
University of Stuttgart
M.Sc. Program INFOTECH

Examiner: Prof. Dr. Hans-Joachim Wunderlich
Supervisor: Dr. Rainer Dorsch

Begin: 01.01.2002
End: 15.07.2002

CR-Classification: B.7.1 C.3 C.5

Design of an Audio Player
as System-on-a-Chip

Luis Azuara
Pattara Kiatisevi

Division of Computer Architecture
Institute of Computer Science

Breitwiesenstr. 20-22
70565 Stuttgart

Abstract

An Ogg Vorbis [35] audio decoder based on Xiph’s Vorbis reference library has
been designed as System-on-a-Chip using hardware/software co-design techniques.
A demonstrator was built on the XESS XSV-800 prototyping board [8]. The hard-
ware architecture was built on the LEON SoC platform [10], which contained an
open source SPARC-V8 architecture compatible processor, an AMBA bus, and
the RTEMS embedded operating system. The audio interface hardware core from
a previous project [2] was imported and reused. Vorbis stream decoding process
was too computation-intensive for a real-time software-only decoder on the target
platform. After an analysis of the Vorbis decoding algorithm, it was partitioned
and the hardware part of the algorithm, MDCT, was designed as an AMBA com-
patible core, implemented and added to the system. The final Vorbis audio player
decoded Vorbis streams with the help of this MDCT-core.

1

Acknowledgement
Special thanks for help and comments from Dr. Rainer Dorsch, Prof. Dr.

Wunderlich, Jiri Gaisler, Joel Sherill, Aaron Grier, and other RTEMS folks, Daniel
Bretz, Christopher Montgomery, Segher Boessenkool, Michael Smith, Dan Conti,
and Dr. Van den Bout.

Pattara would like to thank Supavadee Monsathaporn for proof reading.

Contents

1 Ogg-on-a-chip 7
1.1 Introduction . 7
1.2 The Work . 8
1.3 Project Elements . 9
1.4 Work Packages . 12

2 General Background 15
2.1 Introduction to Compression . 15
2.2 Audio Compression . 17
2.3 Ogg Vorbis . 18
2.4 MDCT . 20
2.5 Overview of the AMBA specification 22

2.5.1 Advanced High-performance Bus (AHB) 22
2.5.2 Advanced System Bus (ASB) 22
2.5.3 Advanced Peripheral Bus (APB) 23
2.5.4 Objectives of the AMBA specification 23

3 Embedded Software 24
3.1 Introduction . 24
3.2 Preliminary Analysis . 28

3.2.1 Performance Observation on Linux PC 28
3.2.2 Memory Usage Analysis 29
3.2.3 Analysis . 31
3.2.4 Vorbis Library Profiling 31
3.2.5 Summary of Preliminary Analysis 34

3.3 Modeling of the System . 35
3.3.1 TSIM – LEON Simulator 35
3.3.2 Audio Core as TSIM I/O Module 35
3.3.3 Test of Audio Core TSIM I/O Module 39
3.3.4 Summary . 42

3.4 Software Optimization . 42

2

CONTENTS 3

3.4.1 Cross Compilation of Ogg/Vorbis Library to SPARC Plat-
form . 42

3.4.2 Simpleplayer Test Program 43
3.4.3 Vorbis Optimization . 45
3.4.4 Summary . 48

3.5 Hardware/Software Partitioning 48
3.5.1 Hardware Limitations 48
3.5.2 Hardware/Software Partitioning 49
3.5.3 Summary . 53

3.6 Player Development . 53
3.6.1 RTEMS . 54
3.6.2 Device Driver for Audio-Core 57
3.6.3 Final Player with Sound Output 58
3.6.4 Summary . 60

3.7 Conclusion . 60

4 Underlying Hardware 62
4.1 Platform Exploration . 63

4.1.1 Upgrading to latest LEON Version 63
4.1.2 Hardware Constraints . 65
4.1.3 Audio Core . 65

4.1.3.1 Audio Core Configuration 65
4.1.3.2 Stereo Function for Audio Core 66
4.1.3.3 Interrupt and Internal Stop Address 67

4.1.4 Ogg-on-a-chip Hardware Configuration 68
4.1.4.1 Extraction and Integration of Meiko FPU to LEON 69
4.1.4.2 DSU Integration 70
4.1.4.3 Integer Unit Configuration 72
4.1.4.4 Cache Configuration 72
4.1.4.5 AMBA Configuration 73

4.2 MDCT Core Design . 73
4.2.1 MDCT Algorithm in Ogg-Vorbis 74

4.2.1.1 Twiddle Factors 74
4.2.1.2 Mini-MDCT Calculation Process 75
4.2.1.3 Pre-twiddling 77
4.2.1.4 Butterflies calculations 80
4.2.1.5 Remarks . 81

4.2.2 MDCT Core Architecture 82
4.2.2.1 AMBA Interface 84
4.2.2.2 Control Unit 85
4.2.2.3 Arithmetic Unit 87

CONTENTS 4

4.3 Simulation, Synthesis and Test 89
4.3.1 Simulation Branch . 91

4.3.1.1 Post-synthesis Simulation 92
4.3.2 Synthesis Branch . 93
4.3.3 Hardware Test . 94

4.4 Final System Test . 95

5 Conclusion 96

A CVS 97

Bibliography 100

List of Figures

1.1 Overview of the system . 9
1.2 Work packages . 14

2.1 Vorbis encoding and decoding 19
2.2 Typical succession of window shapes 21

3.1 Work packages for software part 25
3.2 Overview of software development components 27
3.3 Screen-shot of top command . 29
3.4 Screen-shot of purify tool . 30
3.5 Screen-shot of TSIM running on Linux PC 36
3.6 Audio core registers (translated from [2]) 37
3.7 Example of a write access to audio core TSIM I/O module 39
3.8 Graphical call graph starting from vorbis_synthesis() 46
3.9 Modified mdct_backward() function 52
3.10 Example of open() and write() calls to audio device 58
3.11 Communications between threads 59

4.1 Audio Core diagram. 67
4.2 Platform Configuration. 68
4.3 MicroSparcII FPU Block Diagram. 70
4.4 MDCT Block Diagram. 75
4.5 Twiddle factor LUT in memory. 76
4.6 MDCT callgraph. 77
4.7 Pre-twiddling process . 78
4.8 Odd part process . 79
4.9 Even part process . 79
4.10 Butterflies for big block (2048 elements) 80
4.11 Basic butterfly . 81
4.12 MDCT core architecture. 83
4.13 FSM of control unit. 86

5

LIST OF FIGURES 6

4.14 Arithmetic Unit. 88
4.15 Hardware workflow . 90
4.16 Screen-shot of Modelsim . 92
4.17 Screen-shot of Synplify Pro . 94

Chapter 1

Ogg-on-a-chip

In this chapter, brief introduction about embedded systems and System-on-a-Chip
is given. Then the goals, elements and work packages of the project are discussed.

1.1 Introduction

Main technologies involved in this project are embedded systems and System-on-
a-Chip. In this Section, both of them are shortly described.

Embedded Systems

Nowadays our life is full of interactions with embedded systems and processors.
Each day we have contacts with 20 microprocessors in average, and most of these
microprocessors are incorporated in embedded systems. An embedded system is a
special-purpose computer built integratedly into a device. The embedded systems
have varieties of types and sizes. It could range from a single microprocessor to a
complex System-on-a-Chip system.

Embedded systems usually have a processor and memory hierarchy. In addi-
tion to that, there are a variety of interfaces that enable the system to measure,
manipulate, and interact with the external environment. The human interface
may be as simple as a flashing light or as complicated as real-time robotic vi-
sion. Embedded system usually provides functionality specific to its application.
Its software often has a fixed function which is specific to the application. Instead
of executing spreadsheet, word processing and engineering analysis applications,
embedded systems typically execute control flows, finite state machines, and sig-
nal processing algorithms. They must often detect and react to faults in both
the computing and surrounding electromechanical systems, and must manipulate
application-specific user interface devices.

7

CHAPTER 1. OGG-ON-A-CHIP 8

Embedded systems could be realized using special-purpose field programmable
gates arrays (FPGA), application specific integrated circuits (ASIC), or even non-
digital hardware to increase performance or safety.

System on a Chip (SoC)

The nearly boundless transistor capacity available for advanced integrated circuits
(IC) gave birth to an electronic system design revolution. From the physical point
of view, a large number of transistors allows the integration of very complex sys-
tems in one single die. Such systems can be hybrid analog-digital with different
elements like processors, memories, sensors and application specific circuits. This
technique presents many desirable features like low power consumption, small
size and weight, and low cost for large volumes. Such a system is called System-
on-a-Chip (SoC). Because of these advantages, SoCs became a popular way of
embedded systems implementation.

The new techniques for SOC design make possible the combination of large,
pre-designed complex blocks (or so-called cores or IP blocks) and embedded soft-
ware. Additionally they reduce time-to-market for new products, which is very
important taking into account that hi-tech products have an extremely short life-
cycle. SoC design techniques are focused on the problems of evaluating, integrat-
ing, and verifying multiple pre-existing blocks and software components. This is
characterized by more in-depth system-level design, concurrent hardware/software
design and verification at all levels of the design process.

1.2 The Work

This project (also known as Ogg-on-a-Chip) aimed to demonstrate the use of
System-on-a-Chip (SoC) technology by developing an audio decoder as SoC uti-
lizing hardware/software co-design technique. The goals of the project were as
follows:

� An Ogg Vorbis [35] audio decoder shall be implemented as embedded sys-
tem based on open source LEON [10] SoC platform. The target systems are
low CPU performance embedded devices like PDA or cell phone.

� A demonstrator shall be implemented on the FPGA-based XESS XSV-800
prototyping board [8].

In order to enable decoding of Vorbis data on systems with low CPU performance,
part of the decoder was implemented in hardware in order to speed up the com-

CHAPTER 1. OGG-ON-A-CHIP 9

putation. Hardware/software co-design was used to identify the most promising
hardware/software partition.

The hardware part of the previous project, “Digital Dictation Machine as
System-on-a-Chip” or DDM [2], the audio core as interface to the audio chip,
was imported and reused in this project.

Embedded operating system was used for task management and hardware-
resource abstraction and the open source RTEMS operating system [6] was cho-
sen.

RTEMS and Device Drivers

Player

Vorbis Library

User−defined CoreAudio CoreLEON

Virtex FPGA and Prototyping Board

Figure 1.1: Overview of the system

In Figure 1.1, an overview of the system is shown. Components are classified
into layers. The whole system was implemented on the FPGA and the prototyp-
ing board. The LEON SoC platform and additional cores, e.g. audio core and
other user-defined core serve as hardware architecture. The RTEMS embedded
operating system runs on top of LEON and contains appropriate device drivers
for hardware cores. The Vorbis player makes use of Vorbis library (decoding part)
and runs as a sole process in the system. It decoded compressed music data with
the help of the user-defined core and delivered music output through audio core to
audio device.

1.3 Project Elements

In this Section, useful elements that were involved in the project are shortly de-
scribed.

LEON Platform

LEON is a 32-bit SPARC [29] compatible processor developed by the European
Space Agency (ESA). It is available freely with full source code under LGPL

CHAPTER 1. OGG-ON-A-CHIP 10

(GNU Lesser General Public License)1 as ESA would like to promote the SPARC
architecture and enable development of system-on-a-chip (SOC) devices using
SPARC cores. It was initially designed and implemented by Jiri Gaisler while at
ESA and is now maintained under contract by Gaisler Research.

The LEON processor version 2 (current version) has the following interesting
features :

� SPARC V8 compatible integer unit with 5-stage pipeline

� Hardware multiply, divide and MAC units

� Separate, direct-mapped instruction and data caches

� Full implementation of AMBA-2.0 AHB and APB on-chip buses

� On-chip peripherals such as uarts, timers, interrupt controller and 16-bit I/O
port,

� Interfaces for Meiko floating-point unit and user-defined co-processor

The LEON processor is extensively configurable and can be efficiently imple-
mented on both FPGAs and ASIC technologies. Support for AMBA bus enables
the easy integration of user-defined cores. The only technology-specific mega-
cells needed are RAM cells for caches and register file. The latest release of
LEON processor at the time of project was Leon-2 1.0.2a.

XESS XSV-800 Prototyping Board

The facts that SoC must be developed very fast in order to response to the market,
and that the fabrication process of one single chip is extremely expensive, present
the perfect scenario for rapid-prototyping boards, which are used to model SoC
before proceeding to a silicon implementation.

The XSV-800 prototyping board is equipped with a Xilinx Virtex XCV800
FPGA with 800,000 gates, two independent banks of 512K x 16-bit SRAM (2
MB in total) for local buffering of signals and data and 1 MB of Flash. The XSV-
800 offers a lot of peripheral interfaces e.g. audio, USB, PS2, and VGA. The
audio chip AKM AK4520A can process stereo audio signals with up to 20 bits
per sample and a bandwidth of 20 kHz.

1GNU Lesser General Public License, more information at http://www.gnu.org/
licenses/lgpl.html.

CHAPTER 1. OGG-ON-A-CHIP 11

Digital Dictation Machine

The project Digital Dictation Machine (DDM) as System-on-a-Chip on an FPGA-
based Prototyping Board was done by Daniel Bretz [2] as his Diploma Thesis
while at University of Stuttgart (February 2001). The final system performed the
function of a digital sound player and recorder with internal memory buffers. It ran
on the XSV-800 prototyping board with LEON-1.2.2 processor and user-defined
audio core to communicate with audio device.

Audio Compression

Audio compression reduces storage consumption and enables transportation of
high quality audio data at low data speed. Without any data reduction, a second
of CD-quality music (2-channel stereo, 16 bits per sample, and 44.1 kHz sam-
pling frequency) consumes more than 1.4 Mbit of data storage. Audio compres-
sion reduces the amount of music data depending on the algorithm and quality
level needed. There are a lot of audio compression algorithms developed and used
nowadays. One of the most popular algorithms is MPEG audio compression layer
III (or MP3) with the data reduction rate of 1:10 to 1:12 while still maintaining
the original CD sound quality. The uses of MP3 can be found from personal com-
puters to portable audio devices and even household audio equipment. Although
software for MP3 decoders and encoders are available freely on the market but
the use of the MP3 algorithm is not completely free. MP3 algorithm is patented
by The Fraunhofer Institut Integrierte Schaltungen (Fraunhofer IIS-A), Erlangen,
Germany and royalty fee must be paid when creating or using MP3 encoders2.

Ogg Vorbis

Xiph.Org Foundation [35] developed in 1997 an audio compression algorithm
called Ogg Vorbis. According to information from Xiph, Ogg Vorbis is a fully
open, non-proprietary, patent-and-royalty-free general purpose compressed audio
format for high quality audio (44.1-48.0kHz sampling frequency, 16 bits per sam-
ple or more, polyphonic) at fixed and variable bit-rates from 16 to 128 kbps/channel.
Ogg Vorbis is categorized in the same class as MPEG-4 Audio (AAC and TwinVQ)
and claims to have higher performance than MPEG-1/2 audio layer 3, MPEG-4
audio (TwinVQ), WMA and PAC.

2More information about legal aspect of MP3 can be found at http://www.
mp3licensing.com/.

CHAPTER 1. OGG-ON-A-CHIP 12

Claiming to be fully-open (source code of Xiph’s reference Vorbis library in-
cluding decoder and encoder are distributed under BSD license3 while other ac-
companied utilities are available under GPL4), patent-free5, and license-free made
Ogg Vorbis become prevalent nowadays. Ogg Vorbis is expected to be the most
viable choice to replace proprietary MP3 in the near future. At the time of this
project, the latest stable version of Vorbis library is 1.0 RC3. Ogg Vorbis software
is available on almost all personal computer platforms.

1.4 Work Packages

Tasks in the project were divided into steps shown in Work Packages diagram in
Figure 1.2. The specification phase defined goals and requirements of the system.
The feasibility study was conducted to find out if the hardware platform, with fu-
ture reasonable optimizations, would be powerful enough to decode Vorbis stream
and if some parts of algorithm could be efficiently implemented in hardware.

Later, the main works were divided into hardware part and software part
in order to have simultaneous developments of both software and hardware. In
software part, the hardware/software partitioning evaluation tools were provided
as preparation for hardware/software partitioning in the next step. In order to
achieve fast software development, the TSIM (LEON simulator) was used in or-
der to model the system on the software so that software development tasks could
be done on the simulator instead of the real hardware. At this time, hardware con-
figuration was done in the hardware part to study the capability and limitations of
the platform.

Based on the information from hardware configuration phase of hardware part
and tools from hardware/software partitioning evaluation tools phase of software
part, hardware/software partitioning was done and the partition between hardware
and software was proposed. The selected hardware part of algorithm (MDCT
function) was designed, modeled and implemented in hardware part. Concur-
rently in software part, further development of the full version of Vorbis player
was done.

The hardware part and software part met again in the final test phase. All
components were tested together. The final player decoded the Vorbis stream

3More information about BSD type of license can be found at http://www.opensource.
org/licenses/bsd-license.html

4GNU Public License, more information at http://www.gnu.org/licenses/gpl.
html.

5It is noted that at the time of this project, the specification of Ogg Vorbis format was not
yet available to the public. This implies that the patent-free claim could not yet be fully verified.
There was a discussion regarding this also at http://www.kuro5hin.org/story/2002/
4/25/212840/001. Despite this fact, Ogg Vorbis has already been widely accepted by users.

CHAPTER 1. OGG-ON-A-CHIP 13

with the help of the user-defined core on the real hardware.

Report Organization

The following chapter (Chapter 2) covers theoretical information of audio com-
pression and Ogg Vorbis. As works in the project were divided into two parts,
Hardware part and Software part, later chapters describe work done in each part
separately – Chapter 3 Embedded Software written by Pattara Kiatisevi and Chap-
ter 4 Underlying Hardware by Luis Azuara. At the end, all the work is summa-
rized in the Chapter 5.

CHAPTER 1. OGG-ON-A-CHIP 14

Provide Hardware/
Software Partitioning

Feasibility Study

HW/SW Partitioning

Design the New Core

Final Test

Platform Exploration

Simulation, Synthesis
and Test

Player Development

Stop

Specification

Evaluation Tools

Start

Software Part Hardware Part

Figure 1.2: Work packages

Chapter 2

General Background

In this chapter, basic concepts of compression and audio compression are de-
scribed. Brief explanation of Ogg Vorbis algorithm is given. The concept of
MDCT transform which is an important transform used by Ogg Vorbis is dis-
cussed. Lastly, an overview of AMBA sepecification is presented.

2.1 Introduction to Compression

In this Section, general information about compression [30] is described. Useful
terms and techniques are briefly mentioned.

Compression is a science of reducing the amount of data used to convey infor-
mation. Information is usually not completely random. By reducing the redundant
information, we could achieve the lossless compression which means that the de-
coding process will give exactly the same data as input data without losing any
bit. Examples of lossless compression techniques are run length encoding and
entropy encoding. Run length encoding replaces the repeated occurrences of the
same symbol with shorter representation. Entropy encoding relies on the entropy
of source information. Huffman coding is an entropy encoding which analyzes the
probability of occurrences of each symbols and represents them with new code-
words. Applications like zip, PNG image format are using lossless compression
technology.

On the other hand, in lossy compression, some information that is irrelevant
will be discarded and not reconstructed. Examples of this irrelevant information
are information that can not be perceived anyway by the receiver and artifacts (fea-
tures or elements that are not truly part of the information e.g. noise, quantization
noise, filter ringing, film scratches). Lossy compression relies on a knowledge of
how the information will be perceived by the recipient. The fidelity compared to
the source information may be lost but in a way that is little or unperceivable by

15

CHAPTER 2. GENERAL BACKGROUND 16

recipient. JPEG, MPEG I, II (both video and audio) and Ogg Vorbis are examples
of lossy compression techniques.

According to symmetrical aspect, compression algorithms can be symmetric
or asymmetric. In symmetric systems, the same amount of effort is needed for en-
coding and decoding. Example of application is video conferencing system, there
is no need for encoder to work faster than decoder and reciprocal. However, for
video or TV broadcasting, once encoded, the video will be decoded by thousands
of viewers. In this scheme, having a very fast decoder is beneficial and a slow
encoder is acceptable as it will be used only once. MPEG and also Ogg Vorbis are
examples of asymmetrical algorithms.

