; make clean cd tbench; make clean -rm dumpdata.txt trnscrpt transcript vsim.wlf vsim.wav

## 2. Customizing the LEON

#### 2.1 Customizing for Virtex2 Technology

In /hw4/soc directory:

#### > make xconfig

a window like below should open.

| a                      | LEON Processor Configuration  | · 🗆                          |
|------------------------|-------------------------------|------------------------------|
| Synthesis              | Debug support unit            |                              |
| Processor and caches   | PCI interface                 | <u>S</u> ave and Exit        |
| Memory controller      | Fault-tolerance configuration | Quit Without Saving          |
| AMBA AHB configuration | Boot options                  | Load Configuration from File |
| Optional modules       | VHDL Debugging                | Store Configuration to File  |

Figure1

Click on "synthesis" and a second window for synthesis customization will open. In that window select "Target Technology" to be "Virtex2" and you'll see all the variables below are automatically selected. For time being we'll use the default values of these variables. The window should look like this.

| Synthesis                                      | • 🗆  |
|------------------------------------------------|------|
| Synthesis                                      |      |
| tkconfig Configuration name                    | Helı |
| Xilinx-Virtex2 Target technology               | Hell |
| ◊ y ◆ n Infer cache and trace buffer RAM       | Hel  |
| ♦ y ♦ n Infer register file                    | Hell |
| ◇ y ◆ n Infer ROM                              | Helı |
| ♦ y ♦ n Infer pads                             | Helı |
| ◊ y ◆ n Infer multiplier                       | Hell |
| ◊ y ◆ n Improve register file write timing     | Hell |
| ◆ y ◇ n Use dual-port RAM for DSU trace buffer | Hell |
| Main Menu <u>N</u> ext <u>Prev</u>             |      |

#### Figure2

Click on "Main Menu" button. In main menu select "Boot option" in that window select boot option to be "Memory" (Default is: Memory). Click on "Main Menu" button.

Press "Save and Exit" button.

- make dep (this will create a device.vhd file in leon directory which would contain your customized design)
- > mentor\_old\_tools
- > make all (this will compile all the files)

Once the LEON model has been compiled, use the TB\_FUNC32 test bench to verify the behaviour of the model. Simulation should be started in the top directory.

- vsim tb\_func32 &
- run -all (In the ModeSim window)

The output from the simulation should be similar to:



### 2.2 Customizing for TSMC-25 Technology

In /hw4/soc directory:

- cd leon
- > cp device.vhd device-virtex2.vhd
- ≻ cd ..
- make xconfig

In "Main Menu" click on "synthesis" and a second window for synthesis customization will open. In that window select "Target **Technology**" to be "**TSMC 25**" and you'll see all the variables below are automatically selected. For time being we'll use the default values of these variables. The window should look like this.

|                  | Synthesis                        | a a  |                     |
|------------------|----------------------------------|------|---------------------|
|                  | Synthesis                        |      |                     |
| tkconfig         | Configuration name               | Нејр | $\square$           |
| TSMC-0.25 Target | technology                       | Help |                     |
| 🔷 y 🔶 n 🛛 Infer  | cache and trace buffer RAM       | Help |                     |
| 🔷 y 🔶 n 🛛 Infer  | register file                    | Help |                     |
| 🔷 y 🔷 n 🛛 Infer  | ROM                              | Help |                     |
| 🔷 y 🔶 n 🛛 Infer  | pads                             | Help |                     |
| 🔷 y 🔶 n 🛛 Infer  | multiplier                       | Help |                     |
| 🔷 y 🔷 n Improv   | e register file write timing     | Help |                     |
| 🔶 y 💠 n 🛛 Use du | al-port RAM for DSU trace buffer | Help | $\overline{\nabla}$ |
| Main Menu        | <u>N</u> ext <u>P</u> rev        | ,    |                     |

#### Figure3

Click on "Main Menu" button. In main menu select "Boot option" in that window select boot option to be "Memory" (Default is: Memory). Click on "Main Menu" button. In main menu select "Processor and caches" in that window select "cache system" and change the "set size" to 8k. Entrees should look like this. Press "OK" and then "Main Menu".

