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Categories of Materials

Materials can be categorized into three main
groups regarding their electrical conduction
properties:
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Semiconductors

While there are numerous
semiconductor materials
available, by far the most
popular material is Silicon.

GaAs, InP and SiGe are
compound semiconductors
that are used in specialized
devices.

The success of a semiconductor material depends on how easy it is to
process and how well it allows reliable high-volume fabrication.
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Single Crystal Growth

Pure silicon is melted in a
pot (1400C) and a small
seed containing the
desired crystal orientation
IS Inserted into molten
silicon and slowly
(Lmm/minute) pulled out.
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Single Crystal Growth

The silicon crystal (in some
cases also containing
doping) is manufactured
(pulled) as a cylinder with
a diameter of 8-12 inches.

: _ : Single Crystal Slilcon Ingot
This cylinder is carefully

sawed into thin disks
(wafers). The wafers are
later polished and marked
for crystal orientation.
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Lithography

An IC consists of
several layers of
material that are
manufactured In
successive steps.

Lithography is used
to selectively process
the layers, where the
2-D mask geometry is

copied on the surface.
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Lithography

The surface of the wafer is coated
with a photosensitive material, the
photoresist. The mask pattern is
developed on the photoresist, with
UV light exposure.

Depending on the type of the
photoresist (negative or positive),
the exposed or unexposed parts
of the photoresist change their
property and become resistant

to certain types of solvents. Photoresist Application
(Ontrak)

Subsequent processing steps remove the undeveloped photoresist from
the wafer. The developed pattern (usually) protects the underlying layer
from an etching process. The photoresist is removed after patterning on
the lower layer is completed.
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Etching

Etching is a common process to
pattern material on the surface.
Once the desired shape is
patterned with photoresist, the
unprotected areas are etched
away, using wet or dry etch
techniques.
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Patterning of Features on SiO,
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Patterning of Features on SiO,
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Oxide Growth / Oxide Deposition

Oxidation of the silicon
surface creates a SiO,
layer that acts as an

Insulator. Oxide layers
are also used to isolate
metal interconnections.
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Oxidation Furnoce
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; B An annealing step is required to restore the

crystal structure after thermal oxidation.
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lon Implantation

%/ lon implantation is
N used to add doping

Substrate materials to change

5_lon implant the EIeCtricaI
characteristics of
silicon locally. The
dopant ions penetrate

4. Etching

v tN the surface, with a
B penetration depth that
6. After doping IS proportional to their

Kinetic energy.

diffusion ,//S'ubstrate
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Thin Film Deposition

While some of the structures can be
grown on silicon substrate, most of

the other materials (especially metal
and oxide) need to be deposited on
the surface.

In most cases, the material that is
deposited on the whole surface will
be patterned and selectively etched.
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There are two main methods for thin
film deposition:

» PVD Physical Vapor Deposition
» CVD Chemical Vapor Deposition
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Fabrication of an nMOS Transistor
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Fabrication of an nMOS Transistor
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Fabrication of an nMOS Transistor
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Fabrication of an nMOS Transistor
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CMQOS Process

The CMOS process allows fabrication of nMOS
and pMOS transistors side-by-side on the same

Silicon substrate.
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CMOS Process Flow

Create n-well regions
and channel-stop regions

Y

Grow field oxide and
gate oxide (thin oxide)

Y

Deposit and pattern
polysilicon layer

regions, subsirate contacts

Y

deposit and pattern metal layer

[ Implant source and drain J

Create contact windows, ]
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The first step of
processing is to
create a deeply
implanted n-well.

This is done either
by diffusion or ion
implantation.

Well Creation

(A)

Lateral
diﬁusion

kl n-well 7

p-type epitaxial layer
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Definition of Active Areas

The next step is to
define the active
areas where the
transistors will later
be created.

A thermal oxide is
grown uniformly on
the surface. Then
the active areas are
covered by nitride.
A second thermal
oxidation process
grows thick silicon
dioxide outside the
active areas.

21
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Polysilicon Deposition

The entire surface
IS covered with a
thin oxide layer
(gate oxide).

