
CoCentric System Studio

Data Sheet

Overview

CoCentric® is the family name for Synopsys’ SystemC Design and Verification tool suite that spans from concept to implementation in

hardware and software. A member of this family, CoCentric System Studio is a SystemC simulator and specification environment for joint

verification and analysis of algorithms, architecture, hardware, and software at multiple levels of abstraction. The design flow for all design

phases from concept engineering to implementation in hardware and software is vastly simplified using a single simulator. System Studio

simulates hardware and software interaction at higher levels of abstraction with several orders of magnitude speed-up over RTL simulations.

System Studio bridges the gap from abstract algorithms to synthesizable SystemC, making the creation and exchange of reusable IP

based on SystemC easy. System Studio ships with over 2000 models for frequently used algorithms in its model library. Rapid standards

compliance verification for the wireless telecommunications, multimedia, and computer networking sectors is made possible with a library

of reference design kits. CoCentric System Studio enables verification of complex hardware/software (HW/SW) designs early in the

design cycle, getting the specification right in a timely manner. It is also used to create synthesizable SystemC code for CoCentric

SystemC Compiler, which provides hardware synthesis from SystemC.

The Problem

System-on-a-chip (SoC) technology marries

processor cores, memories and peripherals

together, creating unique products.

However, SoC technology also presents

unique design and verification challenges.

Software plays a dominant role in the SoC

solution, yet tools for designing hardware

and software are disparate. Traditional RTL

verification is no longer enough. Hardware

elements may originate from different

vendors, based on dissimilar tools. How

can a design team hope to quickly design

and verify an SoC with a high level of

confidence?

SystemC™

sc_assert(request
 -> status == BUS_OK)
request -> address = address;
request -> data = data;

• SystemC Engine

• Design Entry

• Debugging

• Visualization

• Sim Control

• Co-Simulation

Figure 1. System Studio is a SystemC simulator and specification environment for joint

verification and analysis of algorithms, architecture, hardware, and software at multiple

levels of abstraction

The Solution: CoCentric System Studio

System Studio is a SystemC simulator and

specification environment for joint verification

and analysis of algorithms, architecture,

hardware and software at multiple levels

of abstraction. Based on C/C++,

SystemC is the standard design and

verification language that spans from

concept engineering to implementation in

hardware and software. As such, System

Studio is the unified tool that effectively

addresses the following important aspects

of SoC design and verification:
■ Design capture and management
■ The verification of algorithms and of

architectures
■ Fast simulation
■ Powerful debugging and analysis
■ A path to implementation

Design Capture and Management

In System Studio, designers use hierarchical,

graphical and language abstractions in

order to capture and verify their entire

system in one unified environment based

on SystemC. It has a powerful integrated

textual and graphical editor that enables

users to capture algorithmic behavior and

system architecture at various levels of

abstraction.

SystemC designers, in addition to being

able to work at the source code level, can

now use System Studio’s graphical editor

to increase overview and visibility in the

design. Pulling together models from

design libraries is simply a drag-and-drop

operation. Interconnections are easy to see.

With the push of a button, System Studio

performs formal checks on the design to

identify common mistakes before compilation

and simulation.

SystemC users are especially appreciative

of System Studio because of the powerful

dynamically changeable parameter features,

the Tcl scripting and simulation control file

capability, and the visualization and debug

features. Another advantage of System

Studio is the ability to visualize the design

in several views (graphical schematic and

symbol views, source code view, interface

view and header view). System Studio

maintains synchronicity between the views.

It also facilitates design reuse by the automatic

generation of model documentation in

HTML format.

A very important aspect of any SoC

design is the necessity to manage a

wealth of design data. System Studio has

a powerful and intuitive design management

infrastructure including workspaces and

library management. Designers can maintain

multiple versions of a module as it evolves

through the design process. System Studio

offers revision control that is compatible

with industry standard revision control

software tools such as Rationale

ClearCase®, GNU RCS and the Open

Source CVS.