| Cache system                       | •      |
|------------------------------------|--------|
| Cache system                       |        |
| Instruction cache                  |        |
| 2 Associativity (sets)             | Нејр   |
| 8 Set size (kbytes/set)            | Help   |
| 32 Line size (bytes/line)          | Нејр   |
| Random Replacement alorithm        | Help   |
| ◇ y ◆ n Cache locking              | Help   |
| Data cache                         |        |
| 2 Associativity (sets)             | Нејр   |
| 8 Set size (kbytes/set)            | Help   |
| 32 Line size (bytes/line)          | Help   |
| Random Replacement alorithm        | Help   |
| ♦ y ♦ n Cache locking              | Help   |
| ♦ y ♦ n AHB snooping               | Help   |
| Slow Snoop implementation          | Help   |
| ◇ y ◆ n Fast read-data generation  | Help   |
| ◇ y ◆ n Fast write-data generation | Help 7 |
| OK <u>N</u> ext <u>P</u> rev       |        |

### Figure4

For now we'll use only default settings for others. Don't mess with it until you know what you are doing. Press "**Save and Exit**" button.

- make dep (this will create a device.vhd file in leon directory which would contain your customized design)
- > mentor\_old\_tools
- > make all (this will compile all the files)

Once the LEON model has been compiled, use the TB\_FUNC32 test bench to verify the behaviour of the model. Simulation should be started in the top directory.

vsim tb\_func32 &

run -all (In the ModeSim window)

The output from the simulation should be similar to:

| #  | *** Starting LEON system test ***                         |
|----|-----------------------------------------------------------|
| #  | Register file                                             |
| #  | Cache controllers                                         |
| #  | Interrupt controller                                      |
| #  | UARTs                                                     |
| #  | Timers, watchdog and power-down                           |
| #  | Parallel I/O port                                         |
| #  | Test completed OK, halting with failure                   |
| #  | <b>**</b> Failure: TEST COMPLETED OK, ending with FAILURE |
| Si | mulation is halted by generating a failure.               |

### 3. ARTISAN Rams

To find out what size of rams we need in our design. We may have to go back one step. From top directory i.e. '**soc**' run:

> make all

#### vsim tb\_func32&

In Modelsim window we can see the size of the rams it is using, by going to the "**procO**" model as shown in the figure below. As we can see we need to use DPRAM of size 136x32 and single port ram of size 256x27. We can use DPRAM instead of single port rams.



Figure5

In figure 2 below we see that we also need a single port ram of size 2048x32.We can use DPRAM instead of single port rams.



#### Figure6

Now, exit from the Modelsim window. The next step is to generate synthesizable RTL models for RAMs. In top directory '**soc**' execute following commands:

- mkdir ram\_tsmc25 (not required)
- cd ram\_tsmc25
- > /sw/CDS/ARTISAN/TSMC18/aci/ra2sh/bin/ra2sh

