
Architecture, Memory and Interface Technology Integration of an Industrial/
Academic Configurable System-on-Chip (CSoC)

Jürgen Becker

 Universitaet Karlsruhe (TH)
Institut fuer Technik der Informationsverarbeitung

 D-76128 Karlsruhe, Germany
becker@itiv.uni-karlsruhe.de

Martin Vorbach

 PACT XPP Technologies AG
Muthmannstr. 1

 D-80939 Munich, Germany
martin.vorbach@pactcorp.com
Abstract
This paper describes the actual status and results of a dy-

namically Configurable System-on-Chip (CSoC) integra-
tion, consisting of a SPARC-compatible LEON processor-
core, a commercial coarse-grain XPP-array of suitable size
from PACT XPP Technologies AG, and application-tailored
global/local memory topology with efficient Amba-based
communication interfaces. The given adaptive architecture
is synthesized within an industrial/academic SoC project
onto 0.18 and 0.13 mm UMC CMOS technologies at Univer-
sitaet Karlsruhe (TH). Due to exponential increasing CMOS
mask costs, essential aspects for the industry are now adap-
tivity of SoCs, which can be realized by integrating recon-
figurable re-usable hardware parts on different
granularities into Configurable Systems-on-Chip (CSoCs).

1 Introduction and Motivation
 Systems-on-Chip (SoCs) has become reality now, driven
by fast development of CMOS VLSI technologies. Com-
plex system integration onto one single die introduce a set
of various challenges and perspectives for industrial and
academic institutions. Important issues to be addressed here
are cost-effective technologies, efficient and application-
tailored hardware/software architectures, and correspond-
ing IP-based EDA methods. Due to exponential increasing
CMOS mask costs, essential aspects for the industry are
now flexibility and adaptivity of SoCs. Thus, in addition to
ASIC-based, one new promising type of SoC architecture
template is recognized by several academic[2] [16] [17]
[18] [19] [20] and first commercial versions [4] [5] [6] [8]
[10] [11] [13]: Configurable SoCs (CSoCs), consisting of
processor-, memory-, probably ASIC-cores, and on-chip
reconfigurable hardware parts for customization to a partic-
ular application. CSoCs combine the advantages of both:
ASIC-based SoCs and multichip-board development using
standard components [3].
This contribution provides the academic case study results
of a CSoC project, integrating the dynamically reconfig-
urable eXtreme Processing Platform (XPP) from PACT
[10] [11], [12] (see figure 1). The XPP architecture realizes

a new runtime re-configurable data processing technology
that replaces the concept of instruction sequencing by con-
figuration sequencing with high performance application
areas envisioned from embedded signal processing to co-
processing in different DSP-like application environments.
The adaptive reconfigurable data processing architecture
consist of following components:
• Processing Array Elements (PAEs), organized

as Processing Arrays (PAs),
• a packet oriented communication network,
• a hierarchical Configuration Manager (CM)

tree, and
• a set of I/O modules.

This supports the execution of multiple data flow applica-
tions running in parallel. A PA together with one low level
CM is referred as PAC (Processing Array Cluster). The low
level CM is responsible for writing configuration data into
the configurable objects of the PA. Typically, more than one
PAC is used to build a complete XPP device. Doing so,
additional CMs are introduced for configuration data han-
dling. With an increasing number of PACs on a device, the
configuration hardware assumes the structure of a tree of
CMs. The root CM of the tree is called the supervising CM
or SCM. This unit is usually connected to an external or
global RAM.
The basic concept consists of replacing the Von-Neumann
instruction stream by automatic configuration sequencing
and by processing data streams instead of single machine
words, similar to [1] (see figure 1). Due to the XPP´s high
regularity, a high level compiler can extract instruction
level parallelism and pipelining that is implicitly contained
in algorithms [12]. The XPP can be used in several fields,
e.g. as image/video processing, encryption, and baseband
processing of next generation wireless standards. 3G sys-
tems, i.e. based on the UMTS standard, will be defined to
provide a transmission scheme which is highly flexible and
adaptable to new services. Relative to GSM, UMTS and IS-
95 will require intensive layer 1 related operations, which
cannot be performed on today´s processors [14] [15]. Thus,
an optimized HW/SW partitioning of these computation-
intensive tasks is necessary, whereas the flexibility to adapt
to changing standards and different operation modes (dif-

ferent services, QoS, BER, etc.) has to be considered.
Therefore, selected computation-intensive signal process-
ing tasks have to be migrated from software to hardware
implementation, e. g. to ASIC or coarse-grain reconfig-
urable hardware parts, like the XPP architecture.

