1284

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 12, NO. 12, DECEMBER 2004

Online BIST and BIST-Based Diagnosis of
FPGA Logic Blocks

Miron Abramovici, Fellow, IEEE, Charles E. Stroud, Senior Member, IEEE, and
John M. Emmert, Senior Member, IEEE

Abstract—We present the first online built-in self-test (BIST) and
BIST-based diagnosis of programmable logic resources in field-
programmable gate arrays (FPGAs). These techniques were imple-
mented and used in a roving self-testing areas (STARs) approach
to testing and reconfiguration of FPGAs for fault-tolerant appli-
cations. The BIST approach provides complete testing of the pro-
grammable logic blocks (PLBs) in the FPGA during normal system
operation. The BIST-based diagnosis can identify any group of
faulty PLBs, then applies additional diagnostic configurations to
identify the faulty look-up table or flip-flop within a faulty PLB.
The ability to locate defective modules inside a PLB enables a new
form of fault-tolerance that reuses partially defective PLBs in their
fault-free modes of operation.

Index Terms—Adaptive computing, built-in self-test (BIST),
fault diagnosis, fault tolerance, field-programmable gate arrays
(FPGAs), online testing.

1. INTRODUCTION

IELD-PROGRAMMABLE gate arrays (FPGAs) that can

be reprogrammed in a system and allow a system using
reconfigurable hardware to adapt to changes in its external
environment, are used to extend its initial capabilities by
implementing new functions on the same hardware platform.
In-system reprogrammability results in increased functional
density and reduced power consumption—features very im-
portant in many domains, such as space missions or mobile
devices. The reprogrammability and the regular structure of
FPGAs are ideal to implement low-cost fault-tolerant hardware,
which makes them very useful in systems subject to strict high-
reliability and high-availability requirements, such as systems
deployed in harsh and/or hostile environments or in remote
unmanned long-life missions or systems whose operation is
critical and must continue uninterrupted. These types of appli-
cations rely on online testing to protect against both transient
failures and permanent faults that appear during the lifetime of
the system. Online testing must also provide high-resolution

Manuscript received November 11, 2002; revised December 17, 2003.
This work was supported by the Defense Advanced Research Projects
Agency (DARPA) Adaptive Computing Systems program under Contract
F33615-98-C-1318.

M. Abramovici is with Design Automation for Flexible Chip Architectures
(DAFCA), Framingham, MA 01701 USA (e-mail: miron@dafca.com).

C. E. Stroud is with the Department of Electrical and Computer Engi-
neering, Auburn University, Auburn, AL 36849 USA (e-mail: cestroud@eng.
auburn.edu).

J.M. Emmert is with the Department of Electrical and Computer Engineering,
University of North Carolina at Charlotte, Charlotte, NC 28223 USA (e-mail:
jmemmert@uncc.edu).

Digital Object Identifier 10.1109/TVLSI.2004.837989

diagnosis, because to bypass faulty resources, they must first
be accurately located.

However, most previous methods for FPGA testing address
only offline testing using either externally applied vectors
[1]-[9] or built-in self-test (BIST) [10]-[17]. Online FPGA
testing methods based on coding techniques [18], [19] do not
diagnose the detected faults. Online testing based on triple (or
multiple) modular redundancy have a very high overhead. The
“fault-scanning” method [20] achieves low-overhead online
testing, but it is applicable only to bus-based FPGA architec-
tures, it assumes that certain parts of the FPGA are fault free,
and it requires a modified design of the FPGA blocks.

One problem with conventional online testing is that it de-
tects only faults that affect the current operation performed in
the system. New faults, however, are equally likely to occur in
spare resources or in the currently unused portion of the opera-
tional part of the system. These dormant faults may accumulate
and have a very detrimental effect on the system reliability [21].
Thus, to guarantee a reliable operation, the online test must com-
pletely check all the system resources, including spares.

In this paper, we present new techniques for online testing and
diagnosis of nontransient faults in programmable logic blocks
(PLBs), developed as part of the roving self-testing area (STARs)
project [22], [23]. A STAR, is a temporarily offline section of the
FPGA where self-testing goes on without disturbing the normal
system activity in the rest of the chip. The roving of the STARs
periodically brings every section of the device under test. This
approach guarantees complete testing of the FPGA (PLBs, pro-
grammable interconnect, and configuration memory), including
all spare resources, and does not require any part of the chip to
be fault free. Recently, the roving STARs approach has been
extended for testing delay faults [24]. Our techniques are ap-
plicable to any FPGA supporting incremental run-time recon-
figuration, which is the ability to reconfigure only a part of the
FPGA, while normal operation continues uninterrupted in the
rest of the device. FPGAs supporting this feature include ORCA
(from Lattice) and Virtex and Spartan (from Xilinx).

Our online BIST approach detects any combination of mul-
tiple faulty PLBs, with the exception of a few pathological cases
unlikely to occur in practice. Our diagnosis approach is based
on analyzing the BIST results, followed (when needed) by an
adaptive divide-and-conquer method to obtain maximum diag-
nostic resolution. These techniques uniquely identify any com-
bination of multiple faulty PLBs, again with the exception of a
few pathological cases. Additional BIST-based diagnostic tech-
niques identify the defective parts inside a faulty PLB, such
as a faulty look-up table (LUT) or flip-flop. We used ORCA

1063-8210/04$20.00 © 2004 IEEE

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE. Downloaded on October 22, 2008 at 10:34 from |IEEE Xplore. Restrictions apply.

ABRAMOVICI et al.: ONLINE BIST AND BIST-BASED DIAGNOSIS OF FPGA LOGIC BLOCKS

TABLE 1
ACRONYMS AND ABBREVIATIONS
Acronym Meaning
BIST Built-In Self-Test
BISTER group of PLBs forming a BIST unit
BUT Block Under Test
FPGA Field-Programmable Gate-Array
H-STAR Horizontal STAR
LUT Look-Up Table
ORA Output Response Analyzer
ORCA Optimized Reconfigurable Cell Array
PLB Programmable Logic Block
PUB Partially Usable Block
STAR Self-Testing ARea
TPG Test Pattern Generator
TREC Test and REconfiguration Controller
V-STAR _ Vertical STAR

[25] for our implementation, but we emphasize that our tech-
nique can be applied to any FPGA that features in-system in-
cremental run-time reconfiguration, such as Virtex and Spartan
series FPGAs.

The remainder of this paper is organized as follows. Section II
outlines the roving STARs approach and describes the online
BIST method. The fault-detection capabilities of the approach
is described in Section III, and Section IV presents diagnosis
based on analysis of the BIST results. Section V discusses di-
agnosis of faults internal to PLBs, and Section VI presents ex-
perimental results obtained on known defective ORCA FPGAs.
Finally, Section VII presents conclusions and suggestions for fu-
ture research directions. The acronyms and abbreviations used
in the paper are summarized in Table I.

II. THE ROVING STARS

We assume that an embedded processor controls the test,
diagnosis, and fault-tolerance functions associated to all the
FPGAs in the system. This test and reconfiguration controller
(TREC), which has separate processor-specific fault-tolerance
mechanisms [26], also maintains all the configurations that
may be used in the future. The roving STARs approach targets
nontransient faults that appear during the lifetime of the system.
Here a fault is one faulty PLB that may have several arbitrary
internal faults. Once faulty resources have been detected and
identified, our fault-tolerant techniques, presented in [27], reuse
faulty logic resources whenever possible, and bypass faults
using fault-free spare resources otherwise. As a result, any
combination of faulty logic resources can be tolerated given
sufficient spare resources in the FPGA. For online testing of
transient faults, the application logic implemented in FPGAs
employs a concurrent error-detection technique, such as the one
described in [19]. Fault tolerance for transient faults is achieved
by periodically saving the state of the system (checkpointing)
and restoring the last saved state when a transient is detected.