|                        |                             | HS-   | SRAM-DP SRAM Ge<br>TSMC 0.18u Proc | enerator<br>ess |         | ti<br>- |
|------------------------|-----------------------------|-------|------------------------------------|-----------------|---------|---------|
| GENERIC PARAMETERS     | \$                          |       | <b>RELATIVE FOOT</b>               | PRINT           |         |         |
| Instance Name          | dpram136x32 inst            |       |                                    |                 |         |         |
| Number of Words        | 256                         |       |                                    |                 |         |         |
| Number of words        | 230                         |       |                                    |                 |         |         |
| Number of Bits         | 32                          | 00000 |                                    |                 |         |         |
| Frequency <mhz></mhz>  | 100                         | 1000  |                                    |                 |         |         |
| Ring Width <um></um>   | 2                           |       |                                    |                 |         |         |
| -<br>Multinlover Width |                             |       | - ASCII DATATAB                    | LE              |         |         |
| multiplexer which      |                             |       | name                               | fast            | tynical | slow    |
| Drive Strength         | ⊻ 12                        | 00000 | geomx                              | 671.490         | 671.490 | 671.490 |
| UTI                    | ☑ off                       | 10000 | geomy                              | 338.765         | 338.765 | 338.765 |
| 81 II                  |                             | 3998  | ring_size                          | 5.200           | 5.200   | 5.200   |
| Pipeline               | <u>⊿</u> off                |       | icc                                | 15.667          | 12.211  | 9.816   |
| Word-Write Mask        | 🗌 on 🔽 off                  | 1000  | icc_r                              | 14.618          | 11.310  | 9.047   |
| Tan Ustal Lavan        |                             |       | icc_w                              | 16.717          | 13.113  | 10.586  |
| TUP Metal Layer        | _ m4 _ m5 ⊵ m6              |       | icc_peak                           | 420.799         | 279.024 | 156.246 |
| Power Type             | 🔽 rings                     | -     | icc_desel                          | 0.000           | 0.000   | 0.000   |
| De                     | fault Update                |       | tcyc                               | 0.848           | 1.200   | 2.049   |
|                        |                             |       | ta                                 | 0.853           | 1.300   | 2.169   |
|                        |                             |       | tas                                | 0.162           | 0.241   | 0.429   |
| VIEWS                  |                             |       | tan                                | 0.063           | 0.081   | 0.117   |
| GDSII Layout LVS Ne    | tlist                       |       | tch                                | 0.239           | 0.312   | 0.490   |
| TLF Model Sta          | ur-DC Model VCLEF Footpri   | int   | two                                | 0.000           | 0.000   | 0.548   |
| VHDL Model Svn         | opsys Model PrimeTime Mc    | del   | twh                                | 0.000           | 0.000   | 0.000   |
| PostScrint Datashee    | t ASCII Datatable Verilog M | odel  | tds                                | 0.123           | 0.189   | 0.380   |
|                        |                             |       | tdh                                | 0.000           | 0.000   | 0.000   |
|                        |                             |       | thz                                | 0.448           | 0.604   | 0.929   |
| Library Name           | dpram1                      |       | tlz                                | 0.396           | 0.531   | 0.816   |
|                        |                             | 881   | tckh                               | 0.062           | 0.083   | 0.141   |
| Defa Defa              | ult Generate                |       | tckl                               | 0.095           | 0.145   | 0.234   |

### A window like this should open.

#### Figure7

We need to generate following views for each of our RAM design. 1. Verilog Model, 2. Synopsys Model, 3. TLF Model, 4. VCLEF footprint, 5. GDSII Layout. Following files are generated in ram\_tsmc25 directory:

| <b>Model</b><br>Verilog         | Files genertaed<br>dpram136x32_inst.v                                                                |
|---------------------------------|------------------------------------------------------------------------------------------------------|
| Synopsys model                  | dpram136x32_inst_fast_syn.lib,<br>dpram136x32_inst_typical_syn.lib,<br>dpram136x32_inst_slow_syn.lib |
| TLF Model                       | dpram136x32_inst_fast.tlf,<br>dpram136x32_inst_typical.tlf<br>dpram136x32_inst_slow.tlf              |
| VCLEF Footprint<br>GDSII Layout | dpram136x32_inst.vclef<br>dpram136x32_inst.gds2                                                      |

For more information you can find the manual for artisan ram generator at:

#### /sw/CDS/ARTISAN/TSMC18/aci/ra2sh/doc/user\_guide

Similar models are generated for **ram256×27** & **ram2048×32** using the information given in below table.

| PARAMETERS      | DPRAM 136x32     | RAM 256x27     | RAM 2048x32     |
|-----------------|------------------|----------------|-----------------|
| Instance Name   | dpram136x32_inst | ram256x27_inst | ram2048x32_inst |
| Number of words | 256              | 256            | 2048            |
| Number of width | 32               | 27             | 32              |
| Frequency (Mhz) | 50               | 50             | 50              |
| Multiplexer     | 4                | 4              | 8               |
| Width           |                  |                |                 |
| Library Name    | DPRAM1           | RAM2           | RAM3            |
| (when needed)   |                  |                |                 |

Use default values for the rest, (i.e., ring width=2 etc)

These RAMs cannot be used as it is. Wrappers are required for these blocks in order to communicate with the leon-2 processor in same fashion as the behavioral models do. These wrappers (dpram136x32\_box0.vhd, dpram136x32\_box1.vhd, ram2048x32\_box0.vhd & ram256x27\_box0.vhd) are provided in ram\_tsmc25 directory.

## 4. Synthesis: Leon-2 Processor-standalone

- > cd syn
- > cp /home/rishi/652/soc/leon2-1.0.12/syn/.synopsys\_dc.setup .
- > cp /home/rishi/652/soc/leon2-1.0.12/syn/.synopsys\_vss.setup .