2 XPP-based CSoC Architecture
Our CSoC architecture (figure 2) consists of an XPP-core
from PACT, one LEON µcontroller, and several SRAM-
type memory modules. The main communication bus is
chosen to be the AHB from ARM [23]. The size of the
XPP architecture will be either 16 ALU-PAEs (4x4-array),
or 64 ALU-PAEs (8x8-array), dependent on the application
field. To get an efficient coupling of the XPP architecture
to AHB, we design an AHB-bridge which connects both
IO-interfaces on one side of the XPP, input and output
interfaces, to the AHB via one module.The AHB specifica-
tion grants only communication between masters and
slaves. There is no option provided for communication
between two homogeneous partners, e.g. master to master.
Usually the main controller, a processor or a µcontroller,
on an AHB-based SoC is master, the RAM as a passive

component on the bus is designed as a slave. Thus, if we
choice our XPP-AHB-bridge to be a slave, there is no pos-
sibility for a connection between XPP and a RAM-module.
Otherwise if we choice our bridge to be a master, no com-
munication between the main µcontroller and XPP were
allowed. Therefore we choice an unusual method and com-
bine two ports, one master and one slave port as a dual port
in the same bridge. This combination allows us to be flexi-
ble enough to process various application scenarios. In this
way the XPP is able to handle the data from a RAM- mod-
ule or gets a stream from another master on the CSoC. The
CM unit implements a separately memory for faster storing
and loading the XPP configurations. If there isn’t enough
memory space for storing the configurations in local mem-
ory, its possible to use the global CSoC memory to do that.
The AHB-bridge for CM will be a single ported SLAVE-
AHB-bridge. The transfers of the configurations from glo-
bal memory to the Configuration Manager will be done by
LEON. Therefore the CM have to send a request to LEON
and start new configuration transfer.
The µcontroller on our CSoC is a LEON processor. This
processor is a public domain IP core. The LEON VHDL
model implements a 32-bit processor conforming to the
SPARC V8 architecture. It is designed for embedded appli-
cations with the following features on-chip: separate
instruction and data caches, hardware multiplier and
divider, interrupt controller, two 24-bit timers, two UARTs,
power-down function, watchdog, 16-bit I/O port and a
flexible memory controller. Additional modules can easily
be added using the on-chip AMBA AHB/APB buses. The
VHDL model is fully synthesisable with most synthesis
tools and can be implemented on both FPGAs and ASICs.
The LEON µprocessor acts as a master on our CSoC-archi-
tecture. The program data for LEON will be transferred via
AHB. In this manner there are two options where the main
memory for LEON could be located: intern on die or extern
on separate modules.

