
Homework-4

Implementing a Leon based SoC
--

1. Setting Up The Files

We will use leon2-1.0.12 for this homework. All files for this version
can be found at :
/home/rishi/soc/soc.tar.gz

From your home directory proceed as follows.

 mkdir hw4
 cd hw4
 cp /home/rishi/soc/soc.tar.gz .
 gunzip –c soc.tar.gz | tar –xvf -

The LEON model has the following directory structure:

soc top directory
soc/Makefile top-level Makefile
soc/leon/ LEON vhdl model
soc/modelsim/ Modelsim simulator support files
soc/pmon Boot-monitor
soc/syn Synthesis support files
soc/tbench LEON VHDL test bench
soc/tsource LEON test bench (C source)
soc/aes AES vhdl model + AMBA wrapper
soc/fir FIR vhdl model + AMBA wrapper
soc/org_edit Original & modified files
soc/ram_tsmc25 ARTISAN RAM models

 cd soc
 cp /home/rishi/soc/soc/modelsim.ini .
 cd tsource
 cp ram.dat ram_backup.dat
 cd ..

Editing the top-level Makefile:

 pico Makefile
 Go to the bottom of the Makefile where you can see this…
 clean:
 cd leon; make clean
 cd tbench; make clean
 cd tkconfig; make clean
 cd tsource; make clean
 -rm dumpdata.txt trnscrpt transcript vsim.wlf vsim.wav

 Instead of above it should be like this. (We don’t want to delete the files of
 tkconfig,tsource every time).

 clean:
 cd leon; make clean
 cd tbench; make clean
 -rm dumpdata.txt trnscrpt transcript vsim.wlf vsim.wav

2. Customizing the LEON

2.1 Customizing for Virtex2 Technology
In /hw4/soc directory:

 make xconfig
a window like below should open.

Figure1

Click on “synthesis” and a second window for synthesis
customization will open. In that window select “Target Technology”
to be “Virtex2” and you’ll see all the variables below are
automatically selected. For time being we’ll use the default values of
these variables. The window should look like this.

Figure2

Click on “Main Menu” button. In main menu select “Boot option” in
that window select boot option to be “Memory” (Default is: Memory).
Click on “Main Menu” button.

Press “Save and Exit” button.

 make dep (this will create a device.vhd file in leon directory
 which would contain your customized design)

 mentor_old_tools
 make all (this will compile all the files)

Once the LEON model has been compiled, use the TB_FUNC32 test
bench to verify the behaviour of the model. Simulation should be
started in the top directory.

 vsim tb_func32 &
 run –all (In the ModeSim window)

The output from the simulation should be similar to:

*** Starting LEON system test ***
Register file
Cache controllers
Interrupt controller
UARTs
Timers, watchdog and power-down
Parallel I/O port
Test completed OK, halting with failure
** Failure: TEST COMPLETED OK, ending with FAILURE
Simulation is halted by generating a failure.

2.2 Customizing for TSMC-25 Technology

In /hw4/soc directory:

 cd leon
 cp device.vhd device-virtex2.vhd
 cd ..
 make xconfig

In “Main Menu” click on “synthesis” and a second window for
synthesis customization will open. In that window select “Target

Technology” to be “TSMC 25” and you’ll see all the variables below
are automatically selected. For time being we’ll use the default values
of these variables. The window should look like this.

Figure3

Click on “Main Menu” button. In main menu select “Boot option” in
that window select boot option to be “Memory” (Default is: Memory).
Click on “Main Menu” button. In main menu select “Processor and
caches” in that window select “cache system” and change the “set
size” to 8k. Entrees should look like this. Press “OK” and then “Main
Menu”.

Figure4

For now we’ll use only default settings for others. Don’t mess with it
until you know what you are doing. Press “Save and Exit” button.

 make dep (this will create a device.vhd file in leon directory
 which would contain your customized design)

 mentor_old_tools
 make all (this will compile all the files)

Once the LEON model has been compiled, use the TB_FUNC32 test
bench to verify the behaviour of the model. Simulation should be
started in the top directory.

 vsim tb_func32 &
 run –all (In the ModeSim window)

The output from the simulation should be similar to:

*** Starting LEON system test ***
Register file
Cache controllers
Interrupt controller
UARTs
Timers, watchdog and power-down
Parallel I/O port
Test completed OK, halting with failure
** Failure: TEST COMPLETED OK, ending with FAILURE
Simulation is halted by generating a failure.