Fig. 1(a) illustrates the initial floor plan of an FPGA, having a
contiguous working area and a spare area consisting of a vertical
STAR (V-STAR) with two columns and an horizontal STAR
(H-STAR) with two rows. A STAR tests both the PLBs and
the programmable interconnect in its area, but in this paper, we

1285

I I I ko 1 ;
T
== ———t—— t I ——+
NP Y Ty B L - _ | 1 _H-STAR

| T T T 1 i

@L &L gt 1 b)) |+ e
| € | working ;. R E N
T T T . ihe
i el e o -.:_g—-a,@——f’gi—ﬁm
= T A R e RO
1 T T T = 1 [
Fig. 1. Roving STARs: (a) initial position and (b) during roving.
BUT [—> ORA)
Start/Reset, Pass/Fail
TPG S
BUT [—>
Fig. 2. BISTER tile for PLBs.
B101 B103
B201 B203
Scan
B102 B104 Out
B202 B204
Scan In from previous ORA
TCK
Fig. 3. Integrated ORA/scan cell.

will focus only on PLB testing. A roving step involves relo-
cating a slice of the system logic adjacent to the STAR in the
current STAR position and recreating the STAR logic in the
area vacated by the system logic. This is illustrated in Fig. 1(b)
after one roving step across of the V-STAR and one roving step
down of the H-STAR. Testing the entire FPGA takes one full
horizontal sweep of V-STAR and one full vertical sweep of
H-STAR. While only one STAR would have been sufficient to
test all the PLBs in the FPGA, having two roving STARs makes
possible complete testing of interconnect [28] and also provides
essential features for diagnosis and fault tolerance [27]. For an
N x N FPGA, a full sweep of one STAR requires N /2 positions;
thus, the total number of roving positions is N2/4. The roving
process is based on run-time reconfiguration and it is controlled
by TREC [22].

A STAR consists of several disjoint tiles, with the PLBs in
each tile configured as shown in Fig. 2, in a structure called a
BISTER. All BISTERs in the same STAR work concurrently.
A BISTER inherits some of the concepts used in our offline
FPGA BIST methods for PLBs [11], [14], [29]. Specifically,
the BISTER contains PLBs configured as a test pattern gener-
ator (TPG) that applies pseudoexhaustive test patterns to two
identically configured blocks under test (BUTs), whose out-
puts are compared by an output response analyzer (ORA). The
ORA latches and reports mismatches as test failures. Direct
comparison avoids possible aliasing errors introduced by com-
pressing responses into signatures [30]. The additional testing
typically required in comparison-based testing to ensure that the

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE. Downloaded on October 22, 2008 at 10:34 from |IEEE Xplore. Restrictions apply.

1286

comparator is fault free is not needed in our approach, since
every PLB in turn is tested as a BUT. The TPG and ORA are
reset by TREC just prior to initiating the BIST sequence. Fig. 3
illustrates an ORA comparing four pairs of outputs (denoted
Ol through O4) from two BUTs (denoted B1 and B2). The
flip-flop stores the result of the comparison, and the feedback
loop latches the first mismatch in the flip-flop. In the Pass/Fail
result, flip-flops of all ORAs are connected to form the scan
chain [11]. A fest phase is defined as a test configuration that
tests a BUT in one of its modes of operation, while a fest ses-
sion is defined as the set of test phases that test a BUT in all of
its modes of operation [29]. In every test phase, the scan chain
is also tested, to assure the integrity of the test results.

The TREC accesses the FPGA using its boundary-scan
mechanism [31], so that this access is transparent to the normal
function of the chip (most FPGAs support boundary scan). The
TREC employs the boundary-scan interface to reconfigure the
STARs for different test and diagnosis operations, to initiate the
BISTERS, and to scan out the test results. BISTERs work with
the boundary-scan test clock, TCK, and the configuration clock
is also derived from TCK. The first configuration of a BISTER
checks the proper operation of the scan register, inducing
mismatches by comparing BUTs with different configurations.
This also protects against the case of all ORA flip-flops being
stuck at the “Pass” value. The TREC also controls the system
clock(s) and has the capability to stop the system operation
for short intervals to allow for safe relocation of a slice of the
system logic in the last tested area. If faults are detected, the
TREC starts the diagnosis process.

III. DETECTING FAULTY PLBS

The BUTsS are repeatedly configured to be tested in all their
modes of operation. In order to minimize fault latency, it is im-
portant to minimize the number of BIST configurations required
to completely test the PLBs; this is particularly important since
the configuration download time is much greater than the BIST
application time. The modes of operation of a PLB may be de-
termined only from the information available in the FPGA data
book, without having a detailed knowledge of its implementa-
tion. Since the BISTER provides complete testing only for the
BUTs, we have to reconfigure every BISTER several times so
that each PLB will be a BUT in at least one configuration. The
number of PLBs for an ORA and for a TPG depend on the target
PLB architecture. In our implementation in the ORCA FPGA,
a TPG needs three PLBs and an ORA only one. The same num-
bers of PLBs are needed for Virtex and Spartan II FPGAs.

Fig. 4(a) illustrates six floor plans of a 3 x 2 BISTER tile,
where T, B, and O denote, respectively, a TPG cell, a BUT, and
an ORA. The goal of the six configurations is to systematically
rotate the functions of the PLBs, so that eventually every PLB
in the tile is completely tested twice, each time being compared
with a different BUT. This rotating strategy assures that every
single faulty PLB and almost all combinations of multiple faulty
PLBs are guaranteed to be detected; these results are proven
next.

Claim 1: Any single faulty PLB is guaranteed to be detected
in at least two BISTER configurations.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 12, NO. 12, DECEMBER 2004

1 2 3 4 5 6
TIB| [(Bl|O| lo|B| |B|T| [T|T]| |T|T
@|Tlo| |TIB| IBIT| |O|T| IB|T| |TIB
TIB| (T|T| |T|T| |B|T| |O|B] |B|O
T|B| [(B|O| |o|B| |B|T| |T|T] |T|T
®(Tlo| |TIB| IB|T| |O|T| IB|T| |T|B
TIB| (T|T| |T|T| |B|T| |O|B] |B|O
T|B| [BlO] [o|B]| |BIT| [T|T| |T|T
@(Tlo| |TIB] |B|T| |O]|T| IB|T| |T|B
TI(B| |T|T] [T|T] |BI|T| |[O|B] |B|O

Fig. 4. Rotations for a 3 x 2 BISTER tile: (a) 6 rotations; (b) with two
faulty BUTs in one BIST configuration; and (c) one faulty BUT in one BIST
configuration.

Proof: The faulty PLB is a BUT in two BISTER configu-
rations, where exhaustive input patterns are produced by a fault-
free TPG, and its outputs are compared with a fault-free BUT by
a fault-free ORA. Hence, no fault (single or multiple) detected
in the BUT can escape detection in these two configurations. B

Claim 2: Except for a few pathological cases, any pair of
faulty PLBs is guaranteed to be detected in at least one BISTER
configuration.

Proof: Since any single faulty PLB is detected, a pair of
faulty BUTs will escape detection only if they have a circular
masking relation [32], where each faulty PLB masks the detec-
tion the other one. This masking should occur in any BISTER
configuration where a single faulty PLB would be detected. Be-
cause a TPG or an ORA containing a faulty PLB may still work
correctly, we analyze only configurations where at least one of
the faulty PLBs is a BUT.

Case 1) Both faulty PLBs are BUTs in one BISTER config-
uration. Then the TPG and the ORA are fault-free,
and the only way the faulty pair can escape detec-
tion is to have functionally equivalent faults, since
then the compared outputs will not mismatch. As-
sume that the faulty PLBs are BUTs in the configu-
ration 1 in Fig. 4(b). Then in configurations 3 and 5,
one of them is a BUT (compared with a fault-free
BUT by a faultfree ORA), and the other is a TPG
cell. The only way the faulty pair can escape detec-
tion is for the faulty TPG to skip exactly the pat-
terns that detect the faulty BUT. We say that this is
a pathological case, because it has an extremely low
probability of occurrence: we need two faulty PLBs
and they must have functionally equivalent faults,
and when a faulty PLB is part of the TPG, the TPG
must skip those patterns that detect the faulty BUT.
Atmostone faulty PLB is a BUT in any BISTER
configuration. Assume, without loss of generality,
that the faulty cells are in the first row of the BISTER,
as shown in Fig. 4(c). Let X be the faulty BUT and
Y the faulty TPG cell in configuration 1. To have

Case 2)

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE. Downloaded on October 22, 2008 at 10:34 from |IEEE Xplore. Restrictions apply.

ABRAMOVICI et al.: ONLINE BIST AND BIST-BASED DIAGNOSIS OF FPGA LOGIC BLOCKS

1 2 3 4 5 6 7 8
TIS|IT[S]|S|B|[B|O||O[B||B[T||S|T|[S|T
T|S||S|B||T|O|[T|B||B[T|{O]T||B|T||s|T
T|B||T[O||T|B|[T|S||S[{T|{B|S||O|T||B|T
BIO||T[B||T|S|[T[S]|S[T||S|T||B[S]|O|B

Fig. 5. 4 x 2 BISTER tile rotations.

circular masking between X and Y, all of the fol-
lowing conditions must be true: 1) in configuration
1, the TPG must skip those patterns that detect X;

2) in configuration 4, the TPG must skip those pat-
terns that detect Y'; 3) in configuration 2, the ORA
X must not record the mismatch between Y and the
fault-free BUT; and 4) in configuration 3, the ORA
Y must not record the mismatch between X and the
faultfree BUT. Again, this is a pathological situation
because we need the AND of four conditions, which
are very unlikely by themselves.]