In the case that information source is not discrete-memoryless-source, which
means the probability for a current symbol depends on previous symbol(s), e.g. pho-
tographic images (intensity/color of a pixel depends on that of those pixels around
it), several techniques could be applied here to compress the information by try-
ing to predict the next value and store only the different of the prediction and real
value. This technique is called predictive coding.

Signals that changes its amplitude over time (including audio signal) or image
that each pixel changes its value over the x and y axes are said to be in time-
domain. However, in many cases, it is much easier to analyze and manipulate
these signals in other domain e.g. frequency domain, and after finished, convert
back to time domain. This conversion forward and backward is called transfor-
mation. Transform will convert set of values from one set to a different set. A
transform used extensively in the engineering and sciences fields is Fourier trans-
form. Fourier Fourier assumes however infinite time domain signal and contin-
uous function in time, and gives complex values in frequency domain. In image
and audio/video compression, Discrete Cosine Transform (DCT) is more gener-
ally used. DCT works with discrete signal, which is usually the case for im-
age/video/audio compression, instead of continuous signal and gives only real
part in the result, no complex component. In Ogg Vorbis, a modified version of
DCT called MDCT is used.

In order to obtain discrete signal, continuous signal (e.g. audio signal) will
be sampled at a certain frequency called sampling frequency and then stored in
a representation format of a defined amount of storage (e.g. 8-bit, 16-bit, 32-bit).
The process to fit the sampled values (which can be arbitrary or limited by some
ranges) to a fixed set of representative values is called quantization. Quantization
is a lossy process because the selected representative value is merely the nearest
value to that real value, but not exactly the same. Error caused by this is called
quantization noise. We can avoid it by selecting the appropriate representative
setting so that this quantization noise is not significant compared to other errors
or noises. Quantization can be scalar or vector. In scalar case, individual value
will be represented by a value in the fixed possible set of representative values.

CHAPTER 2. GENERAL BACKGROUND 17

In vector case, not only one individual value but it can be an array of values to
be represented by the representative values. Codebook is the mapping between
representative values and represented values. Example application that uses vector
quantization is GIF image compression algorithm.

2.2 Audio Compression

Similar to other kinds of compression, the main idea of audio compression is to
eliminate redundancy. Redundancy can be absolute, which means removal of it
will not cause any data lost (lossless), or perceptual, indicating that removal will
cause the data lost (lossy) but it will not be significant or hardly perceivable by
human observers. This latter part contributes largely to high compression rate
obtained in the modern audio compression algorithm including Ogg Vorbis.

Examples of perceptual redundancies are part of information that is intrinsi-
cally insensitive to perceiver e.g. higher frequency range than that human can hear
or the receiver device can produce, masking effect in human hearing, and correla-
tion between various audio channels. Study about human perceptual of sound and
how hearing works is called psychoacoustics.

Masking in human hearing is the effect of the natural behavior of basilar mem-
brane of the inner ear. It is frequency sensitive and can even vibrate actively pro-
viding positive feedback to low amplitude vibrations. Basilar membrane is divided
to 24 or more finite regions [30], each can vibrate over a small range of frequen-
cies, but only one at a time determined by the strongest stimulus within that range
and it is unaffected by any smaller stimuli. This causes the frequency masking:
any frequency in the signal in the same band, but lower in amplitude need not to
be encoded as it will not be perceived anyway because of the effect from the prime
stimulus. Thus the audio band can be split (linearly or non-linearly) into regions
as small as or smaller than the regions of the basilar and then analyzed using this
psychoacoustics knowledge to identify unperceivable information.

Positive feedback of the basilar also contributes to temporal masking because
the vibration responds slowly to changes in the amplitude of the stimulus. It will
be less sensitive to other sound short time before, and longer time after a strong
stimulus.

Dividing input data stream into short frames can also improve compression
ratio because the amplitude of contiguous samples tend to be in similar range,
thus the samples can be stored in the way that the number of bits per sample can
be reduced.

Apart from these general techniques, there are other advanced and complex
techniques available for audio compression specially for each algorithm.

CHAPTER 2. GENERAL BACKGROUND 18

2.3 Ogg Vorbis

Ogg Vorbis is an audio compression format developed by the Xiph.Org Founda-
tion [35], a non-profit organization working in the area of Internet multimedia
technology. Ogg itself is a big framework for several multimedia projects in-
cluding Vorbis (audio) and Tarkin (video). Vorbis is the first project in the Ogg
family aimed at the audio compression/decompression. The discussion about Vor-
bis development took place on the vorbis-dev@xiph.org mailing list and has been
visible to public since August 1999.

Ogg Vorbis is lossy, asymmetrical algorithm and utilizes several techniques
mentioned before, e.g. dividing of input into short blocks, MDCT (modified ver-
sion of DCT), psychoacoustics, vector quantization, predictive, and many other
advanced techniques. Ogg defines generally the format of data to be packed into
streams and transported regardless of data content in the stream which can be
Vorbis or future Ogg codecs. Ogg bit-streams are streams of octets which can
compose of several logical streams inside one physical stream using multiplexing
or chaining techniques.

Audio data will usually be encoded by the Vorbis encoder, packed into an
Ogg bit-stream and then transported to decoder. Vorbis decoder opens the Ogg
bit-stream, unpack the Vorbis stream data out, decode and give the result as un-
compressed audio data.

Ogg Vorbis has no official specification at the time of writing. Study of Vorbis
algorithm has been done through its source code, some documents available on
xiph.org web-site, Vorbis Illuminated document [3] and discussion with Vorbis
developers.

Encoding and decoding of Ogg Vorbis can be classified in 6 big stages. Vorbis
encoder takes the raw audio data as overlapped but contiguous short-time seg-
ments and analyses the audio data to find the optimal small representation. This
stage is called analysis. After that it encodes the audio data into a much smaller
data representation as determined in the previous step. This stage is called coding.
Then the raw packets will be packed into streams, called streaming. At the other
end, the decoder extracts the sequence of raw packets from the stream, the stage
is called streaming-decomposition. It then tries to reconstruct the sound signal
representation from these packets, called decoding. Lastly, the audio signal will
be regenerated from the decoded representation in the synthesis stage. The stages
are shown in Figure 2.1.

In Analysis stage, audio data will be divided into overlapping blocks of 2
sizes: short (256 samples) or long (2048 samples). Normally long window will
be used except when sudden attacks or explosive sounds occur because short win-
dow can prevent temporal spreading artifacts which might be produced by MDCT
in case of long window. The step is called Block Switching. Each block will be

CHAPTER 2. GENERAL BACKGROUND 19

Coding

Channel−coupling/
Residue Generation
Encoding (VQ)

Floor Generation

Synthesis
IMDCT

Encoding
Raw music data Raw music data

Decoding

(Vorbis Packet) (Vorbis Packet)

(Ogg Vorbis Stream)

Streaming
Decomposition
Streaming

Extract Vorbis Packet
Pack to Ogg stream

Decoding

Signal Restoration
Channel−decoupling
Recover Residue
Recover Floor

Analysis
Block Switching
MDCT
Psychoacoustics Masking

Figure 2.1: Vorbis encoding and decoding

MDCT-transformed to frequency domain and then analyzed in the psychoacous-
tics masking step.

In Coding stage, information received from psychoacoustics masking process
will be used to create the spectral envelope of the signal and floor function. Chan-
nel coupling and residue generation will be generated afterwards. Small repre-
sentation of the audio data (floor and residue) will be encoded using VQ (Vector
Quantization) to form a Vorbis packet which will be later, with the VQ codebook,
packed into Ogg bit-stream.

Decoding is straight forward and less complex than encoding. Decoder de-
composes the Vorbis packet out of the Ogg stream. Vorbis packet is then pro-
cessed in the Decoding stage to extract floor, residue and do channel-decoupling.
The audio signal in frequency domain is recovered, inverse-MDCT-transformed

CHAPTER 2. GENERAL BACKGROUND 20

back to time domain and de-overlapped to form the output audio signal.
In our project, only decoder part was of interest.

2.4 MDCT

The step calculating the inverse MDCT (Modified Discrete Cosine Transform)
became an important issue, because was found it is the most calculation expensive
process during decoding with Ogg-Vorbis. In this Section is presented a briefly
introduction with the mathematical background.

MDCT is widely used in state of the art audio codecs such as MPEG 1 Layer
III, Dolby AC/3, or MPEG AAC and of course in Ogg Vorbis. [34]

The MDCT is a linear orthogonal lapped transform, based on the idea of time
domain aliasing cancellation (TDAC). It was first introduced in [25], and further
developed in [26].

MDCT is critically sampled, which means that though it is 50% overlapped,
a sequence data after MDCT has the same number of coefficients as samples be-
fore the transform (after overlap-and-add). This means, that a single block of
IMDCT data does not correspond to the original block on which the MDCT was
performed. When subsequent blocks of inverse transformed data are added (still
using 50% overlap), the errors introduced by the transform cancels out TDAC.
Thanks to the overlapping feature, the MDCT is very useful for quantization.
It effectively removes the otherwise easily detectable blocking artifact between
transform blocks.

Be � ����� the samples in the time domain and n the size of the block. ��� �����
	��������������
are the samples used to calculate the frequency domain samples� � �����
	����������� ��� � of the block number t.

According [19] the equation of the direct MDCT is:

� � ��!"�#� �%$'&() *�+-, ����� �'� �����/.
0�12�435 � � 5 �76��86
� 5 �9� 5 !:6��;�<�

for
!=�>���� � �7�?�

For the Inverse MDCT:

@ � �BAC�D� , �BAC�
� EGF H $'&(I *�+ � � �J!"�/.
0�12� 35 � � 5 AK6��86

� 5 �9� 5 !L6M�;�<�
for
AN��������O� �

CHAPTER 2. GENERAL BACKGROUND 21

Cancellation of time domain alias terms is done by an overlap add operation:

��'� � � �D� @ � $'& � � 6 � 5 � 6 @ � � � �
for � ���� �J� �7�?�

To cancel alias terms the shape of each window must keep the following con-
ditions: The shapes of the windows in succeeding blocks must fit to each other
only in the overlapping part. It is possible to split each long block into shorter
blocks. Overlapping this shorter blocks must result in the same window shape as
used by the overlapping part of a long block. This fact is presented in Figure 2.2.

, � $'& �
� 5 6 ��� � 6 , � �����

� ���
for
���������� � � �

Figure 2.2: Typical succession of window shapes

There must be a symmetry in each half of a window:

, � �����
� 6 , � �

� 5 � ��� � ���
for
�������� � �7� �

and

, � �
� 5 6 ��� � 6 , � �J�O� � � ���

� � �
for
�������� � �7� �

Several fast algorithms are known. Ogg-Vorbis uses a highly optimized algo-
rithm described in [19], which has been used in real-time implementation of high
quality coders for several years. It has the following advantages:

CHAPTER 2. GENERAL BACKGROUND 22

� Low numbers of operations (additions, multiplications, storage operations)

� Minimum size of storage needed (in-place algorithm)

� High robustness against rounding errors

� Simple implementation on general purpose DSP

In chapter 4 the process to implement a part of this algorithm in hardware will be
presented.

2.5 Overview of the AMBA specification

The Advanced Microcontroller Bus Architecture (AMBA) specification [20] de-
fines an on-chip communications standard for designing high-performance em-
bedded microcontrollers. Three distinct buses are defined within the AMBA spec-
ification:

� the Advanced High-performance Bus (AHB)

� the Advanced System Bus (ASB)

� the Advanced Peripheral Bus (APB).

A test methodology is included with the AMBA specification which provides an
infrastructure for modular macrocell test and diagnostic access.

2.5.1 Advanced High-performance Bus (AHB)

The AMBA AHB is for high-performance, high clock frequency system modules.
The AHB acts as the high-performance system backbone bus. AHB supports
the efficient connection of processors, on-chip memories and off-chip external
memory interfaces with low-power peripheral macrocell functions. AHB is also
specified to ensure ease of use in an efficient design flow using synthesis and
automated test techniques.

2.5.2 Advanced System Bus (ASB)1

The AMBA ASB is for high-performance system modules. AMBA ASB is an
alternative system bus suitable for use where the high-performance features of

1ASB is not implemented on LEON platform, and therefore is not used in Ogg-on-a-chip
project.

CHAPTER 2. GENERAL BACKGROUND 23

AHB are not required. ASB also supports the efficient connection of processors,
on-chip memories and off-chip external memory interfaces with low-power pe-
ripheral macrocell functions.

2.5.3 Advanced Peripheral Bus (APB)

The AMBA APB is for low-power peripherals. AMBA APB is optimized for min-
imal power consumption and reduced interface complexity to support peripheral
functions. APB can be used in conjunction with either version of the system bus.

2.5.4 Objectives of the AMBA specification

The AMBA specification has been derived to satisfy four key requirements:

� to facilitate the right-first-time development of embedded microcontroller
products with one or more CPUs or signal processors

� to be technology-independent and ensure that highly reusable peripheral and
system macrocells can be migrated across a diverse range of IC processes
and be appropriate for full-custom, standard cell and gate array technologies

� to encourage modular system design to improve processor independence,
providing a development road-map for advanced cached CPU cores and the
development of peripheral libraries

� to minimize the silicon infrastructure required to support efficient on-chip
and off-chip communication for both operation and manufacturing test.

Chapter 3

Embedded Software

Works in project were divided into hardware part and software part. In this chap-
ter, work in the software part is discussed.

3.1 Introduction

From the full work packages of the project illustrated in Figure 1.2, software
part related tasks were taken and elaborated in Figure 3.1. The provide hard-
ware/software partitioning evaluation tools phase is now expanded into two smaller
sub-phases: Modeling of the System and Software Optimization. Other phases re-
main the same. The arrows at the right side of each phase box means this phase
has a cooperation with hardware part.

In the first phase, Feasibility Study, preliminary analysis and performance es-
timation of Vorbis decoding process are concerned. The required computing re-
source of Vorbis decoding process was observed by running the decoder on a
Linux PC and measuring the resource usage. As it was planned that a part of algo-
rithm should be implemented in the hardware, the Vorbis algorithm was analyzed
based on profiling information and the computation-intensive part was further in-
vestigated if it was possible to be implemented as hardware core. The decision to
proceed the project was done based on the information gathered in this phase.

24

CHAPTER 3. EMBEDDED SOFTWARE 25

Feasiblity Study

Software Optimization

Player Development

Thread and RTEMS

Stop

Final Test

HW/SW Partitioning

Performance Estimation
Profiling

Port Vorbis to SPARC platform
Develop Simpleplayer
Vorbis Optimization

Model selected part as I/O module
Test/Re−partition if needed

Develop Final Player using POSIX

Software Partitioning
Provide Hardware/

Evaluation Tools

Modeling of the System
Model the system on TSIM
Model Audio Core as TSIM I/O module

Start

Figure 3.1: Work packages for software part

As mentioned in Chapter 1, in order to achieve simultaneous software and
hardware developments, TSIM, the simulator of LEON processor, was introduced
to the project in the Modeling of the system phase to simulate the hardware ar-
chitecture on the Linux PC so that software development could be started without
having to wait for the development in the hardware part. The audio core imported
from [2] could be also simulated using the TSIM’s feature of I/O emulation. A
C-language program was written to simulate the hardware audio core and plugged

CHAPTER 3. EMBEDDED SOFTWARE 26

in to TSIM as a TSIM I/O module. With the TSIM and its I/O module, the required
functionalities of hardware architecture (LEON and audio core) were completely
simulated on the software. The test program with raw music output (without any
compression) was written and successfully tested on both TSIM (with its I/O mod-
ule) and the real hardware with real audio-core.

In software optimization phase, Ogg Vorbis library was cross-compiled to
SPARC platform. A simple version of Vorbis decoder (or simpleplayer) without
any audio output was written and successfully tested on TSIM. Possible software
optimization was applied. Vorbis decoding process was changed to use integer
calculations instead of floating-point ones in order not to have an FPU in the de-
sign and to boost up the performance.

After the preparation for hardware/software partitioning evaluation tools had
been done, the hardware/software partitioning was started. TSIM I/O module fea-
ture was used again in this phase. A computation-intensive part was selected based
on profile information done in the feasibility phase, implemented as TSIM I/O
module (to simulate as if it was implemented as a user-defined hardware core) and
tested for performance gain. Various partitions were tested and compared easily as
everything could be done in software (TSIM) without having to design and test on
the real hardware. The inverse MDCT function mdct_backward was selected as
partition candidate and tested. Finally two partitions (MDCT and Mini-MDCT)
were delivered. MDCT (the whole inverse MDCT function) was proposed as a
preferred solution. Mini-MDCT, which was a subset of MDCT, was proposed as
the secondary solution in case that implementing the whole MDCT function was
not feasible.

Last stage in software part is player development. The RTEMS [6] operating
system was introduced. RTEMS device driver for audio core as abstraction layer
of hardware was written. The final Vorbis player which extended the simpleplayer
and glued all mentioned elements together was developed. It made use of Vorbis
library for decoding Vorbis stream and sent music output to audio device via audio
device driver. The final player utilized the POSIX thread (PThread) in order to
have achieve the multi-threading capability (the decoder task continued decoding
the data while another music-playing task wrote data to audio hardware via audio
device driver concurrently). By sticking to POSIX standards, the result player
code is portable, the same code ran on both TSIM (SPARC target) and Linux-x86
PC.

Overview of software development components is shown in Figure 3.2. No-
tice the two lower layers compared to those in Figure 1.1. Instead of LEON and
hardware cores, TSIM and I/O modules emulate their functions. TSIM software
was running on Linux x86 workstation.

CHAPTER 3. EMBEDDED SOFTWARE 27

Player

Vorbis Library

TSIM and I/O Modules

Linux Workstation

RTEMS and Device Drivers

Figure 3.2: Overview of software development components

Development Environment

These below tools were involved in the development processes:

Open-Source Software
� GNU/Linux operating system as development platform

� Ogg Vorbis reference library

� RTEMS operating system

� GNU GCC compiler

� Cygnus newlib C library

� LECCS package from Gaisler Research

� XEmacs for source code editing

� GNU gdb/DDD for debugging

� gprof, GNU profiling tool

� CVS for source code concurrent versioning system

� Ogg Vorbis integer version from Dan Conti [4]

� Ogg Vorbis integer version from Nicolas Petre [23]

� LYX/LATEX/TEX for editing/typesetting report

CHAPTER 3. EMBEDDED SOFTWARE 28

Commercial Software:
� TSIM LEON Simulator Professional Edition

Organization of the Software chapter

In this chapter the content is arranged as follows:

� Section 3.2: Preliminary Analysis, describes the feasibility study and pre-
liminary analysis of Vorbis library.

� Section 3.3: Modeling of the System, contains information about the use
of TSIM LEON simulator in the project, TSIM I/O module and emulation
the Audio-Core as I/O module.

� Section 3.4: Software Optimization, describes the cross compilation pro-
cess to SPARC platform of Ogg Vorbis library, creation of simpleplayer and
the optimization and integerization of Vorbis library decoder part.

� Section 3.5: Hardware/Software Partitioning, covers the hardware/software
partitioning process and the proposed partitions. At the end the statistics of
simpleplayer with proposed partitions are shown.

� Section 3.6: Development of Player, discusses about the RTEMS real time
operating systems, development of the audio device driver and the concept
and implementation final player.

� Section 3.7: Conclusion, concludes all the work in software part and lists
some problems found. Possible further improvement for the software part
is also suggested.

Short summaries are provided at the end of each Section as brief description of
tasks done in each phase.

3.2 Preliminary Analysis

3.2.1 Performance Observation on Linux PC

A simple performance observation of the reference Vorbis decoder library and
the client music player Ogg123 on a Linux PC gave preliminary performance in-
formation of Vorbis decoding process. Ogg123 is a multi-threaded feature-rich
text-based Ogg Vorbis player. The complexity of Ogg123 is higher than what we
expected to have in our Vorbis player so this estimation was slightly pessimistic.

CHAPTER 3. EMBEDDED SOFTWARE 29

The rough resource observation of Ogg123 was done through UNIX’s top com-
mand while ogg123 was running (decoding the Ogg Vorbis music). The screen-
shot of this is shown in Figure 3.3. The machine under test was equipped with
Intel CPU Pentium-III 600 MHz, 256 MB RAM and Linux kernel 2.4.18. The
information got from top (notice the line that contains ogg123) shows CPU usage
of ogg123 process around 4.6% (%CPU field) and memory usage around 1.67
MB (SIZE field).