Figure 1: XPP-/Leon-based CSoC Architecture

Leon Microcontroller Architecture
Configurable System-on-Chip XPP Architecture

ASIC

Program
ROM

Leon
µC

RAM
Global

SoC-RAM

Reconfigurable
Hardware

Local
XPP-RAM

Amba-Bus

FIFO-Bridge

ASIC

Program
ROM

Leon
µC

RAM
Global

SoC-RAM

Reconfigurable
Hardware

Local
XPP-RAM

Amba-Bus

FIFO-Bridge

Figure 2: CSoC RAM Topology

XPP

CM

RAM IOLEON

AMBA-Bus

Bridge

R
A

M

R
A

M

XPP

CM

RAM IOLEON

AMBA-Bus

Bridge

R
A

M

R
A

M

The local memory module on CSoC is used to store the
LEON programs, data for XPP computation and XPP con-
figurations. The theoretical bandwidth of AHB at 100 Mhz
and 32bit bit width is 400 MBytes/sec. That’s enough to
serve the XPP-architecture with data and configurations
and to handle the program data of the LEON efficiently.
The interface of the memory module to the AHB is realized
as a slave. That’s because this module is a passive module
only and can not start any kind of transactions on the AHB.
Moreover, there will be an external RAM interface imple-
mented, which allows to connect extern memory to the
CSoC. This module is a part of the LEON IP-core.
The prior AHB specification [23] from ARM allows only
one transaction per cycle. That means that if one master
and one slave are communicating at a time step, the other
modules on the bus have to wait till this communication is
done. This kind of transactions block completely the whole
bus. The solution for this restriction is the multi-layer
AHB. This concept allows multiple transactions at the
same time. Instead of using simple multiplexers and decod-
ers on the bus, we use now single decoders and multiplex-

ers per slave to choice the right master for communication.
Thus, the bus is divided in several sub-busses allowing
simultaneous transactions between various masters and
slaves. Each of the 4 parallel operating high-throughput
bridges connecting the SRAM-banks to the XPP can
achieve a data throughput of of 400 MB/sec operating in
100 Mhz, e.g. a complete on-Chip data throughput of 1600
MB/sec, which is sufficient for multimedia-based applica-
tions like MPEG-4 algorithms applied to video data in
PAL-standard format (see section 4). The three SRAM
memory modules provide up to 3 MB on-chip. The com-
plete size is splitted into 2x1,2 MB and 1x0,6 MB modules,
for storing two pictures and code with XPP configurations.
Within this flexible multi-layer AHB interface concept the
XPP can operate either as slave (Leon processor is master)
or as master itself. The communication between the CSoC
and the outside world will be realised throught a master/
slave AHB/PCI host bridge. The AHB master ability
admits the direct transfers from PCI to internal RAM with-
out involvement of the main µcontroller, or, the slave abil-
ity admits transfers between all masters and PCI-Bridge.

Figure 3: LEON RISC Processor Standard Cell Synthesis obtained at Universitaet Karlsruhe (TH)

Integer Unit
Cachecontroller

Regfile

I-CacheD-Cache

Integer Unit
Cachecontroller

Regfile

I-CacheD-Cache

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5
Performance

[ns]

ah
ba

rb

ah
bs

ta
t

ap
bm

st

ca
ch

e

ca
ch

em
em

cl
kg

en

io
po

rt

irq
ct

rl iu

lc
on

f

m
ct

rl

re
gf

ile
_i

u

rs
tg

en

tim
er

s

ua
rts

w
pr

ot

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5
Performance

[ns]

ah
ba

rb

ah
bs

ta
t

ap
bm

st

ca
ch

e

ca
ch

em
em

cl
kg

en

io
po

rt

irq
ct

rl iu

lc
on

f

m
ct

rl

re
gf

ile
_i

u

rs
tg

en

tim
er

s

ua
rts

w
pr

ot

0

1

2

3

4

5

6

7

8

9

10

#Std.-Cells *10000 Cell Area in mm² Dynamic Power
Consumption in W/10

Static Power
Consumption in µW

Performance in ns
0

1

2

3

4

5

6

7

8

9

10

#Std.-Cells *10000 Cell Area in mm² Dynamic Power
Consumption in W/10

Static Power
Consumption in µW

Performance in ns

Power
Cons.
[mW]

0

200

400

600

800

1000

1200

3ns 4ns 5ns 10ns 20ns 33ns 50ns

P~1/T
Power
Cons.
[mW]

0

200

400

600

800

1000

1200

3ns 4ns 5ns 10ns 20ns 33ns 50ns

P~1/T

0

200

400

600

800

1000

1200

3ns 4ns 5ns 10ns 20ns 33ns 50ns

P~1/T

Performance (Critical Path, flattened synthesis)

Performance/Area/Power (hierarchical & flattened synthesis)

Dynamic Power (flattened synthesis)