We will be using 'Synopsys model' (i.e. \*.lib files) of rams for synthesis purposes. In order to this, we need to add the designs in the library (i.e. \*.lib files) to a database (i.e. \*.db files) and then add that database format to our tsmc18 cell database.

Generating the synopsys database for RAMs. (library to database conversion).Create a new File 'lib2db.dcsh' with the following data

define\_design\_lib WORK -path WORK read\_lib ../ram\_tsmc25/dpram136x32\_inst\_typical\_syn.lib write\_lib DPRAM1 -format db –output ../ram\_tsmc25/dpram136x32\_inst\_typical.db

read\_lib ../ram\_tsmc25/ram256x27\_inst\_typical\_syn.lib write\_lib RAM2 -format db -output ../ram\_tsmc25/ram256x27\_inst\_typical.db

read\_lib ../ram\_tsmc25/ram2048x32\_inst\_typical\_syn.lib write\_lib RAM3 -format db -output ../ram\_tsmc25/ram2048x32\_inst\_typical.db

#### quit

- > mkdir WORK
- > synopsys\_tools
- > dc\_shell -f lib2db.dcsh

Now we need to edit '.**synopsys\_dc.setup**' file to add RAM's database to our TSMC18 cell database. Students need to change the highlighted text according to their directory structure. If you are using the same file names as in the above table, no need to modify .db file names.

File Name: .synopsys\_dc.setup
search\_path = {} + search\_path + /sw/CDS/ARTISAN/TSMC18/aci/sc/synopsys +
/sw/CDS/ARTISAN/TSMC18/PADS/synopsys/tpz973g\_200c +
/home/tmarwah/soc/soc/ram\_tsmc25
link\_library = {typical.db"\*"}
target\_library = typical.db
symbol\_library = typical.db

```
syntetic_library = { /sw/synopsys/libraries/syn/dw06.sldb +
/sw/synopsys/libraries/syn/dw02.sldb + /sw/synopsys/libraries/syn/dw01.sldb }
```

```
link_library = target_library + synthetic_library + dw06.sldb + dw03.sldb +
dw02.sldb + dw01.sldb + tpz973gtc.db + dpram136x32_inst_typical.db +
ram2048x32_inst_typical.db + ram256x27_inst_typical.db
search_path = search_path + {synopsys_root + "/dw/sim_ver"}
```

In order to generate Black Box for Rams, create a new file 'ram box.dcsh' in 'syn' directory with the following contents:

```
define_design_lib WORK -path WORK
analyze -f vhdl -library WORK ../ram_tsmc25/ram256x27_box0.vhd
elaborate ram256x27_box0
uniquify
compile -map_effort high
write -f verilog -hierarchy -o ../leon/ram256x27_box0.v
quit
```

- > cd syn
- > rm -r WORK
- > mkdir WORK
- > synopsys\_tools
- dc\_shell -f ram\_box.dcsh (do it for each ram model)

Note# Run the above file for each ram file i.e. ram2048x32\_box0.vhd, dpram136x32\_box0.vhd, dpram136x32\_box1.vhd. Please substitute the name of ram file in ram\_box.dcsh also delete WORK directory after every run. Now replace the LEON files so that new files use these Ram Black Boxes instead of the original behavioral models. This can be done by replacing original tech\_tsmc25.vhd with tech\_tsmc25-rishi.vhd.

cd leon  $\geq$ cp /home/rishi/652/soc/leon2-1.0.12/leon/tech tsmc25.vhd  $\geq$ tech tsmc25-rishi.vhd cp tech\_tsmc25.vhd tech\_tsmc25-org.vhd  $\geq$  $\geq$ cp tech\_tsmc25-rishi.vhd tech\_tsmc25.vhd  $\geq$ cd syn  $\geq$ cp leon.dcsh leon-org.dcsh  $\geq$ cp /home/tmarwah/soc/soc/syn/leon.dcsh leon.dcsh rm -r WORK  $\geq$  $\triangleright$ mkdir WORK  $\triangleright$ synopsys\_tools  $\geq$ dc\_shell -f leon.dcsh > zm01.txt

This is going to take a while. And you can keep checking the output file (zm01.txt) for errors. To get post-synthesis simulation of the Netlist:

- > cd leon
- > cp ../syn/leon.v .
- > cp leon.vhd cp\_leon.vhd
- rm leon.vhd
- > cp Makefile Makefile-vhdl
- > cp /home/tmarwah/soc/soc/leon/Makefile\_post\_synth Makefile\_synth
- > cp Makefile\_synth Makefile
- > cp /home/tmarwah/soc/soc/leon/tsmc18.v .
- > cp /home/tmarwah/soc/soc/leon/tp\*.v .
- > cp /home/tmarwah/soc/soc/leon/timescale.v .
- > cp /home/tmarwah/soc/soc/leon/dpram512x36\_inst.v .
- > cp ../ram\_tsmc25/ra\*.v .
- cp ../ram\_tsmc25/dp\*.vhd .
- cp ../ram\_tsmc25/ra\*.vhd .
- ≻ cd ..
- > cd tbench

Edit the tbgen.vhd file and assign clkperiod as 50ns.

```
File Name: tbgen.vhd
Note: We need to edit the frequency( clkperiod = 50 ; ie freq = 20MHz)
entity tbgen is
 generic (
           : string := "32 kbyte 32-bit rom, 0-ws";
  msq1
           : string := "2x128 kbyte 32-bit ram, 0-ws";
  msq2
         : boolean := false; -- use the PCI version of leon
  pci
  pcihost : boolean := false;
                               -- be PCI host
  DISASS : integer := 0; -- enable disassembly to stdout
  clkperiod : integer := 50; -- system clock period
  romfile : string := "tsource/rom.dat"; -- rom contents
  ramfile : string := "tsource/ram.dat"; -- ram contents
  sdramfile : string := "tsource/sdram.rec"; -- sdram contents
```

- ≻ cd ..
- make clean
- > mentor\_old\_tools
- > make all
- > vsim tb\_func32 &
- run -all (In ModelSim window)

The output from the simulation should be similar to:

```
# *** Starting LEON system test ***
# Register file
# Cache controllers
# Interrupt controller
# UARTs
# UARTs
# Timers, watchdog and power-down
# Parallel I/O port
# Test completed OK, halting with failure
# ** Failure: TEST COMPLETED OK, ending with FAILURE
Simulation is halted by generating a failure.
```

# 5. Adding an IP Block

Adding an IP block as an AMBA bus master to Leon processor. The IP block used here is the AES block. For AES to act as a bus master, a wrapper has been created that would enable it to communicate with the AMBA buses. Copying the files of IP block into **leon** directory

- > cd leon
- cp ../aes/DW\_ram\*.vhd .
- ➢ cp ../aes/aes\*.∨.
- cp ../aes/controller.v .
- cp ../aes/topmodule.v .
- cp ../aes/aes\*.vhd .
- > mv cp\_leon.vhd leon.vhd

In order to include AES block, as bus master, we need to change following files: MCORE.VHD, TARGET.VHD, AMBACOMP.VHD and DEVICE.VHD. The modified files are copied in 'leon' directory.

- > rm ambacomp.vhd mcore.vhd target.vhd device.vhd Makefile
- cp ../org\_edit/ambacomp-soc.vhd ambacomp.vhd
- cp ../org\_edit/mcore-soc.vhd mcore.vhd
- cp ../org\_edit/target-soc.vhd target.vhd
- cp /home/rishi/652/soc/SoC-Thesis/leon/device.vhd .
- cp /home/tmarwah/soc/soc/leon/Makefile\_soc\_pre .
- > cp Makefile\_soc\_pre Makefile
- cp /home/tmarwah/soc/soc/leon/modelsim.ini .
- cp /home/tmarwah/soc/soc/leon/artisan\_lib.vhd .
- ➤ cd ..
- cp -r /home/rishi/652/soc/leon2-1.0.12/ram\_virtex2 .

```
make clean
```

Now we need to change the software for Leon so that we can program the transfer of data from registers in Leon to the memory of our amba master.

- cd tsource
- rm ram.dat
- make clean

- cp leon\_test.c leon\_test-org.c
- cp ../org\_edit/leon\_test.c .
- > bash

REMEMBER, THE SPARC/RTEMS IS INSTALLED IN faster MACHINE ONLY. SO YOU HAVE TO DO THE FOLLOWING BASH PART IN faster ONLY. (THOSE WHO WORKING IN /TMP DIRECTORY, COPY THE TSOURCE DIRECTORY TO YOUR HOME DIRECTORY AND DO THE SAME).