Figure 3.3: Screen-shot of top command

3.2.2 Memory Usage Analysis

With the purify tool from Rational Software Corporation [15], one can do real-
time analysis of the software in detail e.g. identify execution errors or memory
leaks. In our case, it was used for memory usage analysis. The simple Vorbis de-
coder (decoder_example.c) that came with the reference Vorbis library was tested
with purify. No memory leak was found. Heap memory peak usage was around
880 kBytes and stack size was 2,304 bytes. This information, however, included

CHAPTER 3. EMBEDDED SOFTWARE 30

the purify overhead. Here is the example got from purify running with the de-
coder_example.c code and example 15-second snapshot of music.

Basic memory usage (including Purify overhead):

819185 code
356772 data/bss 8
884736 heap (peak use)
2304 stack

Example screen-shot of purify tool is shown in Figure 3.4.

Figure 3.4: Screen-shot of purify tool

CHAPTER 3. EMBEDDED SOFTWARE 31

3.2.3 Analysis

For memory usage, top and purify gave similar result. top showed usage of about
1.67 MB of memory while purify said almost 880k of heap was used, to which
if we add the size of the application program (around 700 kB for ogg123 static-
linked version) then the result would be 1.58MB (overhead of purify included).
Though the player to be used in the project would be smaller than ogg123 because
the unnecessary parts would be removed and we would over-estimate this memory
usage, however, we need to take also the memory usage of embedded operating
system (RTEMS) and place for Ogg Vorbis music data to be played into account
(as we might not have external storage for music data). So this could compensate
the overhead of ogg123 and purify. Taken 1.6 MB as the estimated value of mem-
ory usage, the player should have no memory problem running on the real board
as our target board has 2 MB of RAM.

CPU analysis is more difficult. From top it was shown that the player took
roughly 5% of Intel Pentium-III 600 MHz CPU. This could be calculated to 5%
* 600 = 30 MHz. However, LEON processor has different architecture than Intel
Pentium. Thus it is incorrect to compare directly using this MHz number. Better
approximation could be obtained from information of the Vorbis player running
on other embedded processors. Dan Conti reported in his e-mail sent to vorbis-
dev@xiph.org mailing list1 that Vorbis player ran successfully on Cirrus 7312-74
MHz processor (with ARM7TDMI core). Taken the worst case of 100% CPU
usage, this could be roughly estimated to 74 MHz for LEON CPU. Our target
FPGA could run however at the highest speed of 25 MHz due to hardware limita-
tions (more information in Chapter 4). That means roughly 60-70% performance
improvement [(74-25)/74 = 66] was needed.

3.2.4 Vorbis Library Profiling

As 60-70% performance improvement was needed in order to have Vorbis stream
decoded and played in real-time. This improvement could be done through soft-
ware optimization (algorithm optimization, code optimization, changing compiler
flag) and hardware optimization (tuning of LEON parameters, creating a new
application-specific core for computation-intensive part). For hardware optimiza-
tion, in order to create a new core, we need to locate first which part of the soft-
ware is taking most of CPU time and deserves to be implemented in hardware.
This could be done by profiling the software code and the run-time data could
then be analyzed. The gprof tool from GNU project was chosen for this task.

Vorbis reference library and simple client music player program (vorbisfile_example.c
that came with Vorbis library) were recompiled with the -pg flag for profiling pur-

1http://www.xiph.org/archives/vorbis-dev/200202/0125.html

CHAPTER 3. EMBEDDED SOFTWARE 32

pose. Profiling was done on Sun SPARC workstation as to have the same CPU
architecture as LEON. Following are parts of the profile information of the simple
Ogg Vorbis decoder. The flat profile shows how much time the program spent in
each function and how many times the function was called. The call graph shows,
for each function, which functions called it, which other functions it called, and
how many times [14]. There is also an estimation of how much time spent in the
subroutines of each function which is very useful to analyze further which func-
tion consumes a lot of computing power and should be implemented in hardware.

Flat profile

granularity: each sample hit covers 4 byte(s) for 0.29% of 3.43 seconds

% cumulative self self total
time seconds seconds calls ms/call ms/call name
16.0 0.55 0.55 944 0.58 2.94 mapping0_inverse [3]
11.7 0.95 0.40 44448 0.01 0.02 vorbis_book_decodevv_add[7]
10.2 1.30 0.35 38272 0.01 0.01 mdct_butterfly_generic [10]
9.9 1.64 0.34 1888 0.18 0.56 mdct_backward [5]
7.3 1.89 0.25 944 0.26 0.26 vorbis_synthesis_blockin[11]
7.3 2.14 0.25 internal_mcount [12]
6.1 2.35 0.21 19671 0.01 0.01 render_line [14]
5.0 2.52 0.17 595437 0.00 0.00 oggpack_adv [15]
4.7 2.68 0.16 1888 0.08 0.08 mdct_bitreverse [16]
4.4 2.83 0.15 597050 0.00 0.00 oggpack_look [17]
3.5 2.95 0.12 1 120.00 3170.00 main [1]
2.9 3.05 0.10 1888 0.05 0.05 mdct_butterfly_first [19]
2.6 3.14 0.09 597050 0.00 0.00 vorbis_book_decode [9]
2.0 3.21 0.07 168192 0.00 0.00 mdct_butterfly_8 [22]
1.7 3.27 0.06 1888 0.03 0.05 floor1_inverse1 [21]
1.2 3.31 0.04 126782 0.00 0.00 oggpack_read1 [23]
0.9 3.34 0.03 1888 0.02 0.13 floor1_inverse2 [13]
0.9 3.37 0.03 944 0.03 0.91 res2_inverse [6]
0.6 3.39 0.02 84096 0.00 0.00 mdct_butterfly_16 [20]
0.3 3.40 0.01 42048 0.00 0.00 mdct_butterfly_32 [18]
0.3 3.41 0.01 1003 0.01 0.01 _packetout [27]
0.3 3.42 0.01 48 0.21 0.21 _make_words [29]

Call Graph Profile [top 10 only]

called/total parents
index %time self descendents called+self name index

called/total children

0.12 3.05 1/1 _start [2]
[1] 92.7 0.12 3.05 1 main [1]

0.00 2.78 944/944 vorbis_synthesis [4]
0.25 0.00 944/944 vorbis_synthesis_blockin [11]
0.00 0.01 1003/1003 ogg_stream_packetout [24]
0.00 0.01 1/1 vorbis_synthesis_init [26]

CHAPTER 3. EMBEDDED SOFTWARE 33

0.00 0.00 1887/1887 vorbis_synthesis_pcmout [34]
0.00 0.00 943/943 vorbis_synthesis_read [36]
0.00 0.00 118/118 ogg_sync_pageout [37]
0.00 0.00 62/62 ogg_sync_buffer [40]
0.00 0.00 62/62 readAudioData [42]
0.00 0.00 62/62 ogg_sync_wrote [41]
0.00 0.00 58/58 ogg_stream_pagein [50]
0.00 0.00 56/114 ogg_page_eos [39]
0.00 0.00 3/3 vorbis_synthesis_headerin

[58]
0.00 0.00 1/2 ogg_sync_init [70]
0.00 0.00 1/59 ogg_page_serialno [43]
0.00 0.00 1/1 ogg_stream_init [79]
0.00 0.00 1/1 vorbis_info_init [90]
0.00 0.00 1/1 vorbis_comment_init [87]
0.00 0.00 1/1 vorbis_block_init [85]
0.00 0.00 1/1 ogg_stream_clear [78]
0.00 0.00 1/1 vorbis_block_clear [84]
0.00 0.00 1/1 vorbis_dsp_clear [88]
0.00 0.00 1/1 vorbis_comment_clear [86]
0.00 0.00 1/1 vorbis_info_clear [89]
0.00 0.00 1/1 ogg_sync_clear [80]

<spontaneous>
[2] 92.7 0.00 3.17 _start [2]

0.12 3.05 1/1 main [1]

0.55 2.23 944/944 vorbis_synthesis [4]
[3] 81.3 0.55 2.23 944 mapping0_inverse [3]

0.34 0.71 1888/1888 mdct_backward [5]
0.03 0.82 944/944 res2_inverse [6]
0.03 0.21 1888/1888 floor1_inverse2 [13]
0.06 0.03 1888/1888 floor1_inverse1 [21]

0.00 2.78 944/944 main [1]
[4] 81.3 0.00 2.78 944 vorbis_synthesis [4]

0.55 2.23 944/944 mapping0_inverse [3]
0.00 0.00 3120/16560 oggpack_read [32]
0.00 0.00 2832/5628 _vorbis_block_alloc [283]
0.00 0.00 944/945 _vorbis_block_ripcord [284]
0.00 0.00 944/947 oggpack_readinit [35]

0.34 0.71 1888/1888 mapping0_inverse [3]
[5] 30.7 0.34 0.71 1888 mdct_backward [5]

0.00 0.55 1888/1888 mdct_butterflies [8]
0.16 0.00 1888/1888 mdct_bitreverse [16]

0.03 0.82 944/944 mapping0_inverse [3]
[6] 25.0 0.03 0.82 944 res2_inverse [6]

0.40 0.41 44448/44448 vorbis_book_decodevv_add [7]
0.00 0.01 20586/597050 vorbis_book_decode [9]
0.00 0.00 944/5628 _vorbis_block_alloc [283]

CHAPTER 3. EMBEDDED SOFTWARE 34

0.40 0.41 44448/44448 res2_inverse [6]
[7] 23.7 0.40 0.41 44448 vorbis_book_decodevv_add [7]

0.08 0.33 542525/597050 vorbis_book_decode [9]

0.00 0.55 1888/1888 mdct_backward [5]
[8] 16.1 0.00 0.55 1888 mdct_butterflies [8]

0.35 0.00 38272/38272 mdct_butterfly_generic [10]
0.01 0.09 42048/42048 mdct_butterfly_32 [18]
0.10 0.00 1888/1888 mdct_butterfly_first [19]

0.00 0.01 20586/597050 res2_inverse [6]
0.01 0.02 33939/597050 floor1_inverse1 [21]
0.08 0.33 542525/597050 vorbis_book_decodevv_add [7]

[9] 13.2 0.09 0.36 597050 vorbis_book_decode [9]
0.17 0.00 595437/595437 oggpack_adv [15]
0.15 0.00 597050/597050 oggpack_look [17]
0.04 0.00 126782/126782 oggpack_read1 [23]

0.35 0.00 38272/38272 mdct_butterflies [8]

[10] 10.2 0.35 0.00 38272 mdct_butterfly_generic [10]

From the above profile information, the high computation intensive parts of
Vorbis decoder are:

� inverse MDCT (mdct_backward() function and subroutines) with 30.7% of
total computation time

� residue and codebook operation (starting from res2_inverse() and subrou-
tines) with 25% of computation time

� windowing and other multiplications in mapping0_inverse() which is the
main decode loop (81.3 - 30.7 - 25.0 - 7 - 2.5 = 16.1%)

We focused first at the mdct_backward() function. This piece of code (in mdct.c)
was found to be possible to be implemented in hardware. Other parts of code were
not so independent and hardware-friendly as mdct_backward().

3.2.5 Summary of Preliminary Analysis

60-70% speed improvement was expected in order to have the player played the
Ogg Vorbis stream at real-time speed on the target hardware. By considering
the possibility to implement a part of software as hardware to achieve about 30-
40% improvement (mdct_backward() function was targeted) and apply possible

CHAPTER 3. EMBEDDED SOFTWARE 35

software optimizations for other part of code to get also 30-40% improvement,
we considered the project as feasible and the project was proceeded.

3.3 Modeling of the System

In this Section, work in the modeling of the system phase is described. TSIM
simulator is introduced and its use in the project is shown. Modeling of hardware
audio core as TSIM I/O module is discussed and illustrated.

3.3.1 TSIM – LEON Simulator

As discussed in chapter 3.1, testing every software pieces directly on the real hard-
ware board is not efficient because the process to test the code on the real hard-
ware (cross-compiling and downloading of the software to the hardware board)
consumes a lot of time. Gaisler research developed a simulator of SPARC ar-
chitecture capable of simulating LEON called TSIM. TSIM runs on Linux-x86,
SPARC, and Windows/Cygwin platforms. Developers could then develop, test
and debug their programs on TSIM running on their workstations without having
to touch any real hardware. This speeded up dramatically the development pro-
cess. Figure 3.5 shows a screen-shot of TSIM running on a Linux PC. TSIM can
be connected with GNU Debugger gdb to enable debugging.

Gaisler Research also provided LECCS (LEON/ERC32 Cross Compilation
System), a complete set of software tools for development on LEON platform
based on GNU tools e.g. GNU C/C++ compiler, , DDD debugger, binutils, newlib
C-library, RTEMS operating system, and boot-prom utility, to let developers use
the tools immediately without having to face the cumbersome compiling process
of each tool. Tools in LECCS were used in our project most of the time except
some rare cases that recompilation of some tools were needed.

Apart from LEON CPU, the user-defined I/O hardware-core can also be writ-
ten as I/O module to emulate the behavior of that hardware. In the project, firstly
the audio core hardware module (or so called "DDM") from [2] was written as
a TSIM I/O module. In the hardware/software partitioning process, the selected
software piece that was planned to be developed as hardware was first written also
as TSIM I/O module and tested for performance gain before we really designed
and implemented on the real hardware.

3.3.2 Audio Core as TSIM I/O Module

TSIM and I/O module work cooperatively in a way that if there is a read or write
access to a certain address which falls in the I/O address range, it will be for-

CHAPTER 3. EMBEDDED SOFTWARE 36

Figure 3.5: Screen-shot of TSIM running on Linux PC

warded to I/O module (i.e. functions in I/O module will be called), otherwise
TSIM processes that request without interacting with the module. I/O address
ranges (for TSIM 1.0.18) are:

0x10000000 - 0x3fffffff
0x80000100 - 0xffffffff

I/O module can also generate interrupts and DMA requests.
Before we can write I/O module such that it emulates the behavior of au-

dio core, the functions and characteristics of audio core itself need to be studied.
Structure and functions of audio hardware core was described in [2]. Usage of
audio core can be done through 7 registers as access point. Figure 3.6 illustrates
these registers.

These register interface was mapped to C-language structure audio_core_regs
in TSIM I/O module as follows:

struct audio_core_regs {
volatile unsigned int controlreg; /* 0x00 */
volatile unsigned int startaddr; /* 0x04 */

CHAPTER 3. EMBEDDED SOFTWARE 37

32 Bit address

32 Bit address

32 Bit address

31 089

Display 1=on;0=off
Hexdisplay left

Hexdisplay right

unused
displaycontr
0x80000210:

Loopmode 1=on;0=off
irqen 1=on;0=off

Runmode 1=rec.;0=play
Audiocore 1=on;0=off

31 0

0x80000200:
controlreg

12345

* can be written by software only with value 0

unused
0x80000204:
startaddr

31 0

031

unused
0x8000020c:
scalerupr

14

scalerup

031

0x80000214:
act_mem_adr

0x80000208:
stopaddr

31 0

*irq 1=active

Figure 3.6: Audio core registers (translated from [2])

volatile unsigned int stopaddrr; /* 0x08 */
volatile unsigned int scalerupr; /* 0x0C */
volatile unsigned int displcontr; /* 0x10 */
volatile unsigned int buttonreg; /* 0x14 */
volatile unsigned int act_mem_adr;/* 0x18 */

};

#define AUDIO_CORE_START 0x80000200
#define AUDIO_CORE_END 0x8000021C

#define AUDIO_CORE_SIZE 0x1C

#define AUDIO_CORE_CONTROLREG 0x00
#define AUDIO_CORE_STARTADDR 0x04
#define AUDIO_CORE_STOPADDRR 0x08
#define AUDIO_CORE_SCALERUPR 0x0C
#define AUDIO_CORE_DISPLCONTR 0x10
#define AUDIO_CORE_BUTTONREG 0x14
#define AUDIO_CORE_ACT_MEM_ADR 0x18

The audio core resides at address 0x80000200, corresponding to that on the
real hardware. This address is in the I/O address range for I/O mentioned before.
There are 7 registers, each of size 4 bytes (unsigned int). Therefore, audio core oc-
cupies address range from 0x80000200 - 0x8000021C. Other hardware cores
(e.g. MDCT core in the later chapter) utilize other ranges of addresses.

CHAPTER 3. EMBEDDED SOFTWARE 38

Audio core TSIM I/O module behaves similarly to audio core hardware as
described in [2]. Application can make use of the core by storing the audio data in
the memory, writing start and stop addresses to startaddr and stopaddrr registers
accordingly, and writing last bit of control register controlreg to ’1’. These will
trigger the core to do the DMA transfer of music data from memory starting from
startaddr to stopaddrr, start to play that music content and send an interrupt when
finished.

Upon playing the music content, the core (as emulated by TSIM I/O module)
first checks whether the audio device of host PC which TSIM is running on can
be opened, if yes, the music will be played directly through audio device of host
computer, otherwise, the content will be saved to a file audioout.raw on the current
directory. OSS (Open Sound System) audio application programming interface
[32] was used for communicating with host PC’s audio device. Example of a
write access (write value of 1 to controlreg register) from application to audio
core TSIM I/O module is illustrated in Figure 3.7.

The audio I/O module worked with 44 kHz-sampling rate, 16-bit unsigned,
2-channel stereo audio format as default. Changing of sampling frequency can be
done by writing values to scalerupr register (0, 1, 2 for 44 kHz, 22 kHz, 11 kHz
frequency respectively). Changing number of channels or bit per sample was not
yet possible in the version. There are some functions of the real hardware core
that were not implemented in I/O module as they were not required in the project,
e.g. looping feature, updating of the act_mem_adr register upon playing the audio
data.

Care must be taken when running TSIM on the x86-compatible PC as TSIM
emulates SPARC and thus conforms to the big endian byte ordering (most signif-
icant bit at the lowest address), while the x86 PC is little endian (least significant
bit at the lowest address). In our project, the song file stored on harddisk of the PC
needed to be converted to big-endian format before it could be fed to the player
program that ran on TSIM. Another difference between x86 and SPARC architec-
ture is that memory accesses in SPARC architecture will be always in a full 32-bit
word only, no 16-bit or 8-bit access.

The implementation of TSIM I/O module was done modularly. The main io.c
file acts as task distributor, after checking the address ranges of accesses, it will
call other appropriate files, e.g. audio_core.c, mdct_core.c (as later in the project
there were MDCT module also, not only audio core module).

Compilation of TSIM modules is as follows:

<CVS>/software/tsim_io$ gcc -Wall -W -fPIC -c -O2 io.c -o io.o

<CVS>/software/tsim_io$ gcc -Wall -W -shared io.o -o io.so

CHAPTER 3. EMBEDDED SOFTWARE 39

LEON CPU
2

Is address in the I/O range?
If yes, CPU forwards request to
I/O Module (Otherwise process
and return)

I/O Module

3 void io_write(0x80000200, 1, ...)

process the request (code runs on Linux)

5 Returns success or illegal address
in case of failures

1

Application
*(unsigned int *) 0x80000200 = 1

Request has been processed

4

Linux

TSIM

Application code
accesses to an address

Figure 3.7: Example of a write access to audio core TSIM I/O module

The module needs to be compiled as a shared library named io.so and placed
under the current working directory of TSIM. Upon executing TSIM, the io.so
will be automatically loaded.

TSIM I/O module feature largely aided our development process. Huge amount
of software bugs were discovered and solved by testing on TSIM without bother-
ing the real hardware.

3.3.3 Test of Audio Core TSIM I/O Module

After the audio core has been written as I/O module, a test program to output raw
music via this module was written in order to test the functionality of this audio
core module. Test suite contains static raw music data with various sampling
frequencies (11kHz, 22kHz or 44 kHz). The music was played via audio core I/O
module correctly.

CHAPTER 3. EMBEDDED SOFTWARE 40

After that we tested the same program on the real hardware board. This was
at the same time that the audio hardware core (initially imported from [2]) has
been modified to support 2-channel stereo and 16-bit sample size. The test pro-
gram has been cross-compiled to SPARC platform using GNU C cross-compiler
(sparc-rtems-gcc) and converted the proper format to be loaded to the hardware
development board using mkprom from LECCS package and objcopy, clean_srec
utilities. These steps of compiling and converting are shown below. The test pro-
gram name is test.c and the final output to be loaded to hardware is test-soft.exo.