Processor Layout (hierarchical synthesis)

mcore flattened
mcore hierarchical
mcore flattened
mcore hierarchical

3 eXtreme Processing Platform - XPP
The XPP architecture is based on a hierarchical array of
coarse-grain, adaptive computing elements called Process-
ing Array Elements (PAEs) and a packet-oriented commu-
nication network. The strength of the XPP technology
originates from the combination of array processing with
unique, powerful run-time reconfiguration mechanisms.
Since configuration control is distributed over several Con-
figuration Managers (CMs) embedded in the array, PAEs
can be configured rapidly in parallel while neighboring
PAEs are processing data. Entire applications can be con-
figured and run independently on different parts of the
array. Reconfiguration is triggered externally or even by
special event signals originating within the array, enabling
self-reconfiguring designs. By utilizing protocols imple-
mented in hardware, data and event packets are used to
process, generate, decompose and merge streams of data.
The XPP has some similarities with other coarse-grain
reconfigurable architectures like the KressArray [21] or
Raw Machines [22] which are specifically for stream-
based applications. XPP's main distinguishing features are
its automatic packet-handling mechanisms and sophisti-
cated hierarchical configuration protocols.

3.1 Array Structure

An XPP device contains one or several Processing Array
Clusters (PACs), i.e. rectangular blocks of PAEs. Each
PAC is attached to a CM responsible for writing configura-

tion data into the configurable objects of the PAC. Multi-
PAC devices contain additional CMs for configuration data
handling, forming a hierarchical tree of CMs. The root CM
is called the supervising CM or SCM. The XPP architec-
ture is also designed for cascading multiple devices in a
multi-chip. A CM consists of a state machine and internal
RAM for configuration caching. The PAC itself contains a
configuration bus which connects the CM with PAEs and
other configurable objects. Horizontal busses carry data
and events. They can be segmented by configurable
switch-objects, and connected to PAEs and special I/O
objects at the periphery of the device.
A PAE is a collection of PAE objects. The typical PAE
shown in figure 4 contains a BREG object (back registers)
and an FREG object (forward registers) which are used for
vertical routing, as well as an ALU object which performs
the actual computations. The ALU object's internal struc-
ture is shown on the bottom left-hand side of the figure.
The ALU implemented performs common fixed-point
arithmetical and logical operations as well as several spe-
cial three-input opcodes like multiply-add, sort, and
counters. Events generated by ALU objects depend on
ALU results or exceptions, very similar to the state flags of
a classical microprocessor. A counter, e.g., generates a spe-
cial event only after it has terminated. The next section
explains how these events are used. Another PAE object
implemented in the prototype is a memory object which
can be used in FIFO mode or as RAM for lookup tables,
intermediate results etc. However, any PAE object func-
tionality can be included in the XPP architecture.

XPP ALU

 Synthesized

Figure 4: XPP ALU Structure and Standard Cell Synthesis Layout from Universitaet Karlsruhe (TH)

XPP Processing Array

PAE Structure

(semi-

BREG-ObjectFREG-Object ALU-Object

Left-Switch Right-Switch

CM-Interface

BREG-ObjectBREG-ObjectFREG-ObjectFREG-Object ALU-ObjectALU-Object

Left-SwitchLeft-Switch Right-SwitchRight-Switch

CM-InterfaceCM-Interface

 Synthesized ALU PAE (hierarchical)

C
FG

PAE
core

ALU CtrlALU C
FG

C
FG

PAE
core

C
FG

C
FG

PAE
core
PAE
core

ALU CtrlALUALU CtrlALU C
FG

C
F G

C
F G

C
F G

Legend: Right-Switch: red
Left-Switch: blue
Freg-Object: pink
Alu-Object: green
Breg-Object: light blue

ALU PAE

hierarchical)

3.2 Packet Handling and Synchronization

PAE objects as defined above communicate via a packet-
oriented network. Two types of packets are sent through
the array: data packets and event packets. Data packets
have a uniform bit width specific to the device type.
In normal operation mode, PAE objects are self-synchro-
nizing. An operation is performed as soon as all necessary
data input packets are available. The results are forwarded
as soon as they are available, provided the previous results
have been consumed. Thus it is possible to map a signal-
flow graph directly to ALU objects, and to pipeline input
data streams through it. The communication system is
designed to transmit one packet per cycle. Hardware pro-
tocols ensure that no packets are lost, even in the case of
pipeline stalls or during the configuration process. This
simplifies application development considerably. No
explicit scheduling of operations is required. Event packets
are one bit wide. They transmit state information which
controls ALU execution and packet generation. For
instance, they can be used to control the merging of data-
streams or to deliberately discard data packets. Thus condi-
tional computations depending on the results of earlier
ALU operations are feasible. Events can even trigger a
self-reconfiguration of the device as explained below.