3. ARTISAN Rams

To find out what size of rams we need in our design. We may have to
go back one step. From top directory i.e. ‘soc’ run:

 make all
 vsim tb_func32&

 In Modelsim window we can see the size of the rams it is using, by
going to the “proc0” model as shown in the figure below. As we can
see we need to use DPRAM of size 136x32 and single port ram of size
256x27. We can use DPRAM instead of single port rams.

 Figure5

In figure 2 below we see that we also need a single port ram of size
2048x32.We can use DPRAM instead of single port rams.

 Figure6

Now, exit from the Modelsim window. The next step is to generate
synthesizable RTL models for RAMs. In top directory ‘soc’ execute
following commands:

 mkdir ram_tsmc25 (not required)
 cd ram_tsmc25
 /sw/CDS/ARTISAN/TSMC18/aci/ra2sh/bin/ra2sh

A window like this should open.

Figure7

We need to generate following views for each of our RAM design. 1.
Verilog Model, 2. Synopsys Model, 3. TLF Model, 4. VCLEF
footprint, 5. GDSII Layout. Following files are generated in
ram_tsmc25 directory:

Model Files genertaed
Verilog dpram136x32_inst.v

Synopsys model

dpram136x32_inst_fast_syn.lib,
dpram136x32_inst_typical_syn.lib,
dpram136x32_inst_slow_syn.lib

TLF Model
dpram136x32_inst_fast.tlf,

dpram136x32_inst_typical.tlf
dpram136x32_inst_slow.tlf

VCLEF Footprint dpram136x32_inst.vclef

GDSII Layout dpram136x32_inst.gds2

For more information you can find the manual for artisan ram
generator at:
 /sw/CDS/ARTISAN/TSMC18/aci/ra2sh/doc/user_guide

Similar models are generated for ram256x27 & ram2048x32 using
the information given in below table.

PARAMETERS DPRAM 136x32 RAM 256x27 RAM 2048x32
Instance Name dpram136x32_inst ram256x27_inst ram2048x32_inst
Number of words 256 256 2048
Number of width 32 27 32
Frequency (Mhz) 50 50 50
Multiplexer
Width

4 4 8

Library Name
(when needed)

DPRAM1 RAM2 RAM3

Use default values for the rest,(i.e., ring width=2 etc)

These RAMs cannot be used as it is. Wrappers are required for these
blocks in order to communicate with the leon-2 processor in same
fashion as the behavioral models do. These wrappers
(dpram136x32_box0.vhd, dpram136x32_box1.vhd, ram2048x32_box0.vhd &
ram256x27_box0.vhd) are provided in ram_tsmc25 directory.

4. Synthesis: Leon-2 Processor-standalone
 cd syn
 cp /home/rishi/652/soc/leon2-1.0.12/syn/.synopsys_dc.setup .
 cp /home/rishi/652/soc/leon2-1.0.12/syn/.synopsys_vss.setup .

We will be using ‘Synopsys model’ (i.e. *.lib files) of rams for
synthesis purposes. In order to this, we need to add the designs in the
library (i.e. *.lib files) to a database (i.e. *.db files) and then add that
database format to our tsmc18 cell database.

Generating the synopsys database for RAMs. (library to database
conversion).Create a new File 'lib2db.dcsh' with the following data

define_design_lib WORK -path WORK
read_lib ../ram_tsmc25/dpram136x32_inst_typical_syn.lib
write_lib DPRAM1 -format db –output ../ram_tsmc25/dpram136x32_inst_typical.db

read_lib ../ram_tsmc25/ram256x27_inst_typical_syn.lib
write_lib RAM2 -format db -output ../ram_tsmc25/ram256x27_inst_typical.db

read_lib ../ram_tsmc25/ram2048x32_inst_typical_syn.lib
write_lib RAM3 -format db -output ../ram_tsmc25/ram2048x32_inst_typical.db

quit

 mkdir WORK
 synopsys_tools
 dc_shell -f lib2db.dcsh

Now we need to edit ‘.synopsys_dc.setup’ file to add RAM’s database
to our TSMC18 cell database. Students need to change the highlighted
text according to their directory structure. If you are using the same
file names as in the above table, no need to modify .db file names.

File Name: .synopsys_dc.setup
search_path = {} + search_path + /sw/CDS/ARTISAN/TSMC18/aci/sc/synopsys +
/sw/CDS/ARTISAN/TSMC18/PADS/synopsys/tpz973g_200c +
/home/tmarwah/soc/soc/ram_tsmc25
link_library = {typical.db"*"}
target_library = typical.db
symbol_library = typical.db

syntetic_library = { /sw/synopsys/libraries/syn/dw06.sldb +
/sw/synopsys/libraries/syn/dw02.sldb + /sw/synopsys/libraries/syn/dw01.sldb }

link_library = target_library + synthetic_library + dw06.sldb + dw03.sldb +
dw02.sldb + dw01.sldb + tpz973gtc.db + dpram136x32_inst_typical.db +
ram2048x32_inst_typical.db + ram256x27_inst_typical.db
search_path = search_path + {synopsys_root + "/dw/sim_ver"}

In order to generate Black Box for Rams, create a new file
'ram_box.dcsh’ in ‘syn’ directory with the following contents:

define_design_lib WORK -path WORK
analyze -f vhdl -library WORK ../ram_tsmc25/ram256x27_box0.vhd
elaborate ram256x27_box0
uniquify
compile -map_effort high
write -f verilog -hierarchy -o ../leon/ram256x27_box0.v
 quit

 cd syn
 rm –r WORK
 mkdir WORK
 synopsys_tools
 dc_shell –f ram_box.dcsh (do it for each ram model)

Note# Run the above file for each ram file i.e.
ram2048x32_box0.vhd, dpram136x32_box0.vhd,
dpram136x32_box1.vhd. Please substitute the name of ram file in
ram_box.dcsh also delete WORK directory after every run.

Now replace the LEON files so that new files use these Ram Black
Boxes instead of the original behavioral models. This can be done by
replacing original tech_tsmc25.vhd with tech_tsmc25-rishi.vhd.

 cd leon
 cp /home/rishi/652/soc/leon2-1.0.12/leon/tech_tsmc25.vhd

tech_tsmc25-rishi.vhd
 cp tech_tsmc25.vhd tech_tsmc25-org.vhd
 cp tech_tsmc25-rishi.vhd tech_tsmc25.vhd
 cd syn
 cp leon.dcsh leon-org.dcsh
 cp /home/tmarwah/soc/soc/syn/leon.dcsh leon.dcsh
 rm –r WORK
 mkdir WORK
 synopsys_tools
 dc_shell –f leon.dcsh > zm01.txt

This is going to take a while. And you can keep checking the output
file (zm01.txt) for errors. To get post-synthesis simulation of the
Netlist:

 cd leon
 cp ../syn/leon.v .
 cp leon.vhd cp_leon.vhd
 rm leon.vhd
 cp Makefile Makefile-vhdl
 cp /home/tmarwah/soc/soc/leon/Makefile_post_synth

Makefile_synth
 cp Makefile_synth Makefile
 cp /home/tmarwah/soc/soc/leon/tsmc18.v .
 cp /home/tmarwah/soc/soc/leon/tp*.v .
 cp /home/tmarwah/soc/soc/leon/timescale.v .
 cp /home/tmarwah/soc/soc/leon/dpram512x36_inst.v .
 cp ../ram_tsmc25/ra*.v .
 cp ../ram_tsmc25/dp*.vhd .
 cp ../ram_tsmc25/ra*.vhd .
 cd ..
 cd tbench

Edit the tbgen.vhd file and assign clkperiod as 50ns.

File Name: tbgen.vhd
Note: We need to edit the frequency(clkperiod = 50 ; ie freq =20MHz)
 entity tbgen is
 generic (
 msg1 : string := "32 kbyte 32-bit rom, 0-ws";
 msg2 : string := "2x128 kbyte 32-bit ram, 0-ws";
 pci : boolean := false; -- use the PCI version of leon
 pcihost : boolean := false; -- be PCI host
 DISASS : integer := 0; -- enable disassembly to stdout
 clkperiod : integer := 50; -- system clock period
 romfile : string := "tsource/rom.dat"; -- rom contents
 ramfile : string := "tsource/ram.dat"; -- ram contents
 sdramfile : string := "tsource/sdram.rec"; -- sdram contents

 cd ..
 make clean
 mentor_old_tools
 make all
 vsim tb_func32 &
 run –all (In ModelSim window)

The output from the simulation should be similar to:

*** Starting LEON system test ***
Register file
Cache controllers
Interrupt controller
UARTs
Timers, watchdog and power-down
Parallel I/O port
Test completed OK, halting with failure
** Failure: TEST COMPLETED OK, ending with FAILURE
Simulation is halted by generating a failure.

5. Adding an IP Block

Adding an IP block as an AMBA bus master to Leon processor. The
IP block used here is the AES block. For AES to act as a bus master, a
wrapper has been created that would enable it to communicate with
the AMBA buses. Copying the files of IP block into leon directory

 cd leon
 cp ../aes/DW_ram*.vhd .
 cp ../aes/aes*.v .
 cp ../aes/controller.v .
 cp ../aes/topmodule.v .
 cp ../aes/aes*.vhd .
 mv cp_leon.vhd leon.vhd

In order to include AES block, as bus master, we need to change
following files: MCORE.VHD, TARGET.VHD, AMBACOMP.VHD
and DEVICE.VHD. The modified files are copied in ‘leon’ directory.

 rm ambacomp.vhd mcore.vhd target.vhd device.vhd Makefile
 cp ../org_edit/ambacomp-soc.vhd ambacomp.vhd
 cp ../org_edit/mcore-soc.vhd mcore.vhd
 cp ../org_edit/target-soc.vhd target.vhd
 cp /home/rishi/652/soc/SoC-Thesis/leon/device.vhd .
 cp /home/tmarwah/soc/soc/leon/Makefile_soc_pre .
 cp Makefile_soc_pre Makefile
 cp /home/tmarwah/soc/soc/leon/modelsim.ini .
 cp /home/tmarwah/soc/soc/leon/artisan_lib.vhd .
 cd ..
 cp -r /home/rishi/652/soc/leon2-1.0.12/ram_virtex2 .
 make clean

Now we need to change the software for Leon so that we can program
the transfer of data from registers in Leon to the memory of our amba
master.

 cd tsource
 rm ram.dat
 make clean

 cp leon_test.c leon_test-org.c
 cp ../org_edit/leon_test.c .
 bash

REMEMBER, THE SPARC/RTEMS IS INSTALLED IN faster
MACHINE ONLY. SO YOU HAVE TO DO THE FOLLOWING
BASH PART IN faster ONLY. (THOSE WHO WORKING IN /TMP
DIRECTORY, COPY THE TSOURCE DIRECTORY TO YOUR
HOME DIRECTORY AND DO THE SAME).

In response to the bash prompt, please set following path:

 export PATH=$PATH:/opt/rtems/bin
 make all

 After make all, it should compile without errors.

 exit

Now we have set all the files and we can simulate the design. All the
relevant signals can be seen by running the wave file leon1.do.

 cd .. (top ‘soc’ directory)
 cp /home/tmarwah/soc/soc/leon1.do .
 mentor_old_tools
 make all
 vsim tb_func32&
 do leon1.do (in the modelsim window)
 run -all (in the modelsim window)

“make all” should run without any errors. If it does then all your files
are set. You can see how data communication is taking place between
master and leon by watching the simulation results of signals in
aes_ctrl module. Finally, you will see the compilation of the top level
modules. The waveforms are shown below:

6. References

 Srivastava, R., ``Development of An Open Core System-on-Chip
Platform'' , M.S. Thesis, University of Tennessee, August 2004.

 AMBA documentation : http://www.gaisler.com/doc/amba.pdf

 LEON-2 processor User’s Manual : http://www.gaisler.com

 Artisan Components,Inc. “Generator User Manual”

http://www.gaisler.com/doc/amba.pdf
http://www.gaisler.com/