Compiling the test program

<CVS>/software/audio_core$ sparc-rtems-gcc -static -O2 -W -Wall test.c -o test

Convert to appropriate format to be loaded to hardware

<CVS>/software/audio_core$../utils/genexo.sh test

+ mkprom -nocomp -v -o test.rom -ramsize 2048 -ramcs 1 -rmw -ramrws 0
-ramwws 0 -freq 25 -baud 38400 -romws 2 -romsize 1024 test

MKPROM boot-prom builder v1.3.5
Copyright Gaisler Research 2001, all rights reserved.

loading test:
section: .text at 0x40000000, size 32080 bytes
section: .data at 0x40007d50, size 681552 bytes

creating LEON boot prom: test.rom

sparc-rtems-gcc -O2 -g -N -qprom -qzero -nostartfiles -Xlinker -Ttext
-Xlinker 0 /opt/rtems/sparc-rtems/lib/promcorel.o dump.s -lmkproml -o
test.rom
+ sparc-rtems-objcopy --adjust-vma=0x100000 -O srec test.rom test.exo

+ clean_srec
+ set +x
Clean up ...
Done...

After that the test program was tested on TSIM.

$ tsim-leon -nfp -freq 25 test.rom

TSIM/LEON - remote SPARC simulator, version 1.0.18a (professional version)

Copyright (C) 2001, Gaisler Research - all rights reserved.
For latest updates, go to http://www.gaisler.com/
Comments or bug-reports to tsim@gaisler.com

FPU disabled
using 64-bit time
serial port A on stdin/stdout
allocated 2048 K RAM memory, in 1 bank(s)

CHAPTER 3. EMBEDDED SOFTWARE 41

allocated 1024 K ROM memory
icache: 4 kbytes, 16 bytes/line
dcache: 4 kbytes, 16 bytes/line
Enter IO Module: time = 0
io: AUDIO_CORE: Audio-core initialized at 0x80000200
io: AUDIO_CORE: time = 0
io: AUDIO_CORE: Open /dev/dsp failed, output to file audioout.raw instead...
section: .text at 0x0, size 716416 bytes
tsim> go
resuming at 0x00000000

MkProm LEON boot loader v1.2
Copyright Gaisler Research - all right reserved

system clock : 25.0 MHz
baud rate : 38580 baud
prom : 1024 K, (2/2) ws (r/w)
ram : 2048 K, 1 bank(s), 0/0 ws (r/w)
edac : disabled

loading .text
loading .data

starting test
Sound test program. Sampling rate = 22050, Bit-per-sample = 16, 2-channel
Number of sound samples found in music data: 339826
Allocated memory of 1359304 bytes for sound buffer
Loading music data to memory ...
Done...
Now start to play the sound ...
io:AUDIO_CORE: Hex displays ’55’.

Program exited normally.

Note that from the above example, the I/O module could not open audio device
(/dev/dsp) of host machine, therefore it wrote the output to the file audioout.raw
instead. The music content in the file can be played by using the play tool from
Sox sound utility [1] as below:

$ play -r 22050 -s w -f s -c 2 audioout.raw

The description [12] for each option is: -r 22050 sets sampling frequency to
22050 Hz (as this test case used 22.05 kHz as sampling frequency), -s w means
each sound sample will be 16-bit large (word), -f s means the value of each sound
sample is stored in unsigned format and -c 2 indicates 2-channel stereo music.

The output test-soft.exo file was uploaded to the development board and tested.
The result was the same as on TSIM. Thus we have modeled and implemented this
audio core as TSIM I/O module to simulate all required functionalities of the real
audio hardware core. This module was used further throughout the project.

CHAPTER 3. EMBEDDED SOFTWARE 42

All further tests with TSIM in the project used the default setting: 2 MB RAM,
1 MB ROM, 4kB for both data and instruction cache, and clock frequency of 25
MHz which corresponds to those on the real hardware.

3.3.4 Summary

In this phase, the system was modeled on the software using TSIM LEON simu-
lator. The audio core imported from DDM [2] was successfully written as TSIM
I/O module to simulate the function of hardware audio core. Test has been con-
ducted to make sure that TSIM and its I/O module correctly simulated the required
functionalities presented by the real hardware.

3.4 Software Optimization

After we had modeled the system using TSIM simulator, testing of Vorbis decoder
was done by developing and running a simpleplayer test program on this simulated
platform. Vorbis library was further optimized. This Section describes the work
phase of software optimization according to Figure 3.1.

3.4.1 Cross Compilation of Ogg/Vorbis Library to SPARC Plat-
form

Ogg Vorbis reference library used the GNU Autoconf tool [13]. Cross-compiling
to SPARC platform was trivial. Theoretically passing the appropriate CC envi-
ronment variable to ./configure script and adding --disable-shared option
(because the sparc-rtems-gcc that came with LECCS did not support shared li-
brary) should accomplish the task. Practically however we found that Ogg li-
brary’s configure script failed to find the size of each integer variable type so
extra lines in configure.in file were added as follows:

AC_CHECK_SIZEOF(short,2)
AC_CHECK_SIZEOF(int,4)
AC_CHECK_SIZEOF(long,4)

AC_CHECK_SIZEOF(long long,8)

And then the ./configure script was called:

CC=sparc-rtems-gcc ./configure --disable-shared && make

This configure line worked for Vorbis library too. However, in the project this
GNU Autoconf tool was not used, the Makefiles were customly created as to test

CHAPTER 3. EMBEDDED SOFTWARE 43

with various compile options to match our environment. See the software source
code for more details.

After compiling both Ogg and Vorbis, we got three main libraries to be used
in the project: libogg.a, libvorbis.a and libvorbisfile.a.

3.4.2 Simpleplayer Test Program

Test program simpleplayer has been written to test Vorbis library. Sample program
that came with Vorbis library decoder_example.c has been used as starting-point.
Simpleplayer decodes the sample Vorbis stream data and writes PCM output to
standard-out or optionally discards the output. It can verify checksum of audio
output in order to check the accuracy of decoding process.

Sample Vorbis stream data used throughout this project was 15.40 seconds
length with 44 kHz sampling frequency, 16-bit per sample, 2-channel stereo and
was encoded with Ogg Vorbis encoder from reference Vorbis library version 1.0RC3
with quality level 3 (default level).

Simpleplayer was cross-compiled to SPARC platform using sparc-rtems-gcc
compiler from LECCS package. It ran without operating systems on LEON. On
TSIM at 25 MHz clock speed, simpleplayer ran and completed its decoding job
of sample Vorbis stream in 32.90 seconds. Simpleplayer prints out the activities
e.g. percentage of input data to standard output.

Here is the example of compilation and running of simpleplayer on TSIM.
Notice that per command at the end shows total simulated time used, processor
utilization and other performance-related data.

<CVS>/software/simpleplayer$ make player-leon
sparc-rtems-gcc -static -mv8 -O2 -o player-leon player.c
-I../vorbis/include/ -L../vorbis/rtems-fpu-normal/ -lvorbis -logg -lm

$../utils/genexo.sh player-leon
+ mkprom -nocomp -v -o player-leon.rom -ramsize 2048 -ramcs 1 -rmw
-ramrws 0 -ramwws 0 -freq 25 -baud 38400 -romws 2 -romsize 1024
player-leon

MKPROM boot-prom builder v1.3.5
Copyright Gaisler Research 2001, all rights reserved.

loading player-leon:
section: .text at 0x40000000, size 163792 bytes
section: .data at 0x40027fd0, size 256512 bytes

creating LEON boot prom: player-leon.rom

sparc-rtems-gcc -O2 -g -N -qprom -qzero -nostartfiles -Xlinker -Ttext
-Xlinker 0 /opt/rtems/sparc-rtems/lib/promcorel.o dump.s -lmkproml -o
player-leon.rom

+ sparc-rtems-objcopy --adjust-vma=0x100000 -O srec player-leon.rom
player-leon.exo

CHAPTER 3. EMBEDDED SOFTWARE 44

+ clean_srec
+ set +x
Clean up ...
Done...

$ tsim-leon -ram 2048 -rom 2048 -freq 25 player-leon.rom
TSIM/LEON - remote SPARC simulator, version 1.0.18a (professional version)

Copyright (C) 2001, Gaisler Research - all rights reserved.
For latest updates, go to http://www.gaisler.com/
Comments or bug-reports to tsim@gaisler.com

using 64-bit time
serial port A on stdin/stdout
allocated 2048 K RAM memory, in 1 bank(s)
allocated 2048 K ROM memory
icache: 4 kbytes, 16 bytes/line
dcache: 4 kbytes, 16 bytes/line
Enter IO Module: time = 0
io: AUDIO_CORE: Audio-core initialized at 0x80000200
io: AUDIO_CORE: time = 0
io: AUDIO_CORE: Open /dev/dsp failed, output to file audioout.raw instead...
section: .text at 0x0, size 423072 bytes
tsim> go
resuming at 0x00000000

MkProm LEON boot loader v1.2
Copyright Gaisler Research - all right reserved

system clock : 25.0 MHz
baud rate : 38580 baud
prom : 1024 K, (2/2) ws (r/w)
ram : 2048 K, 1 bank(s), 0/0 ws (r/w)
edac : disabled

loading .text
loading .data

starting player-leon
Input data read: 1% Time: 0 Diff: 0
Input data read: 3% Time: 0 Diff: 0

Bitstream is 2 channel, 44100Hz
Encoded by: Xiphophorus libVorbis I 20011231

Input data read: 5% Time: 0 Diff: 0
Input data read: 6% Time: 1 Diff: 1
Input data read: 8% Time: 2 Diff: 1
Input data read: 10% Time: 2 Diff: 0
Input data read: 11% Time: 3 Diff: 1
Input data read: 13% Time: 4 Diff: 1
Input data read: 15% Time: 4 Diff: 0
Input data read: 16% Time: 5 Diff: 1
Input data read: 18% Time: 5 Diff: 0
Input data read: 20% Time: 6 Diff: 1
Input data read: 21% Time: 7 Diff: 1
Input data read: 23% Time: 7 Diff: 0
Input data read: 25% Time: 8 Diff: 1
Input data read: 26% Time: 8 Diff: 0
Input data read: 28% Time: 9 Diff: 1

CHAPTER 3. EMBEDDED SOFTWARE 45

Input data read: 30% Time: 10 Diff: 1
Input data read: 31% Time: 10 Diff: 0
Input data read: 33% Time: 11 Diff: 1
Input data read: 35% Time: 11 Diff: 0
[...]
Input data read: 97% Time: 16 Diff: 1
Input data read: 98% Time: 0 Diff: -16
Input data read: 100% Time: 0 Diff: 0
Input data read: 100% Time: 0 Diff: 0
Input data read: 100% Time: 0 Diff: 0
Done.
Program exited normally.
tsim> per
CPU performance (25.0 MHz) : 8.18 MOPS (6.66 MIPS, 1.53 MFLOPS)
Cache hit rate (inst/data) : 99.3 / 36.7 %
Simulated time : 32.90 s
Processor utilisation : 100.00 %
Real-time performance : 27.14 %
Simulator performance : 2220.68 KIPS
Used time (sys + user) : 121.24 s

3.4.3 Vorbis Optimization

From the result of simpleplayer test, it took 32.90 seconds to play the sample
Ogg Vorbis stream music which means that (32.90 - 15.40)/32.90 = 53.19 percent
speed improvement from both software and hardware optimizations was needed in
order to have music played in real-time. In this sub-Section, Vorbis optimization
is discussed. In order to do the software optimization, one needs to understand
how Vorbis decoding works. Because Xiph did not yet publish the specification
of Vorbis, study of Vorbis algorithm was done with the help of the information
from the Internet and from the software code. Graphical call graph was one of a
useful tool we used to analyze and understand Vorbis source code.

Graphical Call Graph Generation

A graphical representation of function calls or graphical call graph aids the pro-
cess of software code investigation because it shows clearly how functions call
other functions and how they are called. Profile information generated by gprof
mentioned in Section 3.2 was processed further by kprof [24] and VCG tool [27]
to generate graphical call graph. Example of a graphical call graph of Vorbis
decoder is shown in Figure 3.8. This graph only contains nodes starting from
vorbis_synthesis() function which is the main decoding tree (consumes 81.3% of
total computation time).

CHAPTER 3. EMBEDDED SOFTWARE 46

Figure 3.8: Graphical call graph starting from vorbis_synthesis()

CHAPTER 3. EMBEDDED SOFTWARE 47

With call graphs and profile information from the feasibility study phase, the
structure of Vorbis algorithm was studied and the result is summarized in Chapter
2. During this study phase, it was noticed that this reference Vorbis library has
a lot of calculations done in floating point. This triggered the need of an FPU
(floating point unit) in the project. LEON itself came with primitive floating point
unit (FPU) but it had the external FPU interface which could be connected to other
FPU design. However, having an FPU was not desired in the project because
it consumed a lot of space on the FPGA and increased the complexity of the
design (more information in Chapter 4). To avoid having the FPU, floating point
operations in Vorbis library must be converted to integer. The rest floating point
usage must be kept to minimum as without FPU, all floating point instructions will
be emulated using integer instruction and executed on Integer unit which would
be much slower than running natively on FPU.

Integer Vorbis Decoder Library

At the time of the project, there was only one freely available integer implemen-
tation of Vorbis library done by Dan Conti [4]2. This version was rather old and
could not play Ogg Vorbis files encoded by newer (more recent than beta4) Vorbis
encoder. Therefore, we aimed to create our own integer version of Vorbis decoder
library based on the reference Vorbis library version 1.0 RC3 and Dan Conti’s
library with the following goals:

� Most major calculations must be converted to integer. The rest floating-
point operations must be very few.

� Speed improvement. It should run 20-30% faster than the floating-point
implementation.

� Some degraded quality is tolerable. Sound quality can be lower than
floating-point version but the difference should NOT be easily perceivable
by human with moderate audio output equipment (small speaker, head-
phone).

The integerizing work has been started and successfully accomplished. Affected
parts are de-windowing, de-overlapping and main decode loop in mapping0_inverse().
There were only few uses of floating point left e.g. codebook extraction.

Our integerized version of Vorbis library was tested and compared with the
floating-point version on TSIM. The result is shown below:

2Later in April/May 2002, there were two more integer implementations of Vorbis library
available. Xiph itself offered the high-quality commercial integer version and Nicolas Petre [23]
published the GPL version based on reference Vorbis decoder.

CHAPTER 3. EMBEDDED SOFTWARE 48

Table 3.1: Result of simpleplayer tests on TSIM at 25 MHz
Program Result (s)

simpleplayer + floating point Vorbis library 32.90
simpleplayer + integerized Vorbis library 19.42

According to the result from TSIM, the integer version ran faster than the
original floating point version (32.90 - 19.42) / 32.90 = 40.97%. Because this
integer version stores intermediate data using small number of bits (15 bits), the
output result was not numerically the same as that from the original floating point
decoder, although the difference was not easily perceivable by observers. Higher
accuracy from Integer decoder can be obtained by using more bits in calculation.
However, it would consume more running time and would not run in real-time in
our environment.

More slightly software optimizations have been done through compiler flags
adjustment and inline-ing of functions. As this integer version of Vorbis decoder
matched our goals defined above completely, it was used further in the project.

3.4.4 Summary

In this phase, Ogg Vorbis decoder library has been cross-compiled to SPARC
platform and the simpleplayer client program was created to test the decoding of
Vorbis stream data on TSIM target. It decoded 15-second encoded Vorbis stream
in 32.90 seconds. Vorbis library has been optimized and integerized so that no
hardware floating-point unit was needed. The result integerized version of Vorbis
library gave 40.97% better performance than the original floating-point version.
With this integerized version, the simpleplayer decoded 15-second music in 19.42
seconds.

3.5 Hardware/Software Partitioning

3.5.1 Hardware Limitations

Most work in software part has been done on TSIM simulator which we can con-
figure it to have many settings (clock frequency, cache size, etc.) but not all of
them are possible on the real hardware. Here we list the hardware limitations
(more information in Chapter 4):

� FPGA limitation: due to the speed of our FPGA (Virtex XCV-800-4) chip,
LEON can run at the maximum clock frequency of 28 MHz.

CHAPTER 3. EMBEDDED SOFTWARE 49

� Development board limitation: The internal oscillator on the board can
generate only some certain frequencies, i.e. 10, 11.1, 12.5, 14.29, 16.67,
20, 25, 33, and 50 MHz. Running at the frequency in between (e.g. 28
MHz) requires external oscillators.

� Meiko FPU limitation: The design of FPU from Sun’s Meiko SPARC im-
plementation can run with maximum frequency of 25 MHz. And FPU con-
sumes a large amount of space on the FPGA.

Due to these limitations, the conclusion was drawn:

� No FPU: As we already had the integerized version of Vorbis decoder li-
brary (which is also much faster than the floating point version), the need
for an FPU was eliminated.

� No external oscillator: To avoid possible problems and complexity from
external oscillator, we targeted to run the board with its internal oscillator at
25 MHz.

From previous Section, with the integer version of Vorbis library, the simple-
player took 19.42 seconds to play 15-second (15.40 seconds to be exact) mu-
sic. In order to have this player run in real time, we would need to run TSIM at
(19.42/15.40)*25 = 32 MHz. But according to the hardware limitation above, we
could run the board at only 25 MHz, therefore extra hardware optimization for at
least (19.42-15.40)/19.42 = 20.7% was needed.

3.5.2 Hardware/Software Partitioning

From the profile information in chapter 3.2, we have seen that inverse MDCT
function starting from mdct_backward() (or in short – MDCT) consumes 30.7%
of computation time and is also hardware-friendly. Ogg Vorbis uses currently
either small (256 samples) or large (2048 samples) data block sizes. From the
sample Ogg Vorbis stream data of 15-second music, there are total 1,888 calls
to mdct_ward() function, 1,232 of which are the calls with large block size, the
rest are with small block size. Table 3.2 shows time needed for mdct_backward()
function for both small and large block sizes.

Table 3.2: Statistics for mdct_backward() function
mdct_backward() version Clock Cycles needed Time (milliseconds)

software, small block size 14,600 0.584
software, big block size 180,250 7.21

CHAPTER 3. EMBEDDED SOFTWARE 50

From table 3.2, each call to mdct_backward() for big block size consumes 7.21
ms, this leads to total time spent in mdct_backward function of 1,232*7.21 ms =
8.88 seconds. Therefore this function was a good candidate to be implemented as
hardware to improve the calculation speed. Two choices of partitions have been
focused:

� MDCT: the whole mdct_backward() function tree

� Mini-MDCT: major part of mdct_backward() function tree including the
code in mdct_backward() from the beginning to mdct_butterfly_generic()
function. This does not include mdct_butterfly_32(), mdct_bitreverse() and
afterwards. The Mini-MDCT covers roughly 60-70% of the whole MDCT.