3.3 Configuration

The XPP architecture is optimized for rapid and user trans-
parent configuration. For this purpose, the configuration
managers in the CM tree operate independently, and there-
fore are able to configure their respective parts of the array
in parallel. Every PAE stores locally its current configura-
tion state, i.e. if it is part of a configuration or not (states
„configured“'or „free“). If a configuration is requested by
the supervising CM, the configuration data traverses the
hierarchical CM tree to the leaf CMs which load the con-
figurations onto the array. The leaf CM locally synchro-
nizes with the PAEs in the PAC it configures. Once a PAE
is configured, it changes its state to „configured“. This pre-
vents the respective CM from reconfiguring a PAE which
is still used by another application. The CM caches the
configuration data in its internal RAM until the required
PAEs become available. Hence the CMs' cache memory
and the distributed configuration state in the array enables
the leaf CMs to configure their respective PACs indepen-
dently. No global synchronization is necessary.
While loading a configuration, all PAEs start to compute
their part of the application as soon as they are in state
„configured“. Partially configured applications are able to
process data without loss of packets. This concurrency of
configuration and computation hides configuration latency.
Additionally, a prefetching mechanism is used. After a
configuration is loaded onto the array, the next configura-
tion may already be requested and cached in the low-level
CMs' internal RAM. Thus it need not be requested all the
way from the SCM down to the array when PAEs become
available.

3.4 CSoC Standard Cell Synthesis

The LEON processor architecture, illustrated in figure 1,
has been first synthesized onto UMC 0.18 µm technology
with SYNOPSYS and CADENCE (Silicon Ebsemble)
tools, available through the european joined academic/
industry project EUROPRACTICE. The LEON processor
core needs in 0.18 µm CMOS technology approx. 1.8 mm2

and can be clocked up to 200 Mhz. The LEON layout,
obtained at Universitaet Karlsruhe (TH), with area/perfor-
mance and dynamic power consumption results are shown
in figure 3, whereas the synthesis was done hierarchically
(synthesized netlists and place&route performed separately
for different LEON modules) and completely flattened.
The major advantage in using flattened synthesis was the
better performance for the critical path of LEON in its Inte-
ger Unit (see 5 ns cycle rate for IU in). First non-opti-
mized area/ performance synthesis results in 0.13 µm
UMC CMOS technology needs 0.7 mm2 and can be
clocked up to 300 Mhz. corresponding.
XPP ALU-PAEs have been synthesized in 0.13 µm CMOS
technology in different synthesis strategies (with
CADENCE SE): hierarchical, semi-hierarchical, and flat-
tened. The semi-hierarchical strategy gives the best perfor-
mance/area trade-offs, still allowing a parametrizable
modular design flow (see figure 4).

4 Application Examples Performance
PACT did in the year 2000 a first evaluation board based
on 0.25 µm technology for their XPP 128 chips. Based
thereupon, the promising performance results in figure 5
compared to a parallel VLIW type DSP of Texas Instru-
ments are obtained [10], [11]. The dhrystone 2.1 bench-
mark reports 1,400 iteration/s/MHz for LEON by using 4K
+ 4K caches and a 16x16 multiplier, e.g. ARM9TDMI
reaches 1,200 iterations/s/MHz. This academic study of
LEON and XPP with efficient RAM-topology promises a
high boost in performance and flexibility. First digital TV
application performance results were obtained by evaluat-
ing corresponding MPEG-4 algorithm mappings onto the
introduced LEON/XPP CSoC and based on the UMC
0.13 µm CMOS technology synthesis results. Based on this

Clock Cycles

100 %

9x

50%

10%
2.7%

20
 T

ap
 C

om
pl

ex
FI

R

3.5% 4.7% 10.1%

10
24

 c
om

pl
ex

FF
T

9.2%

64
 T

ap
 R

ea
l F

IR

M
at

rix
 M

ul
tip

lic
at

io
n

Vi
te

rb
i

Clock Cycles

100 %

9x

50%

10%
2.7%

20
 T

ap
 C

om
pl

ex
FI

R

3.5% 4.7% 10.1%

10
24

 c
om

pl
ex

FF
T

9.2%

64
 T

ap
 R

ea
l F

IR

M
at

rix
 M

ul
tip

lic
at

io
n

Vi
te

rb
i

Figure 5: Performance: TI C6203 vs. PACT XPP 128

coarse-grain CSoC version, performance/cost results of an
MPEG-4 application have been analyzed, whereas the
Inverse DCT (see figure 6) applied to 8x8 pixel blocks can
be performed by an 4x4 XPP-Array in 74 clock cycles.
Since the IDCT is one of the most complex operations in
MPEG-4 algorithms, the preliminary clock frequency of
100 Mhz based on UMC 0.13 µm CMOS technology
seems to be more than sufficient for this real-time digital
TV application scenario.

5 Conclusions
This paper introduced the status and first performance/area
results of an academic case study integrating an industrial
dynamically Configurable System-on-Chip (CSoC), con-
sisting of a LEON RISC processor core, a PACT XPP-
array of suitable size (4x4 or 8x8 ALU PAEs) and efficient
global/local memory topologies with efficient multi-layer
Amba-based communication interfaces. The adaptivity and
multi-purpose usability of CSoCs promises an attractive
potential for embedded system industry in different appli-
cation areas, e.g. (wireless) communication (-> multi-stan-
dard, different bandwidth and services), automotive (multi-
purpose architecture platforms for all kind of control and
multi-media in cars), etc. The exponential increasing of
CMOS mask costs demands urgently such adaptivity,
which can be realized by integrating reconfigurable re-
usable silicon parts on multiple granularities into CSoCs,
demonstrating attractive perspectives, especially with short
time-to-market (risk minimization), flexibility (adaptivity)
and cost (multi-purpose -> volume increase) constraints.

6 References
[1] R. W. Hartenstein, J. Becker et al.: A Novel Machine Para-

digm to Accelerate Scientific Computing; Special issue on
Scientific Computing of Computer Science and Informatics
Journal, Computer Society of India, 1996.

[2] J. Becker, T. Pionteck, C. Habermann, M. Glesner: Design
and Implementation of a Coarse-Grained Dynamically
Reconfigurable Hardware Architecture; in: Proc. of IEEE
Computer Society Annual Workshop on VLSI (WVLSI
2001), Orlando, Florida, USA, April 19-20, 2001

[3] J. Becker (Invited Tutorial): Configurable Systems-on-Chip
(CSoC); in: Proc. of 9th Proc. of XV Brazilian Symposium on
Integrated Circuit Design (SBCCI 2002), Porto Alegre,
Brazil, September 5-9, 2002

[4] Xilinx Corp.: http://www.xilinx.com/products/virtex.htm.
[5] Altera Corp.: http://www.altera.com
[6] Triscend Inc.: http://www.triscend.com
[7] Triscend A7 Configurable System-on-Chip Platform - Data

Sheet http://www.triscend.com/products/
dsa7csoc_summary.pdf

[8] LucentWeb] http://www.lucent.com/micro/fpga/
[9] Atmel Corp.: http://www.atmel.com
[10] PACT Corporation: http://www.pactcorp.com
[11] The XPP Communication System, PACT Corporation, Tech-

nical Report 15, 2000
[12] V. Baumgarte, F. Mayr, A. Nückel, M. Vorbach, M. Wein-

hardt: PACT XPP - A Self-Reconfigurable Data Processing
Architecture; The 1st Int´l. Conference of Engineering of Re-
configurable Systems and Algorithms (ERSA´01), Las Ve-
gas, NV, June 2001

[13] Hitachi Semiconductor: http://semiconductor.hitachi.com/
news/triscend.html

[14] Peter Jung, Joerg Plechinger., “M-GOLD: a multimode bas-
band platform for future mobile terminals”,CTMC'99, IEEE
International Conference on Communications, Vancouver,
June 1999.

[15] Jan M. Rabaey: System Design at Universities: Experiences
and Challenges; IEEE Computer Society International Con-
ference on Microelectronic Systems Education (MSE´99),
July 19-21, Arlington VA, USA

[16] S. Copen Goldstein, H. Schmit, M. Moe, M. Budiu, S. Cad-
ambi, R. R. Taylor, R. Laufer "PipeRench: a Coprocessor for
Streaming Multimedia Acceleration" in ISCA 1999.
http://www.ece.cmu.edu/research/piperench/

[17] MIT Reinventing Computing: http://www.ai.mit.edu/
projects/transit dpga_prototype_documents.html

[18] N. Bagherzadeh, F. J. Kurdahi, H. Singh, G. Lu, M. Lee: "De-
sign and Implementation of the MorphoSys Reconfigurable
Computing Processor "; J. of VLSI and Signal Processing-
Systems for Signal, Image and Video Technology, 3/ 2000

[19] Hui Zhang, Vandana Prabhu, Varghese George, Marlene
Wan, Martin Benes, Arthur Abnous, "A 1V Heterogeneous
Reconfigurable Processor IC for Baseband Wireless Applica-
tions", Proc. of ISSCC2000.

[20] Pleiades Group: http://bwrc.eecs.berkeley.edu/Research/
Configurable_Architectures/

[21] R. Hartenstein, R. Kress, and H. Reinig. A new FPGA archi-
tecture for word-oriented datapaths. In Proc. FPL’94, Prague,
Czech Republic, September 1994. Springer LNCS 849.

[22] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V.
Lee, J. Kim, M. Frank, and P. Finch. Baring it all to software:
Raw machines. IEEE Computer, pages 86-93, September
1997

[23] ARM Corp.: http://www.arm.com/arm/AMBA

Figure 6: Main MPEG-4 Algorithm Modules

DC Coefficients

IN

OUT
+

Reference
Pic Memory

Motion
Vectors

Motion
Compensation

Inverse
DCT

De-
quantization

Huffman-
Decoder

Header
Decoder

Prediction-
Decoder

DC Coefficients

IN

OUT
++

Reference
Pic Memory

Motion
Vectors

Motion
Compensation

Inverse
DCT

De-
quantization

Huffman-
Decoder

Header
Decoder

Prediction-
Decoder

I - F r a m e

P - F r a m e

B - F r a m e

t im e

I - F r a m e

P - F r a m e

B - F r a m e

t im e

	PACT XPP Technologies AG
	Muthmannstr. 1
	D-80939 Munich, Germany
	martin.vorbach@pactcorp.com
	Universitaet Karlsruhe (TH)
	Institut fuer Technik der Informationsverarbeitung
	D-76128 Karlsruhe, Germany
	becker@itiv.uni-karlsruhe.de
	Abstract

	This paper describes the actual status and results of a dynamically Configurable System-on-Chip (...
	1 Introduction and Motivation
	Systems-on-Chip (SoCs) has become reality now, driven by fast development of CMOS VLSI technologi...
	This contribution provides the academic case study results of a CSoC project, integrating the dyn...
	The adaptive reconfigurable data processing architecture consist of following components:

	• Processing Array Elements (PAEs), organized as Processing Arrays (PAs),
	• a packet oriented communication network,
	• a hierarchical Configuration Manager (CM) tree, and
	• a set of I/O modules.
	This supports the execution of multiple data flow applications running in parallel. A PA together...
	The basic concept consists of replacing the Von-Neumann instruction stream by automatic configura...

	Figure 1: XPP-/Leon-based CSoC Architecture
	2 XPP-based CSoC Architecture
	Our CSoC architecture (figure 2) consists of an XPP-core from PACT, one LEON µcontroller, and sev...

	Figure 2: CSoC RAM Topology
	Figure 3: LEON RISC Processor Standard Cell Synthesis obtained at Universitaet Karlsruhe (TH)
	The µcontroller on our CSoC is a LEON processor. This processor is a public domain IP core. The L...
	The local memory module on CSoC is used to store the LEON programs, data for XPP computation and ...