Clearly, similar arguments can be made for more than two
faulty PLBs. Hence we can conclude that:

Claim 3: In practice, any combination of faulty PLBs is de-
tected in at least one BISTER configuration.

To overcome routing congestion problems, spare PLBs may
be incorporated into the BISTER tile to provide additional
routing resources. Here, “spare” means “not involved in
testing,” as all the PLBs in a STAR are “spare” with respect to
normal operation. Fig. 5 illustrates the eight rotations of the
4 x 2 BISTER tile with two spare cells (denoted by S) used
in our implementation. While these are not “pure” rotations,
since they maintain the three TPG cells in the same column,
they do achieve the same property as the rotations of the 3 x
2 tile. The presence of the spare cells makes circular masking
relations even more unlikely, since any masking relation
between two faulty PLBs disappears whenever one of them
becomes a spare.

IV. LOCATING FAULTY PLBS

In every BIST configuration, the TREC records the set of fail-
ures obtained at the ORA outputs. Here we present a diagnosis
method that attempts to locate faulty PLBs based on analyzing
the test results, and we will show that in many cases, accurate
resolution can be obtained without additional reconfigurations.
Most importantly, the frequent case of a single faulty PLB falls
in this category.

In any fault location procedure, maximum diagnostic reso-
lution is achieved when faults are isolated within an equiva-
lence class containing all the faults that produce the observed
response. If every equivalence class has only one fault, we say
that the fault is uniquely diagnosed, that is, there is no other
fault that can produce the same response. In our case, a fault
is one faulty PLB that may have several internal faults, and the
response is the set of failing test phases detected at the outputs
of the ORAs. We begin by assuming a single faulty PLB in the
FPGA, then we analyze the case of multiple faulty PLBs; in Sec-
tion V we will discuss locating faults inside a defective PLB.

We can observe that the PLBs in a BISTER tile can be parti-
tioned into two disjoint sets, so that every set contains the PLBs

1287

Fig. 6. Combined test sessions for (a) 3 x 2 tile and (b) 4 x 2 tile.

that are pairwise compared when configured as BUTs. For ex-
ample, for the 3 x 2 tile, the BUTs in configurations 1, 3, and 5,
are compared only among themselves and they are never com-
pared to the BUTs in phases 2, 4, and 6 [see Fig. 4(c)]. A sim-
ilar partition exists for the 4 x 2 tile as well. We can represent
the relations between BUTs that are pairwise compared and the
ORA s that observe them by the graphs shown in Fig. 6, where a
BUT is denoted by a node B;, and the ORA that observes BUTs
B; and Bj, is denoted by O,;. We can view such a graph as rep-
resenting a combined test session in which half of the BUTs in
the tile are concurrently tested. Each tile is completely tested in
two combined test sessions, where the BUTSs in one session are
ORAs in the other one, and vice-versa.

Theorem 1: Any single faulty PLB is guaranteed to be
uniquely diagnosed.

Proof: When the faulty PLB is configured as a BUT, it is
detected at its two adjacent ORAs, and no other BUT is detected
at the same two ORAs. Note that when the faulty PLB is con-
figured as a TPG cell, no error is generated even when the fault
modifies the TPG patterns, because the two BUTs still receive
the same patterns. When configured as an ORA, the faulty PLB
may generate an error, but this will be in addition to the failures
observed in the combined session when it is a BUT, and these re-
sults are sufficient to distinguish it from any other single faulty
PLB (in Section VI we will describe this situation as encoun-
tered in an actual faulty FPGA). [|

As a consistency check, we can verify that the sets of failures
obtained at the two ORAs are identical.

The following results deal with the location of a group G
of faulty PLBs that is detected in at least one test session. To
uniquely diagnose GG means to identify all its faulty blocks such
that no other group (including subsets of G) can produce the
same result. Although unique diagnosis is not always possible,
there are many situations when it can be guaranteed.

We will analyze the interactions among faulty PLBs under the
following assumption:

Assumption Al: A TPG with faulty PLBs does not skip the
patterns that detect faults in a BUT. (Later in this section we will
analyze the situation when this assumption is not true.)

Based on this assumption, the set of failing phases obtained
at ORA Oy; is given by

FO,L']' = (FBL @] FB]) - Feqij (1)

where FBy, is the set of failing phases of BUT By, and F'eg;; is
the set of failing phases of both B; and B; that have identical
responses (and thus. do not cause mismatches at O;;). In Fig. 7,

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE. Downloaded on October 22, 2008 at 10:34 from |IEEE Xplore. Restrictions apply.

1288

FB.

Fig. 7. Graphical representation of (1).

the area of FO,; is marked by diagonal lines. Note that FO;;
is empty () when both B; and B; are fault free, or when the
faults in B; and B; are equivalent (since then FB; = FB; =
Feq;;). Also note that there exists one situation when FO,; is
the same, no matter if only one or both of the BUTSs observed at
O;; are faulty; this occurs if the two BUTs have the same sets
of failing phases (FB; = FB;), but their faulty responses are
never the same (Feg;; = &).

Knowing the set of failing phases observed at O;; and the
complete set of failing phases of one of the two faulty BUTSs,
we can determine the set of failing phases where the two BUTs
have identical responses by

Feqij = FBL — FO,L']' = FBJ — FOL] (2)

Based on FO;; and one of the two sets, we can also compute
a lower bound on the other set by

FB; D (FOU — FB]) U Feqij 3)

or by

FB; 2 (FO;; — FB;) U Feg;;. 4)
Note that (3) becomes an equality when FO,; and FB; are
disjointed

FB,; = FO,j @] Feq,i]-. 5

This occurs when FB; C FB; and Fegq;; = FB;.

For the diagnosis procedure, we make one more assumption:

Assumption A2: No more than two faulty BUTSs have iden-
tical responses in the same failing phase.

To justify this assumption, recall that in every configuration
the TPG applies exhaustive tests for that mode of operation. If
assumption A2 is not satisfied, it means that we would have three
or more BUTSs with equivalent faults for that mode of operation,
which is quite an unlikely event.

The following results will be used by our diagnosis proce-
dure.

Lemma 2: If none of the two ORAs observing BUT B fails
in phase p, then B does not fail phase p.

Proof: Assume, by contradiction, that B fails phase p.
Based on Assumption A/, the vectors detecting its faults are
generated by the TPG. Then the other two BUTSs observed by
the two ORAs must have equivalent faults to the fault of B in
phase p, because p is not reported by either of the two ORAs.
But then we would have three BUTs with equivalent faults in
the same phase, which contradicts Assumption A2. Therefore,
B does not fail phase p. [|

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 12, NO. 12, DECEMBER 2004

Fig. 8. Graphical representations for \hfill\blackboxfs for: (a) Theorem 2,
(b) Lemma 7, and (c¢) Lemma 8.

Lemma 3: 1f the two ORAs observing the same BUT report
no failures, then their common BUT is fault-free.

Proof: Based on Lemma 2, the common BUT of the two
ORAs does not fail any phase.]
Lemma 4: Any BUT failure appears at least at two ORAs.

Proof: Assume, by contradiction, that phase p is reported
only at one ORA. Let B be the BUT failing p and O be the other
ORA observing B. Since O does not report p as a failure, the
other BUT (say C') observed by O must have identical response
in p. But the other ORA observing C' does not report p as a
failure either, so we have more than two BUTs with equivalent
faults in p, which contradicts assumption A2. Therefore, p must
appear at the output of at least two ORAs. []

Lemma 5: If we have failures only at two ORAs, they must
have identical failures.

Proof: Based on Lemma 4, any failure must appear at least
twice, and in this case we have only two failing ORAs. Hence,
their failures must be identical.]

Theorem 2: (For the 4 x 2 tile) If only two ORAs observing
the same BUT report failure in phase p, their common BUT fails
in phase p.

Proof: In Fig. 8(a), without loss of generality, assume that
012 and O14 are the two failing ORAs reporting p as a failure.
Assume, by contradiction, that their common BUT B; does not
fail phase p. Then both B, and B, must fail p. But since no
other ORA reports p, then B3 must also fail in phase p, and
its response must be identical to that of By and By. Hence, we
would have three BUTs with equivalent faults in phase p, which
contradicts assumption A2. Therefore, B must fail phase p. H

Lemma 6: If two ORAs observing the same BUT report no
failures, then all three BUTSs observed by them are fault free.

Proof: Based on Lemma 3, the common BUT of the two
ORA:Gs is fault-free. So each one of the other BUTSs is compared
with a fault-free one by an assumed fault-free ORA, and no
failure is reported. Hence, the other two BUTs are also fault
free.]