Both partitions were tested by implementing them as a TSIM I/O module and
observing the performance gain. Modeling these MDCT and Mini-MDCT cores
as TSIM I/O module was done similarly to that of audio core in Section 3.3.
Firstly the interface between hardware and software needs to be designed by look-
ing at the information required to be transfered between them. The interface of
mdct_backward() in Vorbis library is:

void mdct_backward(mdct_lookup *init, DATA_TYPE *in, DATA_TYPE *out);

mdct_backward() does not return a value. But instead the input and output ar-
ray of data are passed by reference as in and out variables respectively. No change
will be made to in (input vector) but the result transformed data will be saved to
out (output vector). DATA_TYPE is int for integer version of Vorbis library. Struc-
ture init is pre-initialized static data of type mdct_lookup structure whose size is
dependent on the size of input and output vectors. Structure of mdct_lookup is
shown below:

typedef struct {
int n;
int log2n;
DATA_TYPE *trig;
int *bitrev;
DATA_TYPE scale;

} mdct_lookup;

This mdct_lookup structure is initialized in the mdct_init() function. Variable
n is the size of input and output vectors to be fed to MDCT function which cor-
responds to Vorbis internal block sizes (either 256 or 2,048). log2n and scale
variable will be calculated by mdct_init(). The important note here is the two big
arrays trig and bitrev, which after initialization consume space around 6*n bytes
(4,608 and 12,288 bytes for small and large block sizes respectively). This amount

CHAPTER 3. EMBEDDED SOFTWARE 51

is too big to be stored in the hardware therefore they will be initialized in software
and at every call to hardware, the hardware core will do the DMA-transfer of this
data for the calculation. Therefore the register interface of MDCT (and also apply
to Mini-MDCT core) was defined similarly to that of audio core in chapter 3.3 as
follows:

struct mdct_core_regs {
volatile unsigned int controlreg; /* 0x00 */
volatile unsigned int arraysize; /* 0x04 */
volatile unsigned int bitrevaddr; /* 0x08 */
volatile unsigned int trigaddr; /* 0x0C */
volatile unsigned int startreadaddr; /* 0x10 */
volatile unsigned int startwriteaddr; /* 0x14 */
volatile unsigned int status; /* 0x18 */
volatile unsigned int actmemaddr; /* 0x1C */

};

MDCT-core interface has total 8 registers. arraysize contains the appropriate
size of input and output vectors (value 0 for 256 and 1 for 2048). bitrevaddr and
trigaddr are addresses for bitrev and trig arrays (part of mdct_lookup structure as
described above) to be DMA-transfered consecutively. startreadaddr is start read
address for input vector and startwriteaddr is start write address for output vector.
controlreg is the main control register. The core will start the calculation upon
writing 1 to bit 0 of controlreg. Status register will be 1 during the calculation
and 0 otherwise. actmemaddr reflects the current processing memory address.
Complete information about MDCT-core can be found in the Chapter 4.

After defining the interface of MDCT (and Mini-MDCT) core, it has been im-
plemented as TSIM I/O module. Vorbis library (the integerized version) was then
modified to make use of the core. Usual use of this MDCT-core takes place in
mdct_backward() function and is illustrated in Figure 3.9. mdct_backward() func-
tion of Vorbis library was modified to utilize MDCT-core instead of calculation
by its own. When mdct_backward() is called, it will write the start read and write
register, addresses of bitrev and trig registers, and set the appropriate values to
control register. After that the hardware core will start the inverse MDCT calcula-
tion. mdct_backward() will monitor the status register value, wait until it becomes
0 (which means that hardware-core has finished its calculation), and then return
the output. For the case of Mini-MDCT, the extra calculation which was missing
(because Mini-MDCT was a subset of MDCT) is added after getting result from
hardware core.

Both partition candidates (MDCT and Mini-MDCT) were tested with simple-
player on TSIM at 25 MHz clock frequency. The result is shown in table 3.3. The
solution with MDCT core as I/O module gave result faster than real-time with
margin time = 15.40 - 11.70 = 3.7 seconds. The Mini-MDCT solution gave re-
sult time almost right at the real-time limit. Note that by testing with TSIM, the

CHAPTER 3. EMBEDDED SOFTWARE 52

reg−>startreadaddr = in;
reg−>startwriteaddr = out;
regs−>bitrevaddr = init−>bitrev;
regs−>trigaddr = init−>trig;

mdct_backward(init, in, out)

volatile struct mdct_core_regs *regs;
regs = (struct mdct_core_regs *) MDCT_CORE_START;

while (regs−>status != 0);

Write to MDCT−core registers

MDCT−core starts the
calculation here

Wait until MDCT−core
finishes the calculation

controlreg = 0x1;

}

...

Figure 3.9: Modified mdct_backward() function

processing time of hardware core (which is implemented now as TSIM module)
is not taken into account, one must add the appropriate time needed by hardware
core to the total simulated time obtained from TSIM in order to estimate the real
elapsed time. Also this test was done with the simpleplayer, more overhead from
RTEMS operating system in case of the full player must be also added.

Table 3.3: Result of simpleplayer tests on TSIM at 25 MHz
Program Result (seconds)
Final Player 19.42
Final Player + Mini-MDCT core as I/O module 15.41
Final Player + MDCT core as I/O module 11.70

From the statistics above, it could be concluded that the suitable partition was
the MDCT case. In addition, it must be calculated further that the designed hard-
ware core could complete its work (1,888 calls of mdct_backward()) within 3.7
seconds margin time, which is highly probable. For Mini-MDCT, however, it
was expected to be too marginal as the partition is right at the limit. However,
in the case that designing the whole MDCT core was not possible, Mini-MDCT
could be the choice and by reducing the quality or sampling frequency of encoded
music data, the final player could decode the Ogg Vorbis stream in real-time for
demonstration purpose.

CHAPTER 3. EMBEDDED SOFTWARE 53

3.5.3 Summary

In this phase the main task of the project, hardware/software partitioning, was
done. TSIM and its I/O module were used as the main tool. Two partitions,
MDCT and Mini-MDCT were selected and tested. The statistics of simpleplayer
running on TSIM with the help of these MDCT and Mini-MDCT cores are shown
in table 3.3. MDCT was proposed as the preferred partition in order to have the
music decoded and played in real-time. Mini-MDCT was proposed as the second
solution in case that the implementation of the whole MDCT core was not feasible.

3.6 Player Development

On top of the LEON processor, there are choices of either running the application
code directly or using an operating system. Simpleplayer from the previous Sec-
tion is an example of running the application code without the operating systems.
Running directly the application without OS (and accessing directly to hardware
address) is free of OS overhead, but by using an OS, one can get benefits from
services offered by OS e.g. task management, memory management, and abstrac-
tion of hardware devices. Also the application code will be easily portable to
other operating system in the future because it can use the abstraction interface of
hardware provided by OS instead of having direct hardware accesses. For these
reasons, it was decided to have an OS for the final version of player.

Viable choices of operating systems at the time of this project were the RTEMS
from OAR Corporation [6] and uCLinux [33] (LEON-port by LEOX team [31])3.
We preferred at the beginning to try uCLinux as Linux was open-source and be-
came more and more popular in the PC market. However, we found that uCLinux
port on LEON were not yet mature and development of user applications was at
that time not trivial. C library was not yet available.

RTEMS, on the other hand, offered good and stable support for LEON. It
worked well with Newlib C library [16] and also supported POSIX standard.
RTEMS is open source as well (copyrighted under a modified version of GPL).
Therefore RTEMS was chosen to be used in the project.

In this chapter, the development of final layer as extension to simpleplayer is
described. RTEMS was used and the player now could output the audio music to
audio device via the developed audio device driver.

3Later in March 2002, eCos operating system from Red Hat Inc. was successfully ported to
LEON.

CHAPTER 3. EMBEDDED SOFTWARE 54

3.6.1 RTEMS

RTEMS [6] is an acronym for the Real-Time Executive for Multiprocessor Sys-
tems developed by On-Line Applications Research Corporation (OAR) for the
U.S.Army. The goal of RTEMS was to provide a portable, standards-based real-
time executive for which source code was available. RTEMS is licensed under a
modified version of the GNU General Public License (GPL).

The word executive in this sense means the (usually small) operating systems
kernel. Although former developed primarily for military applications, it was
now used also in general embedded applications. The original classic RTEMS
application programming interface (API) is based on the Real-Time Executive In-
terface Definition (RTEID) and the Open Real-Time Kernel Interface Definition
(ORKID). RTEMS claims to support about 70% of POSIX 1003.1b-1996 API
standard4. This POSIX standard defines the programming interfaces of standard
UNIX. This means that much source code that works on UNIX should also work
on RTEMS. It includes support for POSIX threads and real-time extensions.

RTEMS is available on various processor families e.g. Motorola MC68xxx,
Motorola MC683xx, Motorola ColdFire, Hitachi SH, Intel i386, Intel i960, MIPS,
PowerPC, and SPARC. RTEMS works well with LEON processor and was in-
cluded in the LECCS software development kit from Gaisler research.

RTEMS Compilation

RTEMS was included as pre-compiled library in the LECCS package from Gaisler
research. Re-compilation is generally not necessary as all the tool works right out
of the box for software development on LEON SPARC platform. However, there
was a case in our project that recompilation was necessary. As the POSIX Thread
API was needed for the final player and POSIX Thread support was not enabled in
the precompiled RTEMS version that came with LECCS, recompilation has been
done as shown below:

$ cd <RTEMS extracted source path>
$ mkdir build && cd build
$../configure --target=sparc-rtems --enable-posix \

--prefix=/usr/local/my-rtems --enable-tests
$ make RTEMS_BSP="leon2"

$ make install RTEMS_BSP="leon2"

According to the above commands, the newly compiled RTEMS will be in-
stalled under /usr/local/my-rtems directory. With –enable-tests option, many ex-
ample programs will be also compiled and installed.

4This was mentioned in http://www.oarcorp.com/rtemsdoc-4.5.0/
rtemsdoc/html/FAQ/FAQ00004.html

CHAPTER 3. EMBEDDED SOFTWARE 55

sparc-rtems-gcc compiler came with LECCS has default location of RTEMS
library under /opt/rtems/sparc-rtems/lib/. In order to have this new libraries worked
with sparc-rtems-gcc from LECCS, the newly compiled RTEMS library must be
copied to that path as follows:

cd /opt/rtems/sparc-rtems/lib/
cp -pdvR /usr/local/my-rtems/leon2/lib .
ln -s libbsp.a libleon.a

Developing RTEMS Applications

A typical RTEMS program has choices to use POSIX standard, RTEMS classic
API or ITRON 3.0 application programming interfaces (APIs). In our project
only POSIX and classic RTEMS APIs were used. Simple test programs used
classic RTEMS API. The final player used POSIX API as the multi-threading
feature was needed and we preferred the POSIX Thread API to classic RTEMS
task API because POSIX Thread is available on many platforms, the software can
be developed and tested on Linux workstation and only at the end run on RTEMS
and target hardware.

Developing RTEMS application is similar to writing normal C program except
that appropriate definition and includes statements are needed to enable required
features of RTEMS. To get the idea how programming with RTEMS works, sim-
ple hello-world program with RTEMS classic API is shown below:

#include <rtems.h>
/* configuration information */
#define CONFIGURE_INIT
#include <bsp.h>

rtems_task Init(rtems_task_argument argument);

/* configuration information */
#define CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
#define CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
#define CONFIGURE_MAXIMUM_TASKS 1
#define CONFIGURE_RTEMS_INIT_TASKS_TABLE
#define CONFIGURE_EXTRA_TASK_STACKS (3 * RTEMS_MINIMUM_STACK_SIZE)

#include <confdefs.h>

rtems_task Init(
rtems_task_argument ignored

)
{
printf("Hello World\n");
exit(0);

}

The program can be compiled and tested on various hardware target. Here we
compile and test the code on unix/posix target which we can run the code natively

CHAPTER 3. EMBEDDED SOFTWARE 56

on Linux-x86 PC:

$ gcc -B/usr/local/my-rtems/posix/lib/ -specs bsp_specs \
-qrtems -o hello-rtems hello-rtems.c

$./hello-rtems

Hello World

And then the program is cross-compiled for sparc-rtems target and tested un-
der TSIM:

$ sparc-rtems-gcc -o hello-rtems hello-rtems.c -rtems
$ tsim-leon -freq 25 hello-rtems

TSIM/LEON - remote SPARC simulator, version 1.0.18a (professional version)

Copyright (C) 2001, Gaisler Research - all rights reserved.
For latest updates, go to http://www.gaisler.com/
Comments or bug-reports to tsim@gaisler.com

using 64-bit time
serial port A on stdin/stdout
allocated 4096 K RAM memory, in 1 bank(s)
allocated 2048 K ROM memory
icache: 4 kbytes, 16 bytes/line
dcache: 4 kbytes, 16 bytes/line
Enter IO Module: time = 0
section: .text at 0x40000000, size 95184 bytes
section: .data at 0x400173d0, size 2208 bytes
tsim> go
resuming at 0x40000000
Hello World

Program exited normally.

Note: In order to run directly the binary executable from sparc-rtems-gcc on
TSIM, one needs to run TSIM with 4 MB RAM setting because as default, binary
output from compiler will work with 4 MB RAM target only. Otherwise one
can use mkprom tool to generate the executable image for other RAM, ROM,
frequency, and cache size settings.

By default, RTEMS application will not be configured to use the floating point
unit. If the FPU hardware exists and the use of it from an RTEMS application is
desired, one must add this line in the program header:

#define CONFIGURE_INIT_TASK_ATTRIBUTES \
(RTEMS_FLOATING_POINT | RTEMS_DEFAULT_ATTRIBUTES)

RTEMS is aimed for embedded application target. Most features are not en-
abled by default. Enabling and disabling of features are done via these define
statements on the program header. More information about this could be found in
the RTEMS RTEMS C User’s Guide [5].

CHAPTER 3. EMBEDDED SOFTWARE 57

3.6.2 Device Driver for Audio-Core

Recalled from previous sub-Section, we had the simpleplayer program which
could decode the Vorbis stream but could not yet send the stream out the sound
hardware. The missing jigsaw here was something that provides an access point
for application in order to access audio device, accepts audio data from applica-
tion via that access point, and sends that data to audio hardware. This is the task
of audio device driver.

Device driver in the operating system provides an abstraction layer of under-
lying hardware for software applications. Instead of accessing each register of the
audio core directly in order to send music data to be played, device driver provides
a file representing the hardware as access point. This device file interface can be
accessed in the similar way as a normal file on UNIX/POSIX-compatible operat-
ing systems. In our project, the standard programming interface for audio from
OSS (Open Sound Systems) was used as it was prevalently used in the Linux and
Open Source/Free software. OSS provides a complete API with extensive docu-
mentation [32]. OSS uses /dev/dsp device file for audio hardware. Various sound
parameters e.g. sampling frequency, number of channels and sample size could
be set via the UNIX standard ioctl() system call. Typical usage of audio playing
function via /dev/dsp used in our project is illustrated in Figure 3.10. Application
first opens the audio device via open() call and then writes music data via write()
call. Notice that the call to device driver blocks until result is returned.

An RTEMS device driver for audio core has been written. It was implemented
according to the OSS standard. It contains 6 main functions sound_initialize,
sound_open, sound_close, sound_read, sound_write, and sound_control to handle
the initialization, open-, close-, read-, write- and ioctl-operations of the /dev/dsp
device file. In the header file of the device driver they are declared as follows:

#define SOUND_DRIVER_TABLE_ENTRY \
{ sound_initialize, sound_open, sound_close, \
sound_read, sound_write, sound_control }

Function sound_initialize() will register itself to RTEMS via rtems_io_register_name()
function so that other operations to /dev/dsp will be forwarded to this device driver
code.

The device driver can be used by adding it to RTEMS Driver Address Table
via appropriate define statements in the header of RTEMS application as follows:

#define CONFIGURE_HAS_OWN_DEVICE_DRIVER_TABLE
#define CONFIGURE_MAXIMUM_DRIVERS 3
#define CONFIGURE_LIBIO_MAXIMUM_FILE_DESCRIPTORS 5

rtems_driver_address_table Device_drivers[] = {
CONSOLE_DRIVER_TABLE_ENTRY,
CLOCK_DRIVER_TABLE_ENTRY,

CHAPTER 3. EMBEDDED SOFTWARE 58

[blocked]

[blocked]
[blocked]

[blocked]

sound_open(...)

sound_write(...)

Initializing audio
hardware

returns OK

[continue]

[continue]

Do DMA transfer
Begin playing music

Finish playing music

Wake up device driver
via interrupt

Write music data to audio device

f = open("/dev/dsp", ...)

write(f,);

Open audio device

Application Device Driver Audio Hardware

Figure 3.10: Example of open() and write() calls to audio device

SOUND_DRIVER_TABLE_ENTRY,
{ NULL, NULL, NULL, NULL, NULL, NULL }

};

With appropriate header to add the audio device driver shown above, applica-
tion code can later access the audio device via /dev/dsp.

3.6.3 Final Player with Sound Output

At this point we had the simpleplayer which could decode the Vorbis stream and
sound device driver which provided /dev/dsp as abstraction layer for audio-core,
the final player that could really output the music to audio device was written.

As we have seen in Figure 3.10, writing music data to /dev/dsp will block until
all the music data has been played. While waiting for this blocking music playing
process, it is more efficient to continue decoding the next block of Vorbis stream
data instead of doing nothing. The final player accomplished this with the help of
multi-threading feature of POSIX Thread (or PThread). By having one thread for
decoding Vorbis stream and another thread for receiving decoded data from the
first thread and then playing it through audio device, the decoding thread could

CHAPTER 3. EMBEDDED SOFTWARE 59

always work without having to wait for the music playing process. The decod-
ing task needs to communicate with the audio-playing task with the appropriate
mechanism so that the audio-playing task will play the current already-decoded
block while the decoding continues decoding next block. This communications
between threads are illustrated in Figure 3.11.

decode
signal

wait
decode
read 3rd block
synchronized

decode

synchronized
read 4th block

wait

synchronized

synchronized

read 1st block

read 2nd block
decode
wait

[waiting for signal]

play 2nd block

play 3rd block

Start

[playing music]

[playing music]

[playing music]

[wait]

[wait]

[wait]

[decoding]

[decoding]

[decoding]

[decoding]

show elapsed
time without
interaction
with other tasks

print "1"

print "2"

print "3"

playAudioTask countTaskdecodeTask (main)

play 1st block

Figure 3.11: Communications between threads

As shown in 3.11, there are 3 tasks: decodeTask, playAudioTask and count-
Task. The countTask simply shows the elapsed second on standard output without
any interactions with other tasks. Synchronization is needed between decodeTask
and playAudioTask. The playAudioTask will be signaled when new data is de-
coded by decodeTask and playAudioTask signals the decodeTask when it finishes
playing each block. This synchronization means both threads wait to meet each
other after processing each block. Two audio buffers were used in the player so
each thread always works on different audio buffers alternatively.

With the MDCT hardware core developed in hardware part (more information
in Chapter 4), the decodeTask made use of this hardware core instead of doing

CHAPTER 3. EMBEDDED SOFTWARE 60

the calculation on its own. The final player was successfully tested on the real
hardware board with the MDCT hardware core (see Section 4.4).

3.6.4 Summary

In this phase, the simpleplayer was extended. The RTEMS operating system was
introduced because it offered the benefits of multi-threading (POSIX Thread), task
synchronization and hardware abstraction. Device driver for audio device has
been written to provide abstraction layer of the audio hardware core. The final
player was finally written with complete Vorbis decoding and sound output func-
tions. In the final test phase, it ran on the hardware board with the help of the
MDCT core developed in hardware part successfully.

3.7 Conclusion

Experiences and Problems found
� TSIM was used extensively in the project. It increased largely software de-

velopment speed and usually gave accurate performance result compared to
LEON on the real hardware. However, not all settings in the real hardware
were available under TSIM e.g. multiplier type or load delay number in the
Integer unit. Care should be taken at these points.

� Most software used in the project (RTEMS, TSIM) were new and evolving.
Sometimes we experienced lack of documentation. However great support
from user-communities (e.g. public mailing list rtems-users@oarcorp.com
and vorbis-dev@xiph.org) and direct support from software vendors (Gaisler
Research) have largely helped.

� Lack of Vorbis official specification made it difficult to produce correct and
well-optimized integerized Vorbis decoder library.

Summary

In the software part, the tools for hardware/software partitioning evaluation were
delivered. Vorbis player for the target system was developed. It ran with RTEMS
operating system and accessed to audio device via audio device driver. Around
40% of speed improvement was achieved from software optimization.

Hardware/software partitioning was done and two hardware/software parti-
tions were proposed. The whole MDCT function as partition was the preferred

CHAPTER 3. EMBEDDED SOFTWARE 61

solution in order to decode the sample Ogg Vorbis data in real-time. The Mini-
MDCT core as partition was suggested as the secondary solution in case that the
whole MDCT core could not be implemented. Real-time decoding demonstration
of sample data with Mini-MDCT could be obtained by adjusting the encoding
parameters of the sample data.

Possible extensions to the project in the software part are adding features to
store music file on storage devices e.g. USB flash disk or remote network server
which is accessible via TCP/IP. The player could also be configured via WWW
interface. Realization of Ogg Vorbis support for portable audio devices or gadgets
based on the result of this project is also challenging.

Knowledge gained from software development in this project can be also ap-
plied further to other System-on-a-Chip systems development with hardware/software
co-design techniques.