In response to the bash prompt, please set following path:

export PATH=\$PATH:/opt/rtems/bin
 make all

After make all, it should compile without errors.

### > exit

Now we have set all the files and we can simulate the design. All the relevant signals can be seen by running the wave file leon1.do.

- **cd** .. (top 'soc' directory)
- > cp /home/tmarwah/soc/soc/leon1.do .
- > mentor\_old\_tools
- ➤ make all
- > vsim tb\_func32&
- **do leon1.do** (in the modelsim window)
- > **run -all** (in the modelsim window)

"make all" should run without any errors. If it does then all your files are set. You can see how data communication is taking place between master and leon by watching the simulation results of signals in aes\_ctrl module. Finally, you will see the compilation of the top level modules. The waveforms are shown below:

| Mave - defau       dift Yiew Insert Format Tools Window       Do/leono/moreo/aeso/aesi/rist       Di/moreo/aeso/aesi/rist       Di/moreo/aeso/aesi/ | It            |                                                                       |                                                                    |                                                                 |                                                                           | 12<br>)40000000<br>(40000000                                                                                                                            |                                                                                                                                                              |                                                                                                                               |                                                                                                                                                                                   | 14000000 X X X X X X X X X X X X X X X X                                                                                          |                                                                                                   |                                             | s s s s s s s s s s s s s s s s s s s                         |                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------|-------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | wave – defaul | Edit <u>V</u> iew Insert F <u>o</u> rmat <u>T</u> ools <u>W</u> indow | 🥥   🐰 🐿 🖏 🖬 🗼 🔏 Te 🔟   Te 🔟   🔍 🤍 🔍 👫   Ef   El El El El El 😸   3- | p0/leon0/mcore0/aes1/rst  1 /////////////////////////////////// | n0/mcore0/aes0/aes1/ahb_hresp 0<br>0/mcore0/aes0/aes1/ahb_hrdata 00000000 | 00/mcore0/aes0/aes1/ahb_hlock 0<br>0/mcore0/aes0/aes1/ahb_htrans 0<br>n0/mcore0/aes0/aes1/ahb_hmddr 00000000 0000000<br>0/mcore0/aes0/aes1/ahb_hmrite 0 | nv/mcorev/aesv/aesi/anp_nsize 2 <u>2 5</u><br>0/mcoreo/aesv/aesi/ahp_hurst 5 <u>5 5</u><br>0/mcoreo/aes0/aesi/ahp_hurst 0 0000000 00000000000000000000000000 | /mcore0/aes0/aes1/apb_penable 1<br>0/mcore0/aes0/aes1/apb_paddr 00000300 00000310   000008<br>0/mcore0/aes0/aes1/apb_pwrite 1 | 0/mcore0/aes0/aes1/apb_pwdata 00000001 00000000 ( 1)<br>0/mcore0/aes0/aes1/apb_prdata 00000000 0000000<br>00/1eon0/mcore0/aes0/aes1/rq 0<br>h/0/1eon0/mcore0/aes0/aes1/r 50 0 0 0 | <br>.dmarranstreq 0<br>.dmarranstreq 0<br>.memorryadr 0000000 0000000 00000000<br>.ntoprocess 0000000 000000000000000000000000000 | .irgen<br>.irg<br>.vdstartaddr<br>.vrstartaddr<br>.rady<br>.rady<br>p0/leon0/mcore0/aes0/aes1/tmp | aessnreq 0<br>basen 0<br>busen 0<br>busen 0 | Now 591575 ns 1 1 1 1 1 1 2 0500<br>Cursor 1 210605 ns 2 2060 | no to 212127 no [ |