Polysilicon is deposited and
patterned to form the gates of the
NnMOS and pMOS transistors.

22
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Source/Drain Implantation

p+ implant (boron)

i i i l l i i l l i i i l The drain and source

regions of the nMOS
§ ! M and pMOS transistors
\ n-well are created by doping.
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Oxide Deposition

The entire surface is
covered with a field

oxide and the contact

holes are etched into
this oxide to enable
connection to the
underlying layers.
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1st Level Metallization

The metal layer is
deposited using a
Physical Vapor
Deposition (PVD)
method, patterned,
and etched.
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2"d | evel Metallization

The entire surface is
covered with a field
oxide and the contact
holes are etched into
this oxide to enable
connection to the
underlying layers.

(H)

Then, the second | metal 2
(third, fourth, etc...) ] Via metal f
layer of metal can be | BT XL

deposited, patterned N £ N N §
and etched according A A A 7 nwell
to the mask layout. n+ ot

p-type
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Lithography Masks

= Each lithography step during fabrication must be
defined by a separate lithography mask.

= Each mask layer is drawn (either manually or using
a design automation tool) according to the layout
design rules.

= The combination (superposition) of all necessary
mask layers completely defines the circuit to be
fabricated.
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poly

Polysilicon

p-type substrate
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Implant

Polysilicon

source and drain
region implants

p-type substrate
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contacts
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metal

p-type substrate

-well region
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Input

Composite Mask Layout
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Layout Design Rules

To allow reliable fabrication of each structure, the
mask layers must conform to a set of geometric
layout design rules.

Usually, the rules (for example: minimum distance
and/or separation between layers) are expressed
as multiples of a scaling factor — lambda (A).

For each different fabrication technology, lambda
factor can be different.

34
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Layout Rules of a Minimum-Size MOSFET

minimum width
of polysilicon

A
e . . .
o minimum separation from
g b contact to active edge
.E a
E3 minimum contact size
-
ER |
Lo - .
E<S minimum separation from
contact to active edge
\)

minimum
contact size

minimum separation from
contact to active edge

mnmm um separation from
contact to polysilicon edge

4

\J

minimum length of active area
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n-well

. pMOS

minimum overlap of n-well
over p+ active area

I

|

minimum separation between
n+ active area and n-well

|

minimum separation
between the nMOS and
the pMOS transistor

B | vos
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INPUT
OUTPUT
metal-poly
contact
GND B nMOS
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State-of-the-Art Examples
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Multi-Level Interconnect with CMP

/PASStW\TiON 2
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Multi-Level Metal Interconnect

TSMC
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Multi-Level Metal Interconnect
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Multi-Level Metal Interconnect

LAYER 5
LAYER 4
ALUMINUM
WNGER - N N R
SRR T R s T, i i
T TUNGSTEN CONNECTORS —__ !
; ey e e W 1
LAYER 2 :
LAYER 1

1MICRON TRANSISTORS - SILICON SUBSTRATE

44

© CMOS Digital Integrated Circuits — 3@ Edition



Silicon on Insulator (SOI)

The key innovation
In SOI is to build the
transistor structures
on an insulating
material rather than
a common substrate
as in CMOS. This
reduces parasitic
capacitances and
eliminates substrate
noise coupling.

45
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Lithography Resolution is Decreasing

e G e “design shrink”

180 nm 130 nm 90 nm

With each new technology generation, we would be able to fit the
same amount of functionality into a smaller silicon area (ideally).
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Lithography Resolution is Decreasing

1989

1982
1979

1971

10 pm technology 3 pum technology 1.5 pm technology 0.8 um technology
12 sgmm 33 sgmm 50 sgmm 81 sgmm

But at the same time, we try to put more functionality in each chip
for each new technology generation, so that the average chip size
actually increases over the years !
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Final Remark: Fabrication Cost

Dollars in Millions
10000

1000

100 +

10 +

1 . I I I I I |
1965 1970 1975 1980 1985 1990 1995 2000

Initial investment costs of a new fabrication facility
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