Chapter 4

Underlying Hardware

Observing Figure 1.1 the two bottom layers constitutes the hardware part. They
must provide physical structures to support the player. The bottom layer holds the
target technology, where software and hardware have to fit. For this project it is
represented by the XSV-800 board, but it could be any low computation-power
system. The second level is where LEON platform is located, with the audio core
and the user defined core.

The exploration of these two layers consists in recognizing the borders of the
bottom layer, such as maximum frequency to synthesize LEON, and configuring
the platform to provide the best performance.

Once the limits of the technology were recognized, and the best configura-
tion was found, take place the design and implementation of extra hardware to
accelerate the execution of the player. After providing the right configuration, the
partitioning process gives the new task to develop. This process can be observed
in Figure 1.2.

In this chapter will be discussed how the platform was configured and the de-
sign, as well as implementation process of the modified discrete cosine transform
(MDCT) core, which was the result of the partitioning presented in Section 3.5.

As Ogg-on-a-chip project started, the necessity to implement some functions
of the software as hardware, in order to speed up the system, was clear. But the
question was which part should be implemented as hardware. In Section 3.5 was
explained how this decision was made, using the TSIM simulation environment,
and modeling different parts of software as hardware. Some alternatives were
considered to speed up the application, for example using multiple processors,
and splitting the functions of the decoder among them. Nevertheless this approach
introduces new problems. One of them is how to ensure cache coherency in the
case that more than one processor work together decoding the same frame. In
Ogg-Vorbis the data frames are independent of each other, therefore would be
possible to assign the complete decoding process in one frame to a processor,

62

CHAPTER 4. UNDERLYING HARDWARE 63

and decode 4 frames at the same time using four different processors. Here the
problem is the memory required to store independent frames would increase pro-
portional to the number of processors, and even for 2 processors the memory on
typical low computation-power systems would not be enough.

On the other hand, the approach developing a MDCT core has some advan-
tages; due to MDCT is present in many audio and video codecs (see Section 2.4)
the application field is wide. In addition, because it is based on AMBA standard
[20], the MDCT core is portable and reusable. Consequently it can be used with
different processors.

According Figure 1.2 there are 3 Work Packages for hardware part and one
final test. They are described in this Chapter as follows:

� Section 4.1: Platform Exploration.-Describes the hardware limitations and
the process to import the audio core, and configure the platform with all
necessary features.

� Section 4.2: MDCT Core Design.-Describes the specification, architecture
and implementation of the requested MDCT core.

� Section 4.3: Simulation, Synthesis and Test.-Describes the process to gen-
erate the hardware (platform and new core).

� Section 4.4: Final System Test.-Describes the final version of the player.

4.1 Platform Exploration

Sections 4.1.1 to 4.1.4 covers the configuration of the platform, looking for pro-
viding the better support for the decoder, and describe the improvements done on
the audio core imported from the Digital Dictation Machine (DDM) [2]. During
the configuration phase, the new core (from now this core will be referenced as
MDCT core) has no arithmetic function. It is only an APB slave and a very simple
AHB master.

The file with the described configuration is located on cvs (see Appendix A),
and it is named target-ooac.vhd. For synthesis or simulation purposes, the original
target.vhd from LEON has to be replaced, and in device.vhd file the next line has
to be set:

constant conf : config_type :=virtex_4k4k_v8_m32;

4.1.1 Upgrading to latest LEON Version

The DDM [2] was written for Leon1-2.2.2 version. At the time Ogg-on-a-chip
project started, the latest version was Leon1-2.3.7. In short time three different

CHAPTER 4. UNDERLYING HARDWARE 64

version were released. After Leon1-2.4 the first version of Leon2 was introduced,
this was Leon2-1.0.1. A couple of weeks later Leon2-1.0.2 came out, and only
a week later Leon2-1.0.2a, which was the final version used by Ogg-on-a-chip.
Because of those fast changes on Leon, importing DDM and Ogg-on-a-chip to
new Leon versions is specially important.

The main difference between Leon1 and Leon2 is the addition of one Debug
Support Unit (DSU) as an AMBA master. Therefore the Leon2 top entity has
more connections than Leon1, and the configuration files of Leon1 can’t be used
anymore for Leon2.

Both cores, audio and MDCT are AMBA masters. The involved files to
add these cores to Leon are the following: target.vhd, iface.vhd, ambacomp.vhd,
mcore.vhd and leon.vhd.

Since target.vhd file contains the possible Leon configurations, it has to be
changed to add new elements and configure them. In both cases, the memory
mapped registers are accessible using APB. For this reason the APB slave has
to be configured by adding DDM and MDCT values for apbslvcfg_std vector.
The index value to assign can be different and depends on how many devices are
configured. For Leon2 are new devices such as DSU master for example. MDCT
is configured to use 0x800000300 to 0x800000318 space, meanwhile DDM uses
0x800000200 to 0x800000218 as memory mapped registers.

After configure APB slave, the number of masters in AHB configuration has
to be increased by 2, for ahb_std vector located in the same target.vhd file.

In iface.vhd the data types for core signals are located. Only DDM needs some
data types to communicate with external world, and they are declared here.

Ambacomp.vhd contains different elements used by AMBA. It is a package
and both cores have to be declared there.

Actually the file that connects both cores with the rest of the platform is
mcore.vhd, so they are here instantiated. The priority is given to each AHB mas-
ter with and index value. The higher this value is, the higher the priority it owns.
APB bus indexes have to be added according the declaration in mcore.vhd. In both
cases irq signals are declared to connect them with the irq controller. For DDM
the addition of in/out signals to mcore entity is needed .

Last file to modify is leon.vhd, by adding pads for DDM. The case of MDCT
is different, since it doesn’t need any external pad, no change is required.

The modified files to use in Ogg-on-a-chip project are located in the cvs di-
rectory and named as <original name>-ooac.vhd (for example mcore-ooac.vhd).
If there are no major changes in Leon for upcoming versions, it would be enough
to replace the normal mentioned files by those ones, in order to import easily the
project.

CHAPTER 4. UNDERLYING HARDWARE 65

4.1.2 Hardware Constraints

Referencing again to the last layer on the system overview (Figure 1.1), the bor-
ders of this layers are given by the constraints of the target technology which is
supposed to hold the demonstrator. In our particular case, the demonstrator was
built on Xess XSV-800 board. According [7] the main issues to keep in mind are:

� Size.-The FPGA XCV-800 can hold designs with up to 800,000 gates

� Timing.-LEON can be synthesized for Xilinx XCV-800 speed grade 4 in
range 25-28 MHz.

� System clock.-The on-board clock provides frequencies sub multiples of
100 MHz, i.e. 50,33,25,20,10,5 MHz. For this reason the maximum clock
frequency for the system without an external oscillator is 25 MHz.

� Audio sample frequency.-The audio sample frequency is correlated to the
system clock frequency, and it is a sub multiple of the system clock. As
described in [2] the sample frequency of the audio core is given by the
formula , 1 � ���

)� ����� �	���	
 �������������� , where scalerup can be 0,1, or 2. For this
reason the standard audio sample frequencies such as 44 kHz and 22 kHz
are slightly different. The best approximations are 48kHz and 24kHz.

� Internal RAM on FPGA.-Since the memory on the XCV-800 has to be
shared with different elements of the platform, such as cache and MDCT
core, this is a very important issue having a big impact on the overall per-
formance of the system.

4.1.3 Audio Core

In order to import and use for music the audio core designed by Daniel Bretz in
[2], some improvements were required, for example music in stereo is better than
one channel music. This Section describes the improvements for the audio core.

4.1.3.1 Audio Core Configuration

This core consists in an AHB master which has connection with the on-board
audio chip AKM AK4520A [7]. Initially the core had a word length of 20 bits,
and only one channel was used. Nevertheless only 16 bits were played. Due to
this fact, and thinking about saving memory, the decision to deploy a word length
of 16 bits was made, and to add the feature of stereo mode.

CHAPTER 4. UNDERLYING HARDWARE 66

Besides this two modifications, the interrupt feature was enabled and the way
to reach the end of the to-play data block was slightly changed. This two ac-
tions were done in order to allow easily interaction with software, and specially
the second one was implemented trying to avoid a sound gap while re-filling the
buffer.

In Chapter 3 the functional interface of this audio core was discussed, therefore
will be assumed the reader is familiar with.

4.1.3.2 Stereo Function for Audio Core

In the DDM version [2], the audio core uses a register of length 20 bits, and only
the left channel. Each time when a direct memory access (DMA) was performed,
it reads a word of 32 bits from memory, but stores only 20 bits in the shift register,
which content is sent bitwise later to the on-board audio chip.

In the version used by Ogg-on-a-chip, the DMA is carried out in the same
way, that means reading one word 32 bits long, but storing the whole 32 bits in
one register. For the software is known, that the higher 16 bits of each time domain
sample store the left channel sample, and the lower 16 bits the right channel. For
this reason the software of DDM can’t be used with the audio core used by Ogg-
on-a-chip.

In this way two samples are read at each DMA cycle, and because the word
length is already 16 bits, two samples are stored in memory, where before only
one was stored.

The register which stores the samples is 32 bits long and is called audiobuffer,
but another register is used to shift the msb bit to audio chip. This is called au-
dioshifter and is 16 bits long. The higher 16 bits or the lower 16 bits of au-
diobuffer, are copied to audioshifter depending on which value has the signal
lrsel. When it is high, the higher 16 bits are stored, and when it is low, the lower
16 bits are stored. This because lrsel is the select channel signal for the audio
chip. Instead to shift the bit 19 to the audio chip, is shifted the bit 15.

The word length changes apply for record function as well, but they were not
tested, because record function is not required by Ogg-on-a-chip.

The final architecture of the improved audio core is shown in Figure 4.1.

CHAPTER 4. UNDERLYING HARDWARE 67

+1

 controlreg

audioin

audioout

sclk_old
sclk
{1:0}

mclk

sclk

mclk

[0][1]
audioenrecorden

tick

lr_sel

DMAREQ

 shiftcounter (5)

[19:0]

Core−Output

Control Unit
shiftregister (16)

audiobuffer (32)

left (16) right (16)

16

IRQ

Figure 4.1: Audio Core diagram.

4.1.3.3 Interrupt and Internal Stop Address

In the original version of audio core, the interrupt was already there, but was not
used by the software. The only thing missing was to send the interrupt signal to the
output port. A normal audio card owns an internal buffer to play the samples, but
implementing an audio buffer was not suitable due to the lack of internal memory
on FPGA. In order to fix this problem the software has to modify the start and stop
addresses while the audio core is in loop mode, in this way the core is changing
block addresses, and the software has enough time to change the new start/stop
addresses. But what happens if the new stop address is above the old start address?
The answer is the audio core will continue reading until reaching the end of the
memory. In order to avoid this situation, a new register was added, which holds
a copy of stop address in the moment when the core start to process a new block.
This new register is the internal stop address.

In the original audio core, the last sample of the block was not sent to the au-
dio chip, but for this project it has to be played. Once the audio core reaches the
last address of the block, it raises the interrupt 13 (if enabled) and copies the au-
diobuffer again to the audioshifter register. In this way the processor has enough
time to refill the audiobuffer, before the core shift the whole data again. The file
with the new version of the audio core is located in hardware/vhdl_designs/DDM16.vhd.

CHAPTER 4. UNDERLYING HARDWARE 68

For more details how to implement this feature, please refer to the comments in
the mentioned file.

4.1.4 Ogg-on-a-chip Hardware Configuration

LEON is a configurable platform allowing a trade-off between performance, size
and power consumption. Once the constraints described in 4.1.2 were identified,
and before do any kind of partition, the most suitable configuration has to be
found. This step was made while the software part was providing tools and method
to carry out the partition, so the results of the configuration on hardware were an
input for the partitioning. In other words, the configuration on real hardware has
to push the system to the edge in order to get the best performance, and see what
is still missing to achieve the goal of decoding in real-time. It is important to
remark that not all settings of the LEON platform are configurable in TSIM (see
3.5) and the performance results of simple player were different on TSIM and on
real hardware. Some Items in the integer unit have ideal values (0 delay time) in
TSIM. On the other hand, some items are well modeled by TSIM, such as cache
configuration, allowing a fast modeling in the simulation, but the rest might be
done on real hardware. The configuration phase ended when the best time for
simple player was reached on the board. This configuration is shown in Figure
4.2 and described in the following sections.

UART I/O Port

IrqCtrlTimers

ROM SRAM I/O

BPROM

1K

Arbiter

AHB−

FPU

AMBA−AHB

AMBA−APB LEON−Plattform

a−cache

d−cachei−cache

LEON SPARC

(AMBA−Master)

(AMBA−Slave)
Memory Controller AHB/APB−

Bridge

32−bit Data bus

Integer Unit

MDCT Core

Audio Core

Figure 4.2: Platform Configuration.

CHAPTER 4. UNDERLYING HARDWARE 69

4.1.4.1 Extraction and Integration of Meiko FPU to LEON

As described before in chapter 3, Ogg-Vorbis uses floating-point calculations,
therefore at first sight a FPU was required, and during hardware configuration,
on software side was not clear if an integer version of Ogg-Vorbis decoder was
feasible. For this reason the FPU was integrated to the system.

Fortunately LEON can be connected to the Meiko floating-point core, which
is part of MicroSparcII [21]1 model.

Meiko FPU provides full floating-point support according to the SPARC-V8
standard [28]. Two interface options are available: either a parallel interface
identical to the co-processor interface, or an integrated interface where FP in-
struction do not execute in parallel with IU instruction. The FPU interface is
enabled/selected by setting of the FPU element of the configuration record.The
parallel interface lets FPU instructions execute in parallel with IU instructions
and only halts the processor in case of data- or resource dependencies. Refer to
the SPARC V8 manual [28] for a more in-depth discussion of the FPU and co-
processor features. The Meiko floating-point unit (FPU) consists of the Meiko
floating-point core and a fast multiplier.

According SCSL license, to use Meiko FPU it has to be extracted by the user.
Since LEON platform is written in VHDL and MicroSparcII is in Verilog, a void
Meiko entity is declared in meiko.vhd file and later instantiated in FPU_core.vhd;
in old versions of LEON this step was done at the bottom of fp1eu.vhd. If a con-
figuration in device.vhd is selected, and it uses Meiko FPU, the component will be
included even when Meiko FPU is no there. Meanwhile the extracted Model can
be synthesized within the same project as LEON (in SYNPLIFY PRO and SYNOP-
SYS is possible), but only after synthesis, when the modules will be expanded to
create the edf file, Meiko is connected to Leon. This could be confusing, because
if Meiko is not properly extracted, but right after synthesis seems to be correct
integrated.

A simplified MicroSparcII FPU Block Diagram is showed in Figure 4.3. Since
Meiko FPU is just a module, and it is an independent FPU, only this one is re-
quired to be extracted. In the code the division is not clear, and looks like the
parallel fp multiplier is a part of Meiko, but that’s no true. In [21] is mentioned
that the fp multiplier was added later (not in the original Meiko core) to improve
fp multiplication performance. The multiplier is rather big, it consumes about the
same number of gates as the rest of the core. The size of Meiko is about 20 000
gates.

The files used by Meiko are located in following directories of MicroSparcII:

1MicroSparcII is available at http://www.sun.com/processors/communitysource/ under the
Sun’s Community Source Licensing (SCSL). This model is free for prototypes. Please refer to
the same link for more details about SCSL.

CHAPTER 4. UNDERLYING HARDWARE 70

fp
Mult.

fp_dataout[63:0]

inst_for_int[31:0]

[63:0]

Meiko

fp_rf

fp_fpc

fprf_dout[63:0]

dc_data[63:0] epc[31:2]

Figure 4.3: MicroSparcII FPU Block Diagram.

cells, ff_primitives, macros, and me_cells, sc. In directory FPU only FPU_ctl,
fpu_exp, fpu_fpc, fpu_frac and fpu_rom module are necessary. Note that the
following modules should not be used: fpufpc, fprf, fpm, fpufpc_spares.

The top entity is named FPU and located in fpu_fpc.v file. It should be uncom-
mented, and the fpufpc entity (top entity of MicroSparcII) should be disabled.

One file has to be created containing the files in the directories mentioned
above, and this file can be added as described before to a synthesis project.

When Meiko FPU is already synthesized with LEON, it can be tested used the
program paranoia.c, located in the examples of LECCS [10].

In the final version of Ogg-on-a-chip, Meiko FPU was not included, because
an integer version of the decoder described in Section 3.4 was implemented, which
was faster than the version using FPU.

4.1.4.2 DSU Integration

Sometimes is useful having the ability-on-board to debug hardware, because sim-
ulations at different levels don’t provide completely realistic scenarios, and only
once a prototype is running on real hardware some bugs can be detected. During
the FPU integration process, some errors on real hardware were difficult to re-
produce using simulators (TSIM for software or Modelsim for Hardware) for this

CHAPTER 4. UNDERLYING HARDWARE 71

reason was incorporated the Debug Support Unit (which is present in LEON-2) to
add software debugging on target hardware The support is provided with the help
of a Debug Communication Link (DCL). This Section describes how to synthesize
it for the XSV-800 board.

The debug support unit is used to control the trace buffer and the processor
debug mode. The DSU is attached to the AHB bus as slave, occupying a 2 MB
address space. Through this address space, any AHB master can access the pro-
cessor registers and the contents of the trace buffer. The DSU control registers
can be accessed at any time, while the processor registers and caches can be only
accessed when the processor has entered in debug mode. For more details about
DSU and DCL please refer to [11].

In order to be used, the entity xsv800 created by Daniel Bretz has to be modi-
fied, because top entity leon on LEON-2 has more pads, whose are the following
external DSU signals:

� DSUACT-DSU active (output)

� DSUBRE-DSU break enable

� DSUEN-DSU enable (input)

� DSURX-DSU receiver (input)

� DSUTX-DSU transmitter (output)

On XSV-800 there is only one serial port available, therefore when the DSU is
used, the serial port is connected to signals DSU-RX and DSUTX, and can not
be used anymore as standard output. It could be possible to use the PS2 port
as serial by using a transceiver. More information about this topic available on
LEON mailing list.

The file hardware/vhdl_designs/XSV800_32b-DSU.vhd is located in cvs and
contains the modified xsv800 top entity. Using this file the processor will enter
by power up to debug mode, because the signal DSUEN-DSU is always high,
enabling DSU, and DSUBRE is connected to clk. In this way at least one low-
high transition occurs, generating break condition and putting the processor in
debug mode.

Gaisler research provides LEON DSU Monitor, which is a debug monitor for
the LEON processor debug support unit, and is the interface to receive and send
data to XSV-800 through serial port. DSUMON can operate in two modes: stand
alone and attached to gdb. In stand alone mode, LEON applications can be loaded
and debugged using a command line interface very similar to TSIM environment.
A number of commands are available to examine data, insert breakpoints and

CHAPTER 4. UNDERLYING HARDWARE 72

advance execution [9]. When attached to gdb, DSUMON acts as a remote gdb
target, and applications are loaded and debugged through gdb.

The inclusion of the DSU doesn’t play any role on the decoder. It was included
as support to develop the requested suitable configuration.

4.1.4.3 Integer Unit Configuration

The integer unit on LEON is actually the processor, therefore important configu-
ration settings take place here, and those settings are until now not configurable
on TSIM.

In standard configuration, the multiplier used is 16x16 bits and takes 4 clock
cycles to execute one multiplication. It consumes 6,000 gates. Nevertheless this
configuration is far away to provide a good performance of the player, since a
big amount of multiplications have to be done. Consequently using the fastest
multiplier have a big impact on the overall system performance.

The configuration used is 32x32 bits and performs one multiplication in one
clock cycle, meanwhile the size is 15,000 gates.

According [11] for FPGA’s the best way to synthesize this multiplier is when
infer_mult is true, that means the synthesis tool will infer a multiplier.

The support of SPARC v8 instruction set is also a requirement for the system.
Extra hardware has to be configured in the integer unit in order to speed up

branch address generation. This hardware is a separate branch address adder, and
it is done setting option fastjump in integer configuration (target.vhd file).

The option fastdecode will improve timing by adding parallel logic for register
file address generation.

The pipeline can be configured to have either one or two load delay cycles. It
is clear using value one the pipeline is faster, therefore lddelay is set to 1.