|            |                                                                                                                                                                                                                                                                                                                                     |                                                                   | ways dofault                                                                                                                                                                                                       |                                            |    |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----|
| Eile       | Edit <u>V</u> iew Insert F <u>o</u> rmat <u>T</u> ools <u>W</u>                                                                                                                                                                                                                                                                     | (indow                                                            | wave – ucidult                                                                                                                                                                                                     |                                            | 1  |
| <b>1</b>   |                                                                                                                                                                                                                                                                                                                                     | <b>0</b><br><b>0</b>                                              |                                                                                                                                                                                                                    |                                            |    |
| ┷╋┙╵       | . irq<br>. rdstartaddr<br>. wrstartaddr<br>r .ready                                                                                                                                                                                                                                                                                 | 0<br>00000000<br>00000111                                         | 00000000<br>000001111                                                                                                                                                                                              |                                            |    |
|            | p0/leon0/mcore0/aes0/aes1/tmp<br>.aesenreq<br>.aesenred<br>.busact<br>.busgrant<br>.busgrant<br>.dmatransfreq                                                                                                                                                                                                                       | ~<br>~<br>~                                                       |                                                                                                                                                                                                                    |                                            |    |
|            | memwr<br>memoryadr<br>.ntoprocess<br>.data_in<br>.key_in<br>.wr_n<br>.wr_n<br>.irgen                                                                                                                                                                                                                                                | 0<br>4000008<br>A1480000<br>0000005<br>000005<br>0<br>0<br>0<br>0 | 1         1         4000008           1         1         60000           1         1         00000           1         100000         1           1         100000         1           1         100000         1 |                                            |    |
| └╓╓        | . rustartaddr<br>. wrstartaddr<br>. ready<br>no/mcore0/aes0/aes1/dataready<br>leon0/mcore0/aes0/aes1/finish                                                                                                                                                                                                                         | 0<br>0000000<br>0<br>0<br>0<br>0<br>0                             | 00000000000001111                                                                                                                                                                                                  |                                            |    |
|            | leon0/mcore0/aes0/aes1/key_in<br>eon0/mcore0/aes0/aes1/data_in<br> on0/mcore0/aes0/aes1/data_out                                                                                                                                                                                                                                    | 000000FF<br>0000FF00<br>XXXXXXX                                   | X X000007E X00007E X00007E X                                                                                                                                                                                       | (46008601                                  |    |
|            | leon0/mcore0/aes0/aes1/state1<br>/leon0/mcore0/aes0/aes1/htaddr<br>leon0/mcore0/aes0/aes1/htrans<br>leon0/mcore0/aes0/aes1/hurite<br>leon0/mcore0/aes0/aes1/hudata                                                                                                                                                                  | 08<br>00000000<br>2<br>00000000                                   | X X X X X X 06<br>00000000 X X X 10<br>3<br>30000000                                                                                                                                                               |                                            |    |
|            | eono/mcoreo/aeso/aesi/husreo<br>o/aeso/aesi/aes2/inst_data_in<br>eo/aeso/aesi/aes2/inst_key_in                                                                                                                                                                                                                                      | 1<br>00006f00<br>000006f                                          | X X0000 <u>FF</u> D0<br>X X000000 <u>F</u> F                                                                                                                                                                       |                                            |    |
| <b>.</b>   | <pre>e0nvmcorevtaesvtaesvtaesvuo<br/>e0/aes0/aes1/aes2/inst_rst_n1<br/>ore0/aes0/aes1/aes2/inst_rst_n1<br/>re0/aes0/aes1/aes2/inst_test_mode<br/>aes0/aes1/aes2/inst_test_mode<br/>aes0/aes1/aes2/inst_test_mode1<br/>n0/mcore0/aes0/aes1/aes2/kevtin<br/>n0/mcore0/aes0/aes1/aes2/kevtin<br/>n0/mcore0/aes0/aes1/aes2/kevtin</pre> | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                             |                                                                                                                                                                                                                    | 00ff000                                    |    |
| <br>Z14629 | Now<br>Cursor 1                                                                                                                                                                                                                                                                                                                     | 591575 ns<br><mark>215127 ns</mark><br>≺∐ D                       | ······································                                                                                                                                                                             | 216 us 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |    |
| 714051     |                                                                                                                                                                                                                                                                                                                                     |                                                                   |                                                                                                                                                                                                                    |                                            | 11 |

# 6. References

Srivastava, R., <u>``Development of An Open Core System-on-Chip</u> <u>Platform''</u>, M.S. Thesis, University of Tennessee, August 2004.

- AMBA documentation : <u>http://www.gaisler.com/doc/amba.pdf</u>
- LEON-2 processor User's Manual : <u>http://www.gaisler.com</u>
- Artisan Components,Inc. "Generator User Manual"