Lemma 7: (For the 4 x 2 tile) If only two ORAs without
a common BUT fail phase p, then at least one pair of BUTs
between the two ORAs are faulty and have identical response in
phase p.

Proof: In Fig. 8(b), without loss of generality, assume that
012 and O3, are the two ORAs without a common BUT failing
phase p. At O12, p may be caused by By or Bs. Let us assume
that B, fails p. Because p is not observed at O14, B4 must also
fail p with an identical response. Similarly, had we assumed
that B fails p, we would have concluded that Bs and Bs, have
equivalent faults in phase p. Note that all four BUTs may be

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE. Downloaded on October 22, 2008 at 10:34 from |IEEE Xplore. Restrictions apply.

ABRAMOVICI et al.: ONLINE BIST AND BIST-BASED DIAGNOSIS OF FPGA LOGIC BLOCKS

faulty as well, but in this case the equivalent faults in the two
pairs will be different.]

Note that under the condition of Lemma 7, we cannot reach
a unique diagnosis. However, we can move to a second phase
of diagnosis where we divide the set of suspected PLBs and test
each subset in separate BISTER tiles. The BIST results of each
separate BISTER is then analyzed to achieve a unique diagnosis.
If unique diagnosis cannot be obtained for a given subset of
suspected PLBs, it can be further subdivided and retested. A
subsequent example will show how this technique can uniquely
diagnose the faulty PLBs.

Lemma 8: Assume that two out of three ORAs fail, such that
the middle one has no failures, and the other two have disjoint
failures. Then the two BUTs observed by the nonfailing ORA
are fault-free and the other two BUTs are faulty.

Proof: InFig. 8(c), without loss of generality, assume that
O34 has no failures, while O14 and O3 have disjoint failures.
Then we want to prove that B3 and B, are fault-free and B; and
B are faulty.

Assume, by contradiction, that one of the two BUTs observed
by the nonfailing ORA (say, B3) fails phase p. Since O34 reports
no failures, B4 must have an equivalent fault in p. At most one
of O14 and O23 may fail p, because their failures are disjoint.
Then we have to analyze two cases.

Case 1) One of the failing ORAs (say, O23) shows p as a
failure. Since p is not observed at O14, while By
fails p, B1 must also have an equivalent fault in p. In
this case we would have three BUTs with equivalent
faults in p, which would contradict assumption A2.
None of the failing ORAs reports p as a failure. But
this would mean that both B; and By must also have
equivalent faults in p, since p does not appear at
O14 or Os3. In this case we would have four BUTs
with equivalent faults in p, which would contradict
assumption A2.

Therefore both B3 and B, are fault-free. Then By is the
source of the failures recorded at O3, while those observed at
014 originate at Bj. []

Case 2)

As a consistency check, we can verify that the failures
recorded at the ORA between the faulty BUTSs are the union
of the disjoint sets of failures obtained at the other two failing
ORAs (for the example above, FO15 = FO14 U FOq3).

The following examples deal with the results of only one
combined test session. Under the assumption that a faulty PLB
is detected only when configured as a BUT, the two sessions can
be independently analyzed, but the their results must be cross-
checked for compatibility.

Example 1: Fig. 9(a) shows the set of failing phases obtained
at the four ORAs in one combined test session for a 4 x 2
BISTER tile. Because failures in test phase 1 are reported only
at Oo3 and O3y, then Bj is faulty and fails in phase 1 (by The-
orem 2). In the same manner, B, is identified as failing phase 5,
B is identified as failing phase 9, and B> is identified as failing
phase 7. Since failing phase 8 is reported at 3 ORAs, Theorem 2
does not apply and we cannot determine which BUTs fail phase
8 (should be at least two). Note that we have identified all four
BUTs as faulty.

1289

Fig. 9. Graphical representations for (a) example 1, (b) example 3, and
(c) example 4.

If our goal is also to identify the exact set of failing phases
for every faulty PLB (to be able to reuse its fault-free modes of
operation as a PUB), we can divide the set of suspected PLBs
and retest each subset to obtain additional information. Let us
assume that we test B3 in a separate BISTER with known fault-
free PLBs and we find out that FB3 = {1, 8}. Then from (2) we
obtain Feqsqy = {1,8} — {1,5} = {8}, and from (4) we deter-
mine that B4 must also fail phase 8. At this point we still do not
know whether B or Bj is causing O, to report failure in phase
8, so we again divide and re-test B; in a separate BISTER. Let
us assume that we get FB; = {9}. Then from (2) we obtain
Feqi2 = O, and from (4) we determine that B4 must also fail
phase 8. Now we know the exact sets of failing phases for every
BUT. [|
Example 2: Assume that we have FOq3 = FO34 = {3,5}
and no failures at O» and O14. Based on Lemma 6, we conclude
that By, Bs, and B, are fault free, and from Theorem 2 we
determine that Bj is failing phases 3 and 5.]

This example has illustrated the common pattern of a single
faulty PLB.

Example 3: Assume that we have FOq3 = {2,5}, FO14 =
{3, 4}, and no failures at O34 [see Fig. 9(b)]. Because FO23 and
FO14 are disjoint while O34 reports no failures, the conditions
of Lemma 8 are satisfied, and we can conclude that B3 and By
are fault free, and B; and B are faulty. Moreover, from (1) we
find that FB; = {2,5} and FBy = {3,4}. As a consistency
check, we can verify that FO15 = {2, 3,4, 5}. []

Example 4: Assume that we have FOa3 = {4}, FO12 =
{3}, FO34 = {3,4}, and no failures at Oy4 [see Fig. 9(c)].
Since only two ORAs with a common BUT fail phase 4, from
Theorem 2 we determine that Bj is faulty and fails phase 4.
Because phase 3 is a common failure for two ORAs without
a common BUT, from Lemma 7 we know that at least one of
the pairs { By, B4} or { B2, B3} have identical failures in phase
3. This is not a unique diagnosis, so we select one of the four
suspects, say By, to be tested in a separate BISTER, and let
us assume that we find that By is fault free. From Lemma 7 it
follows that B is also fault free, and then B> and B3 must be
the faulty PLBs with identical responses in phase 3.]

Note how, by dividing suspect faulty PLBs into separate
BISTER tiles, retesting, and analyzing BIST results, we can
uniquely diagnose three faulty PLBs that cannot be diagnosed
by analyzing the failing BIST results alone.

In practice, we have extended the multiple faulty cell locator
(MULTICELLO) algorithm, originally developed for offline
testing [29], to be used for identification of faulty PLBs in a
4 x 2 BISTER. Fig. 10 illustrates the algorithm analyzing the

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE. Downloaded on October 22, 2008 at 10:34 from |IEEE Xplore. Restrictions apply.

1290

phase||112]3]14]|5|6|7|8|9]||phase1[2[3]4|5[6]7|8]9
O |[0]0]0fO[1]O[O[T[1][Osy][OfOJOJOT[O[O]ITT
B, B; ||0j0]0]|0| |O

0;,1(0]10]0{0(0|0|1|{1(1|[Osz]l0[0|0]O|O(O[1]|1]1
B, B, 0/10(0(0|0

0,3 (|1(0]0(0]0(0|1(1{0| Oys(|1]|0|0O[0|O(O]|1|1]|0
Bj Bj 0|0(0| |0 0
0341(1]10]|0{0(1|0]|0[{0(0| O3,4][1{0|0|0O|1({0[0]|0O|0
By By 0|00 (00

0741(010{0{0(1|0|0[1(1]|[O;y][0{0]0]O|1[{0[O0O]1]1

step 1 step 2
phase{|1|2]3]4]|5|6|7|8|9||phase|1[2[3[4[5[6[7[8]9
O l[0f0JOTO[TTO[OTT[T][Oy [[O]OJOJO]T]OJO]T]T
B; |0j0|0|0|0|0|0 B; |l0o[of0|0|0]|0O]|O] |1
0;71(0]10]0({0(0|0|1[1[L|[Osz]l0]0|0]|0Of0|O]|1|1(1
B, ||0j0{0(0(0]0 0| B, |[0j0|O|O[O(O|1]| (O
053 (|1{0]0[0]0[0|1|1{0|| Oy3({1[0]|0[0]|0[0]|1[1]0
B3 ojojofo(ojo| (0|l Bz |[1|O0|O|OfO(O|O| (O
0341(110]0{0(1|0]0[0(0| O3,][1|0|0]|0O[1(0|0]|0[O
By 0|0{0f (0|O| (Ol B, |[0|O|O|Of1[O|O] [O
0741(0]10]0({0(1]0]|0O[1[1|[O][0]10]|0]|0Of1]0]|O]1(1
step 3 step 4

Fig. 10. MULTICELLO diagnostic algorithm example.

responses obtained at the ORAs in a 4 x 2 BISTER. The rows
of the matrix are labeled to correspond to the BUT and ORA no-
tation used in the previous examples, and columns correspond
with phases. Note that the ORA denoted Oq4 has entries at
the top and bottom of the table to account for the wrap-around
effect of the BISTER and to allow direct application of the
MULTICELLO diagnostic procedure. The 0 and 1 entries in
matrix cells denote passing and failing results, respectively.
In Fig. 10, we use the ORA results from Example 1, where
all ORAs reported failures and all BUTs were determined to
be faulty. The goal of the algorithm is to determine the set
of failing phases for every faulty BUT. The algorithm first
identifies only nonfailing phases for BUTs, then proceeds to
determine the failing ones based on the Theorems and Lemmas
presented above.
Procedure MULTICELLO [29]:

1) Record ORA results and initialize the failures of every
BUT in each phase as unknown.