4.1.4.4 Cache Configuration

The size of separate instruction and data caches has a very important effect on the
player. Using TSIM was found a simple relationship: more cache equals more
speed. It was tested with different configurations e.g. 2k i-cache 4k d-cache, 4k
i-cache 2k d-cache and 4k i-cache 4k d-cache. The last one was by far the best
one, and using Virtex target technology is the biggest configuration possible, due
to the limitation of internal RAM on XCV-800 FPGA. The line size is set to 4
words/line.

CHAPTER 4. UNDERLYING HARDWARE 73

4.1.4.5 AMBA Configuration

When the system was configured, there was still no extra hardware to speed up
the decoder, nevertheless was clear it has to be implemented as an AHB master
and have communication with software via APB bus. Accordingly the extension
of AHB and APB buses was done, based on the old configuration of DDM, which
has two AHB masters (IU and audio core) and an extra APB slave (audio core),
after been imported to LEON-2 (see Section 4.1.1).

Audio core uses memory mapped registers range x800000200-218 while the
MDCT core x800000300-318.

The result of this step give a configuration using LEON2-1.0.2a with 3 AHB
masters and 2 extra APB slaves. The new master was tested in a very simple
way, consisting in read eight elements from memory, add the constant 8 to each of
them, and store the result again in memory. At the same time the DMA was tested
as well. Software and hardware designs for this test are located in cvs.

The AMBA masters have the following priority (higher number is more im-
portant):

� Audio core (2)

� MDCT core (1)

� Processor (0)

The audio core has the highest priority, because depends on it if the music is in
real time or not. When it has no more data, the other masters have to suspend
activities and let the bus free for it. The next important task to have music to play
is the MDCT. If it needs to access the memory, the processor has to wait. Hence
the lowest priority is assigned to the processor. If enough internal RAM for the
MDCT would be available, the bus would be free and the processor could continue
executing the program. In other words, the system would be faster.

4.2 MDCT Core Design

Since Mini-MDCT is a subset of MDCT, and both are the result of the partitioning,
there was no doubt to start implementing the function mdct_backward() of Ogg-
Vorbis in hardware. A logical and intuitive approach is to start with implementing
Mini-MDCT and in the case the system would not fast enough, and still hardware
resources would be available, then extend the implementation to whole MDCT.

In this Section are presented the different aspects developing the Mini-MDCT
core. Starting from the Ogg-Vorbis mdct_backward() function, then how the ar-
chitecture was develop, continuing with the description of the practical work, and
finally configuring software and hardware together.

CHAPTER 4. UNDERLYING HARDWARE 74

Since the decoder uses only the inverse transform, is important to remark that
the operation referred as MDCT in this Chapter is the Inverse MDCT introduced
in Section 2.4.

4.2.1 MDCT Algorithm in Ogg-Vorbis

Different algorithms can be used to calculate the MDCT [34]. The one used by
Ogg-Vorbis is described in [19]. Some functions of the MDCT such as the win-
dowing are outside the mdct_backward() branch, and for this reason, implement-
ing a different algorithm would mean to change substantially other functions of
the decoder. The algorithm for Mini-MDCT implemented in hardware is based on
mdct_backward() code.

The MDCT has the following requirements:

� Uses a block of size n (either 256 or 2048) as input.

� The result is a block of size n

� Uses
� �
� twiddle-factors as trig coefficients and

�
� constants as Bit reverse

coefficients (not used by Mini-MDCT).

These requirements are shown in the block diagram shown in Figure 4.4.
In order to carry out this function, the MDCT core needs to store the next

information in registers:

� Block size (256 or 2048)

� Address where the input data is stored

� Address where the result must be written

� Address where the twiddle factors (Trig vector) are located

� Address where the Bit Reverse coefficients are stored (not used by Mini-
MDCT)

4.2.1.1 Twiddle Factors

Since the twiddle factors (Trig vector) are independent of the frequency, they can
be calculated only once by software, and stored as constants in Look-up tables
(LUT’s), using the following formulas [19]:

for
����������

�
� �

� �) �>.
0�12� �) �� � , � �) � & ��� 1����D� �
)
�� �

CHAPTER 4. UNDERLYING HARDWARE 75

OUT

Bit reverse

TRIG

MDCT

IN

Figure 4.4: MDCT Block Diagram.

for
�������� �

�
� �

� �) �>.
0%1 � � �) � & � �� � � , � �) � & �>1����D� � �
)
� & � �� � �

for
���������� ��� �

� �) �>.
0�12� � � �) � & � �� �
,

� �) � & � � 1 ���D� � � �
)
� & � �� �

Furthermore they have to be integerized. This option is optional in Ogg-
Vorbis, but for Ogg-on-a-chip is required, since an integer version of Ogg-Vorbis
is used. In Figure is shown how these values are stored in memory.

4.2.1.2 Mini-MDCT Calculation Process

The call graph of mdct_backward() is presented in Figure 4.6, and it is a de-
tail of the whole Ogg-Vorbis algorithm presented in Figure 3.8. Mini-MDCT
definition implements a part of mdct_backward(), butterfly_first_stage() and but-
terfly_generic(). In the same way whole MDCT should implement all presented
functions.

The algorithm performs the following steps:

CHAPTER 4. UNDERLYING HARDWARE 76

C

A

B

Trig

Trig + n/2

Trig + n
Trig + 5n/4

Figure 4.5: Twiddle factor LUT in memory.

1. Pre-twiddling: The frequency coefficients are multiplied by twiddle fac-
tors. This step is executed in mdct_backward()

2. Butterflies calculations: The second half of the final result is pre-calculated
from result values of the previous step using butterflies structures. It uses
butterflies(), butterflies_1_stage(), butterflies_generic(), butterflies_32(), but-
terflies_16() and butterflies_8() functions.

3. Bit reversal: The first half of the final result is pre-calculated reversing the
bit order of the second half and multiplying it by constants depending on
block size. It uses bit_reverse(). (Not in Mini-MDCT)

4. Post-twiddling: The final result is obtained multiplying again the pre-
calculated result by twiddle factors. It is done also in mdct_backward().
(Not in Mini-MDCT)

CHAPTER 4. UNDERLYING HARDWARE 77

bit_reverse

Butterflies_32

Butterflies_16

Butterflies_8

Butterfly_generic

MDCT_backward

Butterfly_first_stage

Butterflies

Figure 4.6: MDCT callgraph.

4.2.1.3 Pre-twiddling

The pre-twiddling process consists in multiply the first half of the original input
vector by the twiddle factors, and store the result in special order in the second
half of the output vector. Only multiplications and additions are required.

The process is presented graphically in Figure 4.7. It begins with 8 elements
as input, from

� � ���
to
� �

. The odd part (
� � ��� 	 � � ��� 	 � � ����	 � � ���

) is processed
using the structure shown in Figure 4.8 and the result is stored crossed (i.e. first
two elements below and last two above) from �

�
� to �

�
�
6��

. In the same way the
even part (

� � ����	J� � � E 	J� � � 5 	J� �
) is calculated with a similar structure shown in

Figure 4.9 and the result is stored in-place from �
�
�
� E

to �
�
�
� �

. After processing
the first 8 elements, the next 8 (from

� � � �	�
to
� � ��

) are the inputs, but this time
the result of the odd part is stored from �

�
�
6 E

to �
�
�
6��

, and the result of the even
part in �

�
�
��

to �
�
�
���

. It can be observed that the input is moving towards the
top, the even result towards

� �
, and the odd result towards the bottom (element n).

When those values are reached, the pre-twiddling process finishes.

CHAPTER 4. UNDERLYING HARDWARE 78

+

+

0

2

4

6

+

−

+

−

+

+

+

T1

T0

T0

T1

T3

T2

T2

T3

+
+

+
+

T2

T3

T3

T2

T0

T1

T1

T0

0

2

4

6

−

+

−

−
−

+

−

−

+

+

+

3n/4

n/2n/2

in

n n

out

Figure 4.7: Pre-twiddling process

Looking again at Figure 4.8 the arithmetic structure can be observed. Triangles
represent multipliers. They multiply the input by the Trig constant marked inside
the triangle. The circles are adders, and they perform an addition using the signs
of the inputs. For example, to calculate output element 3, the input element 3 is
multiplied by T1 and this result is subtracted from the multiplication of element 1
by T0. Comparing with Figure 4.9 the differences are the order of the constants
in the multipliers, the signs at the adders and the order of the output.

CHAPTER 4. UNDERLYING HARDWARE 79

+ 0

1

2

3

+

�

+

�

+

+

+

T1

T0

T0

T1

T3

T2

T2

T3

+
+

+
+

1

5

7

3

Figure 4.8: Odd part process

+

+

+

T2

T3

T3

T2

T0

T1

T1

T0

0

2

4

6

0

1

2

3

�

+

�

�

�

+

�

�

+

Figure 4.9: Even part process

CHAPTER 4. UNDERLYING HARDWARE 80

4.2.1.4 Butterflies calculations

After pre-twiddling, the second half of the output will be the input for the butter-
flies calculation step. The result will be stored in the output’s second half again,
repeating this process m times, where m is the number of stages. In each stage, the
number of inputs is reduced by 2, until the number of inputs is 8. Since

N� 5 � ,
the number of stages is

! �=����0�� � � �D���
. This fact can be appreciated in Figure

4.10.

������
������
	�	
�

������
����
������
������
������
������
������
������
������
������
��� �
!�!"�"
#�#$�$
%�%&�&
'�'(�(
)�)*�*
+�+,�,
-�-.�.
/�/0�0
1�12�2
3�34�4
5�56�6
7�78�8
9�9:�:
;�;<�<
=�=>�>
?�?@�@
A�AB�B
C�CD�D

E�EF�F
G�GH�H
I�IJ�J
K�KL�L
M�MN�N
O�OP�P
Q�QR�R
S�ST�T
U�UV�V
W�WX�X
Y�YZ�Z
[�[\�\
]�]^�^
�`�`
a�ab�b
c�cd�d
e�ef�f
g�gh�h
i�ij�j
k�kl�l
m�mn�n
o�op�p
q�qr�r
s�st�t
u�uv�v
w�wx�x
y�yz�z
{�{|�|
}�}~�~
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
��� �
¡�¡¢�¢
£�£¤�¤
¥�¥¦�¦
§�§¨�¨
©�©ª�ª
«�«¬�¬
�®�®
¯�¯°�°
±�±²�²
³�³´�´
µ�µ¶�¶
·�·¸�¸
¹�¹º�º
»�»¼�¼
½�½¾�¾
¿�¿À�À
Á�ÁÂ�Â
Ã�ÃÄ�Ä

Å�ÅÆ�Æ

Ç�ÇÈ�È

É�ÉÊ�Ê

Ë�ËÌ�Ì

Í�ÍÎ�Î

Ï�ÏÐ�Ð

Ñ�ÑÒ�Ò

Ó�ÓÔ�Ô

Õ�Õ�ÕÖ�Ö

×�×�×Ø�Ø

Ù�Ù�ÙÚ�Ú

Û�Û�ÛÜ�Ü

Ý�Ý�ÝÞ�Þ

ß�ß�ßà�à

á�á�áâ�â

ã�ã�ãä�ä

å�åæ�æ

ç�çè�è

é�éê�ê
ë�ëì�ì

í�íî�î

ï�ïð�ð

ñ�ñò�ò
ó�óô�ô

õ�õö�ö

÷�÷ø�ø

ù�ùú�ú

û�ûü�ü

ý�ýþ�þ

ÿ�ÿ���

������

out+n/2

out+n

1024 512 256 128 64 32 16 8

Figure 4.10: Butterflies for big block (2048 elements)

Between two stages, there is at least one butterfly which takes two different
groups of 8 elements as input, and returns 2 groups of 8 elements as output. After
processing both inputs the next two groups are processed. The effect is that the
butterfly is “flying” towards the top. If there is no other butterfly, it will reach
the top. In the case other butterfly is located in the same stage, the first one will
stop when reaches the start position of the second one. In each stage the number
of butterflies is increasing by two, and the distances group 1 - group 2 input and
group 1 - group 2 output are decreasing by two as well. These distances become
zero at the third stage from right to left.

CHAPTER 4. UNDERLYING HARDWARE 81

The arithmetic operations executed for each butterfly are shown in Figure 4.11.
The structure is the detail of the little cloud in Figure 4.10, which is exactly the
so called “butterfly” 2, with 2 inputs (each one of 8 elements) and 2 outputs (each
one 8 elements). Again there are only multiplications and additions.

+

+

+

+

0

1

1

0

1

0

+

+

+
−

+
−

7 7

7 7

T0

T1

T1

T0

−
+

0

1

Figure 4.11: Basic butterfly

4.2.1.5 Remarks

Mini-MDCT finishes when the two inputs of a butterfly are not separate anymore.
It is in Figure 4.10 at column marked as 32 (3th stage), and the reason is as fol-
lows: The software is highly optimized, thus although the butterflies process can
be calculated only with function butterflies_generic(), it split the process in butter-
flies_first_stage(), butterflies_32(),butterflies_16() and butterflies_8() (see Figure
4.6). When the data are in consecutive addresses, they can be loaded in cache and
there been processed until the end. In other words, before stage 3 a whole stage
is processed and then proceed with the next stage, but from stage 3 data are pro-
cessed in row until stage 1 (the final stage). In this way the process is much faster,
because data are in cache until the end result is calculated. In the next Section will
be explained the architecture of the MDCT core, and will be seen, that there are

2Because the shape looks like “wings” of a real butterfly.

CHAPTER 4. UNDERLYING HARDWARE 82

no way to have a kind of cache there (because of the reasons explained in 4.1.2
and 4.1.4.4), therefore a DMA has to be used, and it is not needed much faster
than the software.

Mini-MDCT can be calculated with the arithmetic elements presented in Fig-
ure 4.11, because pre-twiddling and butterflies calculations use the same. Those
are 4 multiplier and 6 adders.

4.2.2 MDCT Core Architecture

So far is identified how the algorithm to implement inverse MDCT introduced in
Section 2.4 works. Now it has to be translated into hardware structures.

In 4.1.4.5 was explained how the empty MDCT is connected to AMBA, and in
4.2.1.4 was mentioned that the MDCT can be implemented using finite arithmetic
elements (multipliers and adders). Besides these two items extra logic has to be
added to generate addresses, transfer the desired input values as operand for the
arithmetic elements, and store the results in the right position in memory. In other
words, 3 elements conforms the architecture of the core:

� AMBA Interface.- Provides the connection with AMBA to have access to
the RAM via AHB, and support the communication with software holding
memory mapped registers via APB.

� Arithmetic Unit.- A set of arithmetic elements, 4 multipliers and 6 adders,
to process data according Ogg-Vorbis MDCT algorithm.

� Control Unit.- It is the director of the orchestra. Commands the activities
of the AMBA interface, and uses the arithmetic unit to calculate the MDCT.

CHAPTER 4. UNDERLYING HARDWARE 83

+

+ +

+ +

+

Data in Ctrl. Regs

Data out

Arithmetic Unit

AMBA−AHB

AMBA−APB

AHB Master

Control Unit

MDCT

AMBA Interface

Ctrl. Sig.

Figure 4.12: MDCT core architecture.

Figure 4.12 shows a block diagram of the architecture. It works as follows:
Software writes required information to process a block (block size, input address,
output address and trig address) into memory mapped registers through APB bus.
They are received by the AMBA interface and stored physically in registers. When
the start signal is sent, again via APB, the control unit calculate addresses using
the arithmetic unit, and indicates the AMBA interface where the required data are
located in memory. Furthermore AMBA interface gets the data and they are stored
in one buffer on control unit. Meanwhile the control unit can calculate the address
to store the data after processing with the help of the arithmetic unit. Then the
data are feed into the arithmetic unit, and the result is stored again in a different
buffer, to proceed to give the signals in order to store the processed data into RAM
again. Once the whole block is processed, the control unit falls in a waiting state
for next block.

After the description of this process can be observed the speed limitation due
to the necessary DMA, which is the bottle neck. The core works as fast as the
DMA is performed. At the same time it blocks the AHB bus, meaning that nobody
else can use it. For this reason even the processor has to wait until the MDCT core
finishes, in order to read again the memory and execute new instructions. Only the
audio core is allowed to interrupt MDCT calculations. For the reasons exposed
before, if enough internal memory could be available for MDCT core, the process

CHAPTER 4. UNDERLYING HARDWARE 84

could be faster and the processor could do something else in between.

4.2.2.1 AMBA Interface

The interface has connection with both buses in AMBA; APB and AHB.

APB slave An APB slave is used as software-hardware interface, in order to
receive the required information to process MDCT (see 4.2.1) as well as the start-
ing signal, and stores them into registers, using range 0x800000300-0x800000318
They are:

Control register 0x80000300
bit 0: MDCT- core, 0 = off, 1= on
bit 1: not used
bit 2: 0=irq disabled, 1=irq enabled
bit 3: irq (read only)
Block size 0x80000304
bit 0: 0=256, 1=2048
Trig address 0x80000308
Read Start address 0x8000030C
Write Start address 0x80000310
Status register 0x80000314 (read only)
bit 0: 0=ready, 1=busy
bit 1: 0=reading, 1=writing
Current Memory address 0x80000318 (read only)

The APB slave is configured with index number 13 in APB slave vector in
target-ooac.vhd file used by LEON.

AHB Master As DMA was identified as bottle neck, and the AHB master car-
ries out the DMA, it is clear the AHB master must be as fast as possible.

According [11] RAM access can be done (read or write) in three clock cycles:
In the first one the address must be valid, in the second one the data come out
(read case) or must be valid (write case) and the third one is a lead-out cycle to
prevent bus contention due to slow turn-off time of memories. The lead-out cycle
is only required when the addresses are not consecutive.

AMBA specification [20] allows burst transfers to improve the bandwidth of
the memory bus. It is only useful when consecutive addresses are accessed. The
difference with the normal timing, is that the lead-out cycle will be added only
after the last element of the burst is processed. The memory controller in LEON
uses this feature to load or write a whole row from/to the cache.

CHAPTER 4. UNDERLYING HARDWARE 85

To be fast enough the AHB master of MDCT core must use this feature as
well. Looking in Figure 4.11 the minimum number of input elements to get a
result is 4. Hence the maximum burst size is 4, but it can be smaller, for example
only for read constants.

The control signals to AMBA interface shown in Figure 4.12 inform how many
elements have to be processed, the operation to do (read or write), where or from
which buffer position have to be read/stored, if the MDCT has finished, the start
address of the burst and the increment for next address. For this reason an adder
to increment current address is required.

AMBA arbiter has to be informed about burst cycles, and it is done using
AMBA signals htrans, hburst, and hsize. For example, whenever a burst access
is initiated, htrans is set to nonseq because the access is no sequential, hsize to
32 (the length of the word) and depending on the increment for the next address
hburst to incr4 or incr8. Once the first element is processed, htrans has to be set
to seq, signaling a sequential access for up coming elements. For more details
about AMBA signals, please refer to [20].

In VHDL code, the entity mdct is the AMBA interface. Behind are connected
the control unit and the arithmetic unit, but they are invisible for the rest of the
platform, therefore from processor’s point of view, who performs the MDCT is
the entity attached to AMBA. After processing a burst, the AMBA interface sends
to the control unit the dataready signal.

4.2.2.2 Control Unit

Due to AHB master determines the speed of the core, the control unit has to be
DMA oriented. The control unit was implemented using a final state machine
(FSM) and uses a signal based on dataready named stateclk to change from state
to state, which is zero while the MDCT is not active, and equal to dataready
during activity. Hence the FSM is a synchronous machine.

In Figure 4.13 is presented the FSM. Fourteen different states are defined as
follows:

� S0: Wait for activation

� ST: Read a group of twiddle factors

� S1-S12: Data process

CHAPTER 4. UNDERLYING HARDWARE 86

ST

S1
S2

S6
S7

S8

S9 S5

S12

S11

S10 S4

S3

S0

Figure 4.13: FSM of control unit.

In the same Figure, 3 different loops might be recognized among data process
states:

1. ST,S1,S2

2. ST,S3,S4

3. ST,S5,ST,S6,S7,S8,ST,S9,ST,S10,S11,S12

Referencing to the process described in 4.2.1.3 can be stated that loop 1 corre-
sponds to the odd pre-twiddling part, and loop 2 to the even pre-twiddling part.
Firstly the loop 1 will be executed so many times as required by the block size,
then loop 2 will be execute exactly the same times. Of course ST is always a read
state. S1 is a read state again, and the result of the operations is written during S2.
Nevertheless during both states data arithmetic calculations are done. S2 is read
state and S3 write state for loop 2 .

In a similar way, the process described in 4.2.1.4 is elaborated by loop 3 so
many times as the block requires. On the original mdct_backward() function (see
Figure 4.6) the functions butterflies_generic() and butterflies_first_stage() corre-
spond to loop 3 as well. In order to understand deeply the complexity of loop 3,

CHAPTER 4. UNDERLYING HARDWARE 87

the original mdct_backward() code has to be compared direct with VHDL code of
mdct_syn.vhd file. In this file are commented whenever possible, the C lines that
the VHDL code implements.

The FSM in VHDL has two different combinational processes. One for the
arithmetic of MDCT, and the second one for address calculations and send control
signals to AMBA interface.

In ST state, with a rising edge of stateclk signal, the FSM will go to the state
stored in nextstate internal register.

Finally, when all data have been already processed, the FSM goes into S0 and
waits for the next activation.

The states representation is done in VHDL with a user-defined enumerated
type, according the FSM guidelines described in [17].

type mdct_state is (s0,s1,s2,s3,s4,s5,s6,s7,s8,s9,s10,s11,s12,sT);

Then they should be encoded by the synthesis tool. SYNPLIFY PRO uses either
gray code one-hot coding.

The control unit is represented in VHDL code by the entity mdctctrl in mdct_syn.vhd
file.

4.2.2.3 Arithmetic Unit

The arithmetic unit is composed by different two-inputs arithmetic elements, such
as multipliers and adders. This elements have to comply with the arithmetic preci-
sion established in Ogg-Vorbis decoder, which is for variables type long (32 bits).
As mentioned in 4.2.1 the MDCT can be calculated using only the arithmetic
elements shown in Figure 4.11. It could be even possible to perform the same
calculation with less arithmetic elements, however in that case the bottle neck of
the process would not be anymore the DMA, but the arithmetic process. The only
limitation for include more arithmetic elements is the size available on the FPGA.
For this reason the elements shown in Figure 4.11, 4 multipliers and 6 adders,
were implemented in the arithmetic unit. Adding more arithmetic elements won´t
speed up the process, because it is constricted by the DMA.

Due to computer arithmetic has been so successful that it has, at times, be-
come transparent, is not necessary to reinvent the wheel. Arithmetic circuits are
no longer dominant in terms of complexity; registers, memory and memory man-
agement, instruction issue logic, and pipeline control have become the dominant
consumers of chip area in today’s processors [22]. Modern synthesis tools use
libraries to synthesize arithmetic operators easily, meaning that no model at gate
level is required. The synthesis tool used in this project, Synplify pro, is one
of those tools, hence it was no need to redesign multipliers and adders. In the

CHAPTER 4. UNDERLYING HARDWARE 88

VHDL code the arithmetic unit is not an entity like the control unit or the AMBA
interface. The arithmetic operations are located in the concurrent process at the
end of the mdctctrl entity. During synthesis the tool will infer how to implement
these operations in hardware. In this way the best results are obtained for FPGA’s
(not necessary for ASIC’s), even LEON uses this feature for the multiplier in the
Integer Unit [11].

In file mdctlib.vhd the arithmetic input and output types are declared. Later
on in mdct_syn.vhd registers with that type are declared, which are clocked by the
system clock. That means for the synthesis tool, the multiplications and additions
have to be performed in one clock cycle, but the size is not restricted.

+

+

+

+

+

+

>>

>>

Arithmetic Unit

OutputInput

Registers Registers

(32 bits) (32 bits)

(32 bits)(64 bits)

(64 bits) (32 bits)

Figure 4.14: Arithmetic Unit.

In Figure 4.14 is shown the structure of the arithmetic unit. Two adders can
be observed after the four multipliers, and 4 adders connected from input to the
output. The adders after the multipliers are 64 bits long, because the result of
the multiplication has this length. These 64 bits adders are only connected to the
multipliers, therefore is not possible for control unit to use them. Each of those
adders has a signal add_fun, which signalizes if the result of the second multiplier
has to be added or subtracted from the result of the first multiplier.

In the case of the path multipliers-adders, the result is 64 bits long. Conse-
quently it has to be returned again to 32 bits in order to be stored in memory.
Hence two shifters are inserted with input 64 bits and output 32 bits. This is done
by function MULT_NORM declared in file mdctlib.vhd. It shifts the 64 bits regis-

CHAPTER 4. UNDERLYING HARDWARE 89

ter TRIGBITS to the right. TRIGBITS is a constant declared in the same file, and
for the used integer Ogg-Vorbis version is set to 14.

The rest 4 adders are used to calculate values of the MDCT or calculate ad-
dresses. They can be accessed by the control unit with the input registers.

4.3 Simulation, Synthesis and Test

This Section is the last one about hardware, and will discuss the process how
to produce the files required by the XSV-800 board. It is no easy to separate
simulation phase from the design phase. Here it is done only for clearness, but in
reality the simulation and the design phases ran together.

The workflow is presented in Figure 4.15. At the top can be appreciated the
VHDL files of the LEON model (start point), and at the bottom the XSV-800
board (end point). Here can be seen how the result of the previous phases on
the hardware part are together. In first place the configuration files described in
Section 4.1.1 (result of configuration process. See Section 4.1.4) have to replace
the original configuration LEON files. Then the MDCT VHDL file (result of
core design process) is added. After that is only missing the result of the whole
system, which is actually the result of this phase. Two branches can be observed:
to the left towards the simulation (simulation path), and to the right towards the
implementation on hardware, going through synthesis (synthesis path). The order
is simulate the system firstly and then proceed to the synthesis. Tools used are
MODELSIM for simulation, SYNPLIFY PRO for synthesis, and XILINX ISE 4.1I.
In Figure 4.15 rectangles with round corners represent tools with Graphical User
Interface (GUI), ellipses are line commands and rectangles are files.

CHAPTER 4. UNDERLYING HARDWARE 90

LEON VHDL
Gate level

 LEON Sources
(VHDL)

(VHDL)(VHDL,Verilog)

DDM, FPU MDCT

.edf

Mentor Model

Modelsim
(vsim)

Testbench
LEON

(VHDL)

Assembler
Test Software

.exo

promgen

.ngd

 map

 ngdbuild

.ngm

.ncd

.bit

par

bitgen

ngd2vhdl

Synplify Pro

vcom

XSV−800

simprim

.pcf

.ucf

.sdc

.nga

ngdanno

Figure 4.15: Hardware workflow

CHAPTER 4. UNDERLYING HARDWARE 91

4.3.1 Simulation Branch

Simulation path is the main support for the design process. Once the simula-
tion succeeds, is possible to proceed with the synthesis. In cvs directory (hard-
ware/vhdl_designs) there are two different designs of the MDCT core:

� mdct.vhd is a simulable model of the whole MDCT. It uses mdctlib.vhd,
mdctcomp.vhd, mdctrom256.vhd or mdctrom2048.vhd.

� mdct_syn.vhd is the simulable and synthesizable version of Mini-MDCT. It
uses mdctlib.vhd.

LEON platform is ready to be simulated. It comes with testbenches where param-
eters of the system can be adjusted, such as the clock frequency and the data bus
length. After unpacking LEON and calling make on top directory, the work direc-
tory containing the simulation model will be created. It can be manually done us-
ing command vlib work to create the directory and then vcom <LEON_files_list>3

The above described operation compiles the testbenches as well. Then Mod-
elsim can be started by calling vsim command. After selecting the test bench
configuration (for Ogg-on-a-chip is always tb_32_0_32) the simulation can be
started with the run command (or the run button on GUI).

To simulate Ogg-on-a-chip system, macro files to compile the model are lo-
cated in cvs directory under hardware/modelsim. Macro compileMDCT_syn.do is
used for the Mini-MDCT. It compiles the whole platform and testbenches.

Ogg-on-a-chip requires software for simulation. Simulating the real player
takes too long (a couple of days), for this reason special software has to be used.
It is only the software-hardware interface via memory mapped registers writ-
ten in SPARC assembler. Different programs are located in cvs (hardware/test-
software). They call MDCT (256,2048) and the audio core. In order to execute a
program it has to have the dat extension, and be renamed as ram.dat in LEON’s
/tsource directory.

An assembler program can be compiled using LECCS as follows:

sparc-rtems-as -o <file>.o <file>.s
sparc-rtems-ld -s -Ttext 0x40000000 -o <file> <file>.o

sparc-rtems-objdump -s <file>

The result is <file>.dat and to be executed must be copied to /tsource/ram.dat,
and then start the simulation as described before. In Figure 4.16 can be observed
the moment when the MDCT core starts to work after configuring the control

3The files have to be exact in the same order as in Makefile

CHAPTER 4. UNDERLYING HARDWARE 92

registers. In other words, at the left of the cursor (vertical line) takes place the
APB communication with software and at the right starts the AHB execution.

Figure 4.16: Screen-shot of Modelsim

4.3.1.1 Post-synthesis Simulation

Some times there are no errors on the RTL (register transfer level) simulation but
after synthesis the design doesn’t work on the board. Therefore simulations at
different levels (register level, gate level) are not only desired but required. In
Figure 4.15 two paths connect right (synthesis) with left (simulation) branches,
and they represent post-synthesis simulation.

The first path appears after creating the ngd file with ngdbuild of the right
branch, then is possible to convert it again into VHDL code using ngd2vhdl and
simulate the model with the simprim libraries.

CHAPTER 4. UNDERLYING HARDWARE 93

The second one is after Place and Route (PAR), using the ncd file to create a
nga file with ngdanno, and the nga file is the input for ngd2vhdl in order to have
again a VHDL description.

In both cases the result is only one vhd file, 4

which can be compiled using simprim libraries. Then the testbenches have to
be recompiled. The macro tb-compile.do can be used for this purpose.

4.3.2 Synthesis Branch

The right branch of Figure 4.15 starts with SYNPLIFY PRO. This synthesis tool
has a GUI (see Figure 4.17), but it can be used at the command line as well.
Is important to remark, that not all simulable designs are synthesizable, because
the synthesis tools use a subset of VHDL. The VHDL subset of Synplify Pro is
described in [17].

A project containing different files is synthesized according given constraints
in sdc file. It has optionally the feature to add attributes in this file and there is no
required to re-compile the project if some attribute is changed after compilation.
If these attributes are in the VHDL code, then it has to be re-compiled. The result
is the netlist in one edf file.

After this step the process becomes technology specific. Then the XILINX

ISE 4.1I tools are used.5

With a user constraint file (ucf) ngdbuild generates the ngd file, which is the
input for map or can generate VHDL code (see Section 4.3.1.1). Afterwards map
generates a ngm file as input for par.

Place and route is the critical step for timing. Because of that, if after exe-
cuting par the time constraints are not met, the output can be the input again,
until meeting the constraints [18]. The ncd output file can be simulated again as
described in Section 4.3.1.1.

Finally, once the timing is correct a bit file is generated. This bit file could be
downloaded already to the board, and program the FPGA, if LEON was synthe-
sized with softprom booting type [11]. For our project this feature was not used,
instead the flash RAM on the board was programmed using an exo file, in this
way the board works stand-alone. Each time that the power is on, the FPGA is
programmed from flash RAM.

4The original model is composed by 65 vhd files.
5The tools ngd2vhdl and ngdanno described in Section 4.3.1.1 also belong to Xilinx ISE

CHAPTER 4. UNDERLYING HARDWARE 94

Figure 4.17: Screen-shot of Synplify Pro

4.3.3 Hardware Test

Once the exo file containing the hardware design was downloaded to the board
with help of the vendor provided XSTOOLS6 , and before testing with the real
player, the correctness of the hardware needs to be ensured. It is done using the
test programs for the MDCT TSIM module described in Section 3.5.

Two main issues are tested: software-hardware communication, and the func-
tionality of the MDCT core. If the right inputs (See Section 4.2) are read by the
hardware, and it start to work at the right moment, the first part of the hardware-
software communication is confirmed. Consequently the numerical result has to
be compared with the result calculated by the original mdct_backward() function.
If it is correct, both, second part of hardware-software communication and hard-
ware functionality, are confirmed.

6The version used was ported to Linux by Daniel Bretz. More details in [2].

CHAPTER 4. UNDERLYING HARDWARE 95

4.4 Final System Test

Testing the system is done by downloading the hardware design (exo file) and
player (exo file) to the board. This is the point where hardware and software join
each other in Figure 1.2.

The hardware exo file, which has all features to work together with software
is located under hardware/fpga_designs/ooac-v1.exo in cvs.

Table 4.1 is an extension of Table 3.3. In the first column are the results given
by TSIM, and in the second column are presented the results on real hardware.
The hardware is speeding up the optimized player by a factor of 1.18. It isn’t
still real-time (should be 15 sec.) at the sample frequency used for this test (48
kHz. See Section 4.1.2). On the board, both versions (only software and soft-
ware+hardware) present a gap, but in hardware+software version the gap is no-
table smaller.

If enough internal RAM would be available on the FPGA, it could be 2-3
times faster. Besides of that, the Mini-MDCT could be extended to whole MDCT,
in order to achieve the high quality music in real-time on this particular low
computation-power system (XSV-800).

Table 4.1: Software-Hardware result comparison at 25 MHz
Program TSIM result (seconds) XSV-800 result(seconds)
Final Player 19.42 21.1
Final Player + Mini-MDCT 15.41 17.9

A different test was done using 24kHz as sample frequency, and this is prop-
erly executed in real-time by the hardware-software cooperation.

Chapter 5

Conclusion

An audio decoder using Ogg-Vorbis was designed and implemented as embed-
ded system by using Hardware/Software co-design techniques, therefore the goal
of Ogg-on-a-chip project was achieved. The main results of this project can be
summarized as:

� Some applications for desktop computers can be implemented as an embed-
ded system after software optimization and addition of extra hardware.

� A demonstrator using a particular low computation-power system was built,
according the result of the partition.

� The Hardware/Software partition depends on the target technology. For the
demonstrator built during this project, the results of the partition are:

– an integer version of Ogg-Vorbis player on software side

– an AMBA-compatible Mini-MDCT core on hardware side.

� Projects using open source are feasible and reliable, since Ogg-on-a-chip
uses open source software and hardware elements: Ogg-Vorbis player, RTEMS
and LEON.

� The knowledge gained during this project is extensible to different fields,
not only multimedia applications.

96

Appendix A

CVS

CVS is the Concurrent Versions System, the dominant open-source network-transparent
version control system. CVS is useful for everyone from individual developers to
large, distributed teams.

Its client-server access method lets developers access the latest code from any-
where there’s an Internet connection. Its unreserved check-out model to version
control avoids artificial conflicts common with the exclusive check-out model. Its
client tools are available on most platforms.

CVS is used by popular open-source projects like Mozilla, the GIMP, XEmacs,
KDE, and GNOME.

In the division Computer Architecture the cvs repository is accessible under:
http://rai16.informatik.uni-stuttgart.de/cgi-bin/cvsweb/
By selecting Ogg-on-a-chip on the combo box, the following modules will be

displayed:

� Hardware: LEON source code, synthesized designs, hardware VHDL and
exo files.

� Papers: Important papers and documents for Ogg-on-a-chip.

� Presentation: Presentation and figures in Open-Office.

� Report: Documents and figures used in this report.

� Software: Ogg-Vorbis player, tools, RTEMS and TSIM modules.

It is possible to use cvs from the command line1 using the next environment vari-
ables:

1More information about CVS and CVS commands in www.cvshome.org

97

APPENDIX A. CVS 98

CVSROOT=<username>@rax3.informatik.uni-stuttgart.de:/usr/local/cvs/oggonachip

CVS_RSH=ssh

Contribution List

� Chapter 1: co-written

� Chapter 2

– Section 2.1: Pattara Kiatisevi

– Section 2.2: Pattara Kiatisevi

– Section 2.3: Pattara Kiatisevi

– Section 2.4: Luis Azuara

– Section 2.5: Luis Azuara

� Chapter 3: Pattara Kiatisevi

� Chapter 4: Luis Azuara

� Chapter 5: co-written

� Appendix A: Luis Azuara

99

Bibliography

[1] Chris Bagwell, Sox - Sound eXchange, http://home.sprynet.com/
~cbagwell/sox.html, 2002.

[2] Daniel Bretz, Digitales Diktiergeraet als System-on-a-Chip mit FPGA-
Evaluierungsboard, Master’s thesis, Institute of Computer Science, Univer-
sity of Stuttgart, Germany, February 2001.

[3] Mike Coleman, Vorbis Illuminated, http://www.mathdogs.com/
vorbis-illuminated/, 2002.

[4] Dan Conti, iv-dev, Integerized Vorbis Library, http://sourceforge.
net/projects/ivdev/, 2002.

[5] OAR Corp, RTEMS Documentation, 2002.

[6] OAR Corporation, RTEMS Web Site, http://www.oarcorp.com,
2002.

[7] XESS Corporation, XSV Board Manual, http://www.xess.com, 2001.

[8] , XESS Web Site, http://www.xess.com, 2002.

[9] Jiri Gaisler, LEON DSU Monitor User’s Manual, http://www.
gaisler.com/, 2002.

[10] , LEON Web Site, http://www.gaisler.com/, 2002.

[11] , The LEON-2 User’s Manual, http://www.gaisler.com/,
2002.

[12] Guenter Geiger, Man page of play command, 2002.

[13] Free Software Foundation Inc., GNU Autoconf manual, http://www.
gnu.org/manual/autoconf/index.html, 2002.

[14] , Man page of gprof command , 2002.

100

BIBLIOGRAPHY 101

[15] Rational Inc., Rational Software – Purify, http://www.rational.
com/products/pqc/index.jsp, 2002.

[16] Red Hat Inc., Newlib C Library, http://sources.redhat.com/
newlib/, 2002.

[17] Synplicity Inc., Synplify Pro Reference Manual , http://www.
synplicity.com/, 2001.

[18] Xilinx Inc., Development System Reference Guide , http://www.
xilinx.com/, 2001.

[19] B. Edler Kh. Brandenburg, Th. Sporer, The use of multirate filter banks for
coding of high quality digital audio, 6th European Signal Processing Con-
ference (EUSIPCO) (1992).

[20] ARM limited, AMBA Specification 2.0, http://www.arm.com, 1999.

[21] Sun Microsystems, microSPARC-IIep User’s Manual, http://www.
sun.com, 1999.

[22] Berhooz Parhami, Computer arithmetic, algorithms and hardware designs,
Oxford University press, 2000.

[23] Nicolas Petre, Fixed-point Vorbis Library, ftp://ftp.arm.linux.
org.uk/pub/linux/arm/people/nico/vorbis/, 2002.

[24] Florent Pillet, Kprof Web Site, http://kprof.sourceforge.net/,
2002.

[25] Bradley A Princen J, Analysis/synthesis filter bank design based on time
domain aliasing cancellation, IEEE Transactions (1986).

[26] Bradley A Princen J, Johnson A, Subband/transform coding using filter bank
designs based on time domain aliasing cancellation, Proc. of the ICASSP
(1987).

[27] Georg Sander, Visualization of Compiler Graphs, http://rw4.cs.
uni-sb.de/users/sander/html/gsvcg1.html, 2002.

[28] Inc. SPARC International, SPARC Architecture Manual Version 8, http:
//www.sparc.org/standards/v8.pdf, 1992.

[29] , SPARC International Web Site, http://www.sparc.org,
2002.

BIBLIOGRAPHY 102

[30] Peter Symes, Video compression demysitified, McGraw-Hill Professional
Publishing, 2000.

[31] LEOX Team, LEOX, http://www.leox.org, 2002.

[32] 4Front Technologies, OSS Programmer’s Guide v.1.1, 2002.

[33] uClinux, uClinux – Embedded Linux/Microcontroller Project, http://
www.uclinux.org, 2002.

[34] Vincent Vanhoucke, Block Artifact Cancellation in DCT Based Image com-
pression, http://www.stanford.edu/~nouk/mdct/, 2001.

[35] XIPH, Ogg Vorbis Web Site, http://www.xiph.org/ogg/vorbis/,
2002.

Wir versichern, dass wir diese Arbeit selbständig verfasst und nur die angegebe-
nen Hilfsmittel verwendet haben.

Luis Azuara

Pattara Kiatisevi