	Figure 4: XPP ALU Structure and Standard Cell Synthesis Layout from Universitaet Karlsruhe (TH)
	The prior AHB specification [23] from ARM allows only one transaction per cycle. That means that ...
	Within this flexible multi-layer AHB interface concept the XPP can operate either as slave (Leon ...
	3 eXtreme Processing Platform - XPP

	The XPP architecture is based on a hierarchical array of coarse-grain, adaptive computing element...
	3.1 Array Structure

	An XPP device contains one or several Processing Array Clusters (PACs), i.e. rectangular blocks o...
	A PAE is a collection of PAE objects. The typical PAE shown in figure 4 contains a BREG object (b...
	3.2 Packet Handling and Synchronization

	PAE objects as defined above communicate via a packet- oriented network. Two types of packets are...
	In normal operation mode, PAE objects are self-synchronizing. An operation is performed as soon a...
	3.3 Configuration

	The XPP architecture is optimized for rapid and user transparent configuration. For this purpose,...
	While loading a configuration, all PAEs start to compute their part of the application as soon as...

	Figure 5: Performance: TI C6203 vs. PACT XPP 128
	3.4 CSoC Standard Cell Synthesis
	The LEON processor architecture, illustrated in figure 1, has been first synthesized onto UMC 0.1...
	XPP ALU-PAEs have been synthesized in 0.13 µm CMOS technology in different synthesis strategies (...
	4 Application Examples Performance

	PACT did in the year 2000 a first evaluation board based on 0.25 µm technology for their XPP 128 ...

	Figure 6: Main MPEG-4 Algorithm Modules
	5 Conclusions
	This paper introduced the status and first performance/area results of an academic case study int...
	6 References
	[1] R. W. Hartenstein, J. Becker et al.: A Novel Machine Paradigm to Accelerate Scientific Comput...
	[2] J. Becker, T. Pionteck, C. Habermann, M. Glesner: Design and Implementation of a Coarse-Grain...
	[3] J. Becker (Invited Tutorial): Configurable Systems-on-Chip (CSoC); in: Proc. of 9th Proc. of ...
	[4] Xilinx Corp.: http://www.xilinx.com/products/virtex.htm.
	[5] Altera Corp.: http://www.altera.com
	[6] Triscend Inc.: http://www.triscend.com
	[7] Triscend A7 Configurable System-on-Chip Platform - Data Sheet http://www.triscend.com/product...
	[8] LucentWeb] http://www.lucent.com/micro/fpga/
	[9] Atmel Corp.: http://www.atmel.com
	[10] PACT Corporation: http://www.pactcorp.com
	[11] The XPP Communication System, PACT Corporation, Technical Report 15, 2000
	[12] V. Baumgarte, F. Mayr, A. Nückel, M. Vorbach, M. Weinhardt: PACT XPP - A Self-Reconfigurable...
	[13] Hitachi Semiconductor: http://semiconductor.hitachi.com/ news/triscend.html
	[14] Peter Jung, Joerg Plechinger., “M-GOLD: a multimode basband platform for future mobile termi...
	[15] Jan M. Rabaey: System Design at Universities: Experiences and Challenges; IEEE Computer Soci...
	[16] S. Copen Goldstein, H. Schmit, M. Moe, M. Budiu, S. Cadambi, R. R. Taylor, R. Laufer "PipeRe...
	[17] MIT Reinventing Computing: http://www.ai.mit.edu/ projects/transit dpga_prototype_documents....
	[18] N. Bagherzadeh, F. J. Kurdahi, H. Singh, G. Lu, M. Lee: "Design and Implementation of the Mo...
	[19] Hui Zhang, Vandana Prabhu, Varghese George, Marlene Wan, Martin Benes, Arthur Abnous, "A 1V ...
	[20] Pleiades Group: http://bwrc.eecs.berkeley.edu/Research/ Configurable_Architectures/
	[21] R. Hartenstein, R. Kress, and H. Reinig. A new FPGA architecture for word-oriented datapaths...
	[22] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim, M. Frank, and P. F...
	[23] ARM Corp.: http://www.arm.com/arm/AMBA