This initial state is shown in Fig. 10 step 1, where 0
and 1 entries for an ORA indicate, respectively, a passing
and a failing result in the corresponding phase, and the
empty cells denote unknown BUT failures. For example,
a3 reports failures in phases 1, 7, and 8.

2) In each column p, for every two consecutive ORAs with a
0 mark, enter a 0 for the BUT between them.

This step applies Lemma 2 and Lemma 3, and its results
are shown in Fig. 10 step 2 (new entries are shown in
bold). We use the same 1 and 0 notation to, respectively,
denote a BUT failure and a passing test.

3) Ineach column p, for every two adjacent 0 marks followed
by an empty cell, enter a 0 in the empty cell.

This step applies Lemma 6; the two adjacent 0 marks
belong to a BUT and an ORA, and the empty cell is the
other BUT observed by the same ORA. The results are
shown in Fig. 10 step 3. Note that one must consider the

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 12, NO. 12, DECEMBER 2004

wrap-around effect of the BISTER to consider adjacent O
marks.

4) In each column p, for every adjacent 0 and 1 marks fol-
lowed by an empty cell, enter a 1 in the empty cell.

This step applies Theorem 2. The results are shown in
Fig. 10 step 4. At this point, we have identified all 4 BUTs
as being faulty.

5) Consistency checks: If there is an ORA reporting a failure
in phase p (marked with a 1), while neither of the two
BUTs observed by the ORA fails in p (both are marked
with a 0), then there is a potential inconsistency. If the
failing ORA is reported as faulty in the other test session
where it is a BUT, then go to step 6. Otherwise, divide the
suspect PLBs into subsets, retest and reapply the proce-
dure to each subset. If no further division is possible, then
report inconsistency and exit.

This step applies to Lemmas 4 and 5. A potential in-
consistency in this step could be due to a faulty ORA,
which will be identified when diagnosing the results of the
second session, where that PLB is a BUT. As in any diag-
nosis algorithm, inconsistencies may arise when basic as-
sumptions do not hold. MULTICELLO implicitly assumes
that we are dealing with a logic fault, while the actual fault
may be caused by an interconnect defect not equivalent to
any logic fault; in this case the potential inconsistency is
real, and it cannot be removed by the divide and retest pro-
cedure. However, this procedure will remove an inconsis-
tency caused by an invalid Assumption 1; we will analyze
such a situation after this example.

6) If every PLB has been identified as fault-free or faulty,
the group of faulty PLBs has been uniquely diagnosed.
Otherwise, divide the suspect PLBs into subsets, retest
and reapply the procedure to each subset.

In our example, all 4 BUTs have been properly identi-
fied as being faulty with the same failing phases as iden-
tified in Example 1. Although, we have obtained unique
diagnosis since all faulty BUTs have been identified, we
cannot determine which BUTs fail phase 8 based on the
BIST results obtained thus far. If such diagnostic informa-
tion is required, it can be obtained by applying the same
divide and retest procedure mentioned in step 5.

End

Now we analyze situations when Assumption A/ does not

hold, and we show that unique diagnosis can be nevertheless
achieved. First, note that even if Assumption A/ is not valid,
we still have at least one detection, because otherwise we will
have a circular masking pathological case that we precluded in
Claim 2 of Section III. Consider the 4 x 2 BISTER tile with
two faulty PLBs illustrated in Fig. 11, which shows the four
rotations for the test session in which these PLBs are under test.
One faulty PLB is part of the TPG, while the other is a BUT.
We assume that the TPG will skip all the patterns that detect the
faulty BUT. There will be two different cases that can occur in
which Assumption A/ does not hold.

Case A: Only one PLB (the left one, for example) will cause
the TPG to skip patterns that detect the faulty BUT,
hence we do not get failures at O;. For phase 1,

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE. Downloaded on October 22, 2008 at 10:34 from |IEEE Xplore. Restrictions apply.

ABRAMOVICI et al.: ONLINE BIST AND BIST-BASED DIAGNOSIS OF FPGA LOGIC BLOCKS

2| |phase||1|2]| |phase|[1|2
0| | Oz [|0]0] | Os2][0f0O
0 B, 0 B, 0
(b) O3 |[1[0] | O3 (|11]0] | Og3 [|1]|0| | Oy3 [|1]0
Case B3 B3 B3 0 B3 0
A O34 [|1[{1] | O34 |11 O34 [|1[1] | O34 |[1]1
By By By By 1
Oy [|1{1] | Oy |11 Oy [|1[1] | Ong ||1]1
B, B, B, 0 B, 0
O 1[0(0] | Oy [|10]0] | O;5 [|0]|0| | Oy> [|0]0
step 1 step 2 step 3 step 4
phase||1|2 phase||1[2 phase||1[2
075 1(0(0 07> [[0[0 O |[of0
B, B; ||0 B; |(0|0
© O3 (01 O3 (0|1 O;3 |01
Case B3 B; (|0 B3 ||0]0
B O34 110]0 O34 (0[O0 O34 (0[O0
By By 0 B, |[0|0
Oy |[1[0 Oy |10 Oy |10
B, B, 0 B, |[0|0
O, |(0(0 Oz (00 O |00
step 1 step 2 step 3

Fig. 11. A 4 x 2 BISTER tile with two faulty PLBs and MULTICELLO
diagnosis for two cases where Assumption Al does not hold including:
(a) rotations of interest; (b) case A; and (c) case B.

PLB inputs
LUT |||LUT ||| LUT [{| LUT
|\ /| \ /| \/

X

output MUX

PLB outputs

Fig. 12. Basic PLB architecture.

MULTICELLO cannot make any entry in the table
beyond step 1. For phase 2, MULTICELLO cor-
rectly identifies B, as faulty, but the fault in B4 does
not explain the failures at O13 in phase 1. Therefore,
in step 6 we divide the suspect PLBs into subsets
and retest each subset. In at most two such steps,
the two faulty PLBs will be separated and we will
achieve unique diagnosis.

When either of the two faulty PLBs is part of the
TPG, the TPG skips the patterns that detect the other
faulty BUT. However, the faulty BUTs will be de-
tected in different phases. As shown in Case B in
Fig. 11, MULTICELLO completely fills the diag-
nosis table in step 3, but in step 5 it encounters an in-
consistency, because all BUTs are identified as fault

Case B:

1291
TABLE 1I
BIST PHASES FOR ORCA 2C AND 2CA SERIES LOGIC BLOCKS
Flip-Flop/Latch Modes and Options
FF/ Set/ Clock FF Data Number
Phase Latch Reset Clock Enable Input LUT Mode Outputs

1 - - - - - async. RAM 4

2 - - - - - adder/subtracter 5

3 - - - - - S-variable MUX 4

4 - - - - - S-variable XOR 4
async. falling active LUT

3 FF reset edge low output count up 3
async. falling

6 FF set edge enabled input count up/down 5

active active LUT

7 Latch sync. set Tow high output count down 5
sync. rising active PLB var

8 FF reset edge low input 4-variable 4

active active dynamic .

9 Latch - high low select 4-variable 4

10 - - - - - multiplier 5

1 _ R)) _ greater/equal 5

comparator
12 R R)) _ not equal com- 5
parator
13 - - - - - sync. RAM 4
14 - - - - - dual-port RAM 4

free. Therefore we apply the divide and retest pro-
cedure, which will eventually will separate the two
faulty PLBs.

V. DIAGNOSIS WITHIN A FAULTY PLB

During each test session, TREC records all ORA failures. This
allows us to identify the failing mode(s) of operation of the faulty
PLB and its faulty internal module(s). For example, ORCA 2C,
Virtex, and Spartan II series PLBs contain four 4-input LUTs and
four flip-flops with an output multiplexer network that can se-
lect any LUT or flip-flop output. The LUTs can also function as
RAMs or fast adders. The flip-flops can also function as level-
sensitive latches and have programmable set/reset and clock-en-
able features. The ORCA 2CA series FPGA PLB has the same
architecture as the 2C series but has additional modes of opera-
tion including comparator, multiplier, and dual-port RAM [25].
Lines 1-9 in Table II summarize the test phases developed for
the ORCA 2C series FPGA, while lines 10—14 describe the ad-
ditional modes of operation tested for ORCA 2CA series. Phases
1-4 and 10-15 test the operation of the LUT/RAM module of
the PLB, while phases 5-9 test the flip-flops and their modes of
operation. Let us assume that a PLB fails only phases 5, 6, and
7. Since this faulty PLB passed the exhaustive tests for all its
other modes of operation, it may be safely used for any func-
tion that does not involve counting (since phases 8 and 9 pass,
the flip-flops work correctly as registers). This is the concept of
apartially usable block (PUB) [22], [27], where such a defective
block is reused whenever possible in its fault-free modes of op-
eration, to increase the effective spare capacity of the FPGA in
fault-tolerant applications. If phases 5-9 are the only ones that
fail, the LUT module can still be used as a RAM or to perform
any combinational logic function.

When the BIST results do not clearly indicate which com-
ponent(s) of a faulty PLB is at fault, additional test phases are

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE. Downloaded on October 22, 2008 at 10:34 from |IEEE Xplore. Restrictions apply.

1292

TABLE III
ADDITIONAL DIAGNOSTIC PHASES FOR ORCA 2C AND 2CA

Flip-Flop/Latch Modes & Options Logic Tested

FF/ Set/ Clock FF Data LUT
Phase Latch Reset Clock Enable Input Mode LUT FF MUX
R active ; PLB
1-4 Latch - high enabled input - v
< 4-vari-
3-8 B ° B ° - able N N
9 FF async. falling active PLB B N
set edge low input
- async. rising active PLB _
10 FF reset edge high input v
1 FF sync. set rising active PLB R N
yne. edge low input
12 FF sync. falling active PLB _ N
reset edge high input
async. active active PLB B
I3 Latch set low low input v
async. active active PLB R
14 Lakh reset high high input v
15 Latch sync. set zilcplve active PLB - \
high low input
16 Latch SYne. active active PLB ~ N
reset low high input

added to further isolate and identify the fault(s) and obtain even
higher diagnostic resolution. Table III presents a list of addi-
tional diagnostic phases for the ORCA 2CA FPGA. Phases 1
through 8 test the output multiplexer, ensuring that every LUT or
flip-flop output can reach each output of the multiplexer. Phases
9-12 isolate and test the flip-flop modes of operation, while
phases 13-16 exercise the LATCH operation.

Diagnosis within a PLB to determine which LUT(s) or
flip-flop(s) are faulty requires additional BIST configurations.
Once the normal BIST and diagnostic configurations for PLBs
have been executed and the faulty PLBs are identified, special
PUB diagnostic configurations are applied for the two or more
rotations that will put the PLBs identified as faulty under test.
A set of eight PUB diagnostic configurations are used to test
the LUTs, while another set of four configurations tests the
flip-flops. Four of the eight LUT diagnostic configurations
program the LUT with a four-input exclusive-OR function
while the other four program the LUT with a four-input exclu-
sive-NOR function in order to test all LUT bits for stuck-at-0 and
stuck-at-1. During each of the four LUT configurations for PUB
diagnosis, the outputs of the LUTs are rotated through the four
outputs of the multiplexer. In this way, if the error follows the
rotation, the fault is known to be in a LUT and the faulty LUT
is identified as illustrated in the example of a faulty LUT in
Fig. 13. On the other hand, if the error does not rotate, then the
output multiplexer is faulty and the faulty output is identified.
However, a combination of faulty LUT and multiplexer output
requires additional diagnostic configurations. The same rotation
strategy is used for the flip-flop PUB diagnostic configurations
as can be seen in Fig. 13 by substituting flip-flops for LUTs.

Any single faulty LUT or flip-flop can be identified and any
combination of a single faulty LUT and single faulty flip-flop
can be identified with the current ORA design in the ORAC 2C
FPGA. In Fig. 3, the ORA flip-flop stores the combined result
of comparing four pairs of BUT outputs which limits the PUB
diagnostic resolution for this ORA design multiple faulty LUTSs

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 12, NO. 12, DECEMBER 2004

TPG

| |
L [T [I

|LUT||LUT“LUT||LUT| |LUT |LUT||LUT||LUT|

TPG |

output MUX output MUX

Fig. 13. PUB diagnosis.

Scan In from
previous ORA
TDI

TCK

Fig. 14. ORA with greater diagnostic resolution.

and flip-flops are encountered. Additional diagnostic resolution
can be obtained by comparing each pair of outputs separately. In
this way we can determine any combination of faulty LUT’s and
flip-flops, but at the expense of 24 PUB diagnostic configura-
tions instead of 12 configurations. With the PLB architecture of
more recent ORCA PLBs (like the 4C series FPGA), any combi-
nation of multiple faulty LUTs and flip-flops in the PLB can be
identified. Fig. 14 illustrates this ORA implementation, which is
also feasible in the Xilinx Spartan and Virtex series FPGAs [33].

Once the PUB diagnosis has completed for a given BISTER
tile, the diagnostic procedure moves on to the next BISTER
tile identified as having faulty PLBs until all PLBs that have
been identified as faulty within a STAR have undergone PUB
diagnosis. While this is the procedure in the current implemen-
tation, PUB diagnosis of multiple faulty BISTER tiles can be
performed in parallel at the expense of slightly more compli-
cated diagnostic software in TREC. When PUB diagnosis has
been completed within a STAR, the identified faulty logic re-
sources are processed by the fault-tolerance software to deter-
mine whether a faulty PLB can be utilized as a PUB by the next
system function to occupy that position.

VI. EXPERIMENTAL RESULTS

The diagnosis approach presented here was applied to three
known-faulty ORCA 2C15A FPGAs [25] (originally from
Lucent Technologies) that had been previously tested with
the off-line approaches presented in [15] and [16]. All three
FPGAs failed the online tests introduced in this paper. Ap-
plying the logic diagnosis techniques described in the previous
sections produced inconsistent results for two FPGAs (Chip 1
and Chip 2). This was the expected result, because the faults
in these devices are interconnect faults [16]. The logic fault
located in the third faulty FPGA (Chip 3) matched the faulty
PLB identified in [15].

Next, we present the details of the online diagnosis of Chip 3.
Fig. 15 shows the results of the test phases for both combined
test sessions, where the failing test phases refer to Table II.
In the first session, the same failures appear at two ORAs ob-
serving acommon BUT, hence, this BUT is faulty. In the second

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE. Downloaded on October 22, 2008 at 10:34 from |IEEE Xplore. Restrictions apply.

ABRAMOVICI et al.: ONLINE BIST AND BIST-BASED DIAGNOSIS OF FPGA LOGIC BLOCKS

Fig. 15.
session 2.

Diagnosis of an actual faulty PLB for: (a) test session 1 and (b) test

session, all test phases fail with failure indications at only one
ORA which, at face value, results in an inconsistency in step 5
of the MULTICELLO diagnostic procedure since it contradicts
Lemma 4. However, this ORA is being implemented by the
faulty BUT identified in the first session, where the failing test
phases indicate one or more faulty flip-flops in the BUT; then
the failures in the second session are consistent with a single
faulty PLB with faulty flip-flops. Application of the additional
diagnosis configurations discussed in Section V and shown in
Table III confirmed that the fault only affects the four PLB
flip-flops, leaving the LUTSs unaffected. This defective PLB was
successfully reused as a PUB to implement combinational logic
functions in a fault-tolerant application [27].

Total roving and testing time in a fault-free ORCA 2C15
FPGA is approximately 1.34 s when the ORCA 2C Boundary
Scan interface is operated at its maximum specified clock rate
of 10 MHz. As a result, in the worst case a fault could escape
detection for almost 1.34 s if it were to occur in a STAR position
that has just been tested. Since diagnosis of faulty PLBs within
a BISTER tile can be performed based on the failing BIST re-
sults, the 1.34 s roving and testing time also includes diagnosis
to a faulty PLB. On the other hand, PUB diagnosis requires a
maximum of 7.2 ms in the ORCA 2C15 to be able to identify a
faulty LUT and/or flip-flop within the faulty PLB.

VII. CONCLUSION

In this paper, we presented BIST and BIST-based diagnostic
methods for the roving STARs approach for online FPGA
testing and diagnosis. The first step is to use the BIST approach
to test all PLBs in the BISTER tile. Next, an analysis of the
BIST results facilitates locating most common faults—one or
two faulty PLBs—without any reconfiguration. If a unique
diagnosis cannot be obtained, the suspected faulty PLBs are
divided into subsets and retested. This combined technique
achieves unique diagnosis with reasonably fast diagnosis time.
The main result is the development of an online BIST and
diagnostic method able to accurately diagnose any single faulty
PLB and most combinations of multiple faulty PLBs within a
BISTER tile. The combinations of multiple faulty PLBs that
cannot be diagnosed appear to be very restrictive situations
unlikely to occur in practice. We have applied our BIST-based
diagnosis to actual faulty ORCA FPGAs and we correctly
identified their known faulty PLBs. Our diagnostic technique
provides the foundation necessary for implementing low cost
and efficient fault-tolerant approaches in FPGAs [23], [27].

1293

ACKNOWLEDGMENT

The authors wish to acknowledge S. Wijesuriya, C. Hamilton,
and B. Skaggs from the Department of Electrical Engineering,
University of Kentucky, Lexington, as well as T. Slaughter from
the Department of Electrical and Computer Engineering, Uni-
versity of North Carolina at Charlotte for their contributions to
BIST and BIST-based diagnosis of FPGA logic blocks during
the Roving STARSs project.

REFERENCES

[1] W.Huang and F. Lombardi, “An approach to testing programmable/con-
figurable field programmable gate arrays,” in Proc. IEEE VLSI Test
Symp., 1996, pp. 450-455.

W. Huang, F. Meyer, X. Chen, and F. Lombardi, “Testing configurable

LUT-based FPGAs,” IEEE Trans. VLSI Syst., vol. 6, pp. 276-283, Apr.

1998.

T. Inoue, S. Miyazaki, and H. Fujiwara, “Universal fault diagnosis for

lookup table FPGAs,” IEEE Des. Test Comput., vol. 15, pp. 39—44, Jan.

1998.

C. Jordan and W. P. Marnane, “Incoming inspection of FPGAs,” in Proc.

European Test Conf., 1993, pp. 371-377.

[5] F. Lombardi, D. Ashen, X. Chen, and W. Huang, “Diagnosing pro-

grammable interconnect systems for FPGAs,” in Proc. ACM Int. Symp.

FPGAs, 1996, pp. 100-106.

M. Renovell, J. Figueras, and Y. Zorian, “Test of RAM-based FPGA:

methodology and application to interconnects,” in Proc. IEEE VLSI Test

Symp., 1997, pp. 230-237.

M. Renovell, J. Portal, J. Figueras, and Y. Zorian, “Testing the inter-

connect of RAM-based FPGAS,” IEEE Des. Test Comput., vol. 15, pp.

45-50, Jan. 1998.

[8] ——, “SRAM-based FPGA: Testing the LUT/RAM modules,” in Proc.
IEEE Int. Test Conf., 1998, pp. 1102-1111.

[9] ——, “SRAM-based FPGA: testing the embedded RAM modules,” J.
Electron Testing: Theory Applicat., vol. 14, no. 1/2, pp. 159-167, 1999.

[10] B. Culbertson, R. Amerson, R. Carter, P. Kuekes, and G. Snider, “Defect
tolerance on the Teramac custom computer,” in Proc. IEEE Symp. Field-
Programmable Custom Computing Machines, 1997, pp. 116-123.

[11] C.Hamilton, G. Gibson, S. Wijesuriya, and C. Stroud, “Enhanced BIST-
based diagnosis of FPGAs via boundary scan access,” in Proc. IEEE
VLSI Test Symp., 1999, pp. 413-418.

[12] C. Stroud, P. Chen, S. Konala, and M. Abramovici, “Evaluation of FPGA
resources for built-in self-test of programmable logic blocks,” in Proc.
ACM Int. Symp. FPGAs, 1996, pp. 107-113.

[13] C. Stroud, S. Konala, P. Chen, and M. Abramovici, “Built-in self-test for
programmable logic blocks in FPGASs,” in Proc. IEEE VLSI Test Symp.,
1996, pp. 387-392.

[14] C. Stroud, E. Lee, S. Konala, and M. Abramovici, “Using ILA testing
for BIST in FPGAs,” in Proc. IEEE Int. Test Conf., 1996, pp. 68-75.

[15] C. Stroud, E. Lee, and M. Abramovici, “BIST-based diagnostics for
FPGA logic blocks,” in Proc. IEEE Int. Test Conf., 1997, pp. 539-547.

[16] C. Stroud, S. Wijesuriya, C. Hamilton, and M. Abramovici, “Built-in

self-test of FPGA interconnect,” in Proc. IEEE Int. Test Conf., 1998, pp.

404-411.

S.-J. Wang and T.-M. Tsai, “Test and diagnosis of faulty logic blocks

in FPGAs,” in Proc. IEEE Int. Conf. Computer-Aided Design, 1997, pp.

722-727.

[18] A. Burress and P. Lala, “Online testable logic design for FPGA imple-
mentation,” in Proc. IEEE Int. Test Conf., 1997, pp. 471-478.

[19] C.Zeng, N. Saxena, and E. McCluskey, “Finite state machine synthesis
with concurrent error detection,” in Proc. IEEE Int. Test Conf., 1999, pp.
672-679.

[20] N. Shnidman, W. Mangione-Smith, and M. Potkonjak, “Online fault de-
tection for bus-based field programmable gate arrays,” IEEE Trans. VLSI
Syst., vol. 6, pp. 656666, Dec. 1998.

[21] A. Steininger and C. Scherrer, “On the necessity of online BIST in safety
critical applications,” in Proc. Fault-Tolerant Computing Symp., 1999,
pp. 208-215.

[22] M. Abramovici, C. Stroud, S. Wijesuriya, C. Hamilton, and V. Verma,
“Using roving STARSs for online testing and diagnosis of FPGAs in fault-
tolerant applications,” in Proc. Int. Test Conf., 1999, pp. 973-982.

[23] M. Abramovici, J. Emmert, and C. Stroud, “Roving STARs: An in-
tegrated approach to online testing, diagnosis, and fault tolerance for
FPGAs in adaptive computing systems,” in Proc. NASA/DoD Workshop
on Evolvable Hardware, 2001, pp. 73-92.

=
8

3

—

[4

=

[6

—

[7

—

[17]

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE. Downloaded on October 22, 2008 at 10:34 from |IEEE Xplore. Restrictions apply.

1294

[24] M. Abramovici and C. Stroud, “BIST-based delay-fault testing in
FPGAs,” in Proc. IEEE Int. OnLine Test Workshop, 2002, pp. 131-134.
[25] Lattice Semiconductor Available. [Online] http://www.latticesemi.com/
products

D. Siewiorek and R. Swarz, The Theory and Practice of Reliable System
Design. Bedford, MA: Digital Press, 1982.

J. Emmert, C. Stroud, B. Skaggs, and M. Abramovici, “Dynamic fault
tolerance in FPGAs via partial reconfiguration,” in Proc. IEEE Symp.
Field-Programmable Custom Computing Machines, 2000, pp. 165-174.
C. Stroud, M. Lashinsky, J. Nall, J. Emmert, and M. Abramovici, “On-
line BIST and diagnosis of FPGA interconnect using roving STARSs,” in
Proc. IEEE Int. OnLine Test Workshop, 2001, pp. 31-39.

M. Abramovici and C. Stroud, “BIST-based test and diagnosis of FPGA
logic blocks,” IEEE Trans. VLSI Syst., vol. 9, pp. 159-172, Apr. 2001.
C. Stroud, A Designer’s Guide to Built-In Self-Test. Norwell, MA:
Kluwer, 2002.

Standard Test Access Port and Boundary-Scan Architecture, IEEE Stan-
dard P1149.1-1990, 1990.

M. Abramovici, M. A. Breuer, and A. D. Friedman, Digital Systems
Testing and Testable Design. Piscataway, NJ: IEEE Press, 1994.
Xilinx, Inc. [Online]. Available: http://www.xilinx.com/products

[26]

[27]

[28]

[29]
[30]
[31]
[32]

[33]

Miron Abramovici (S’ 76-M’80-SM’86-F’93) received the Ph.D. degree from
the University of Southern California, Los Angeles, in 1980.

He is co-founder and CTO of Design Automation for Flexible Chip Architec-
tures (DAFCA), an electronic design automation (EDA) startup company pro-
viding a reconfigurable infrastructure platform for SoCs. He was Adjunct Pro-
fessor of Computer Engineering at the Illinois Institute of Technology, Chicago.
He was Principal Investigator and Project Leader of a three year Defense Ad-
vanced Research Projects Agency (DARPA) sponsored project on adaptive com-
puting systems. He was also a distinguished member of the Technical Staff at
Bell Labs, Murray Hill, NJ. He co-authored Digital Systems Testing and Testable
Design (Piscataway, NJ: IEEE Press, 1994), and he has over 70 publications and
19 issued U.S. patents.

Dr. Abramovici has been an editorial board member for /EEE Design and
Test of Computers and Journal of Electronic Testing: Theory and Applications.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 12, NO. 12, DECEMBER 2004

Charles E. Stroud (S’74-M’88-SM’90) received the Ph.D. degree from the
University of Illinois at Chicago in 1991.

Currently, he is a Professor in the Department of Electrical and Computer En-
gineering, Auburn University, Auburn, AL. Previously, he was a Distinguished
Member of Technical Staff at Bell Labs, Naperville, IL, where he work for 15
years as a VLSI and printed circuit board designer, with additional work in CAD
tool development and BIST for digital and mixed-signal VLSI. He is author of
A Designer’s Guide to Built-In Self-Test (Norwell, MA: Kluwer, 2002). He has
over 100 publications and 13 issued U.S. patents for various BIST techniques
for VLSI and field-programmable gate arrays (FPGAs).

Dr. Stroud has been an editorial board member of the IEEE Design and Test
of Computers and IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION
(VLSI) SYSTEMS.

John M. Emmert (S’92-M’93-SM’04) received the Ph.D. degree from Uni-
versity of Cincinnati, Cincinnati, OH, in 1999.

Currently, he is Director of Computer Engineering, and an Associate Pro-
fessor in the Department of Electrical and Computer Engineering at the Uni-
versity of North Carolina, (UNC) Charlotte. He is also an officer in the United
States Air Force. While on Active Duty in the Air Force he flew Teledyne Ryan’s
AQM-34L Unmanned Air Vehicles (UAVs); developed, implemented, and suc-
cessfully tested a digital control system for flying multiple UAVs on a single
channel; and developed computer-aided design tools for mapping circuits onto
ASIC and field-programmable gate array (FPGA) platforms. Currently, he per-
forms research in the areas of CAD tool development and mixed signal BIST
for high speed, electronic warfare applications. He is also an active member of
the U.S. Air Force Reserve.

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE. Downloaded on October 22, 2008 at 10:34 from |IEEE Xplore. Restrictions apply.

	toc
	Online BIST and BIST-Based Diagnosis of FPGA Logic Blocks
	Miron Abramovici, Fellow, IEEE, Charles E. Stroud, Senior Member
	I. I NTRODUCTION

	TABLE€I A CRONYMS AND A BBREVIATIONS
	II. T HE R OVING STAR S

	Fig.€1. Roving STARs: (a) initial position and (b) during roving
	Fig.€2. BISTER tile for PLBs.
	Fig.€3. Integrated ORA/scan cell.
	III. D ETECTING F AULTY PLB S
	Claim 1: Any single faulty PLB is guaranteed to be detected in a

	Fig.€4. Rotations for a 3 \times 2 BISTER tile: (a) 6 rotation
	Proof: The faulty PLB is a BUT in two BISTER configurations, whe
	Claim 2: Except for a few pathological cases, any pair of faulty
	Proof: Since any single faulty PLB is detected, a pair of faulty

	Fig.€5. 4 \times 2 BISTER tile rotations.
	Claim 3: In practice, any combination of faulty PLBs is detected
	IV. L OCATING F AULTY PLB S

	Fig.€6. Combined test sessions for (a) 3 \times 2 tile and (b)
	Theorem 1: Any single faulty PLB is guaranteed to be uniquely di
	Proof: When the faulty PLB is configured as a BUT, it is detecte

	Assumption A1: A TPG with faulty PLBs does not skip the patterns

	Fig.€7. Graphical representation of (1) .
	Assumption A2: No more than two faulty BUTs have identical respo
	Lemma 2: If none of the two ORAs observing BUT B fails in phas
	Proof: Assume, by contradiction, that B fails phase p . Base

	Fig.€8. Graphical representations for \hfill\blackboxfs for: (a)
	Lemma 3: If the two ORAs observing the same BUT report no failur
	Proof: Based on Lemma 2, the common BUT of the two ORAs does not

	Lemma 4: Any BUT failure appears at least at two ORAs.
	Proof: Assume, by contradiction, that phase p is reported only

	Lemma 5: If we have failures only at two ORAs, they must have id
	Proof: Based on Lemma 4, any failure must appear at least twice,

	Theorem 2: (For the 4 \times 2 tile) If only two ORAs observin
	Proof: In Fig. 8(a), without loss of generality, assume that ${\

	Lemma 6: If two ORAs observing the same BUT report no failures,
	Proof: Based on Lemma 3, the common BUT of the two ORAs is fault

	Lemma 7: (For the 4 \times 2 tile) If only two ORAs without a
	Proof: In Fig. 8(b), without loss of generality, assume that ${\

	Lemma 8: Assume that two out of three ORAs fail, such that the m
	Proof: In Fig. 8(c), without loss of generality, assume that ${\

	Example 1: Fig.€9(a) shows the set of failing phases obtained at

	Fig.€9. Graphical representations for (a) example 1, (b) example
	Example 2: Assume that we have ${\rm FO}_{23}={\rm FO}_{34}=\{3,
	Example 3: Assume that we have ${\rm FO}_{23}=\{2,5\}$, ${\rm FO
	Example 4: Assume that we have ${\rm FO}_{23}=\{4\}$, ${\rm FO}_

	Fig.€10. MULTICELLO diagnostic algorithm example.
	Fig.€11. A 4 \times 2 BISTER tile with two faulty PLBs and MUL
	Fig.€12. Basic PLB architecture.
	TABLE€II BIST P HASES FOR ORCA 2C AND 2CA S ERIES L OGIC B LOCK
	V. D IAGNOSIS W ITHIN A F AULTY PLB

	TABLE€III A DDITIONAL D IAGNOSTIC P HASES FOR ORCA 2C AND 2CA
	Fig.€13. PUB diagnosis.
	Fig.€14. ORA with greater diagnostic resolution.
	VI. E XPERIMENTAL R ESULTS

	Fig.€15. Diagnosis of an actual faulty PLB for: (a) test session
	VII. C ONCLUSION
	W. Huang and F. Lombardi, An approach to testing programmable/co
	W. Huang, F. Meyer, X. Chen, and F. Lombardi, Testing configurab
	T. Inoue, S. Miyazaki, and H. Fujiwara, Universal fault diagnosi
	C. Jordan and W. P. Marnane, Incoming inspection of FPGAs, in Pr
	F. Lombardi, D. Ashen, X. Chen, and W. Huang, Diagnosing program
	M. Renovell, J. Figueras, and Y. Zorian, Test of RAM-based FPGA:
	M. Renovell, J. Portal, J. Figueras, and Y. Zorian, Testing the
	B. Culbertson, R. Amerson, R. Carter, P. Kuekes, and G. Snider,
	C. Hamilton, G. Gibson, S. Wijesuriya, and C. Stroud, Enhanced B
	C. Stroud, P. Chen, S. Konala, and M. Abramovici, Evaluation of
	C. Stroud, S. Konala, P. Chen, and M. Abramovici, Built-in self-
	C. Stroud, E. Lee, S. Konala, and M. Abramovici, Using ILA testi
	C. Stroud, E. Lee, and M. Abramovici, BIST-based diagnostics for
	C. Stroud, S. Wijesuriya, C. Hamilton, and M. Abramovici, Built-
	S.-J. Wang and T.-M. Tsai, Test and diagnosis of faulty logic bl
	A. Burress and P. Lala, Online testable logic design for FPGA im
	C. Zeng, N. Saxena, and E. McCluskey, Finite state machine synth
	N. Shnidman, W. Mangione-Smith, and M. Potkonjak, Online fault d
	A. Steininger and C. Scherrer, On the necessity of online BIST i
	M. Abramovici, C. Stroud, S. Wijesuriya, C. Hamilton, and V. Ver
	M. Abramovici, J. Emmert, and C. Stroud, Roving STARs: An integr
	M. Abramovici and C. Stroud, BIST-based delay-fault testing in F

	Lattice Semiconductor Available . [Online] http://www.latticesem
	D. Siewiorek and R. Swarz, The Theory and Practice of Reliable S
	J. Emmert, C. Stroud, B. Skaggs, and M. Abramovici, Dynamic faul
	C. Stroud, M. Lashinsky, J. Nall, J. Emmert, and M. Abramovici,
	M. Abramovici and C. Stroud, BIST-based test and diagnosis of FP
	C. Stroud, A Designer's Guide to Built-In Self-Test . Norwell, M

	Standard Test Access Port and Boundary-Scan Architecture, IEEE S
	M. Abramovici, M. A. Breuer, and A. D. Friedman, Digital Systems

	Xilinx, Inc . [Online] . Available: http://www.xilinx.com/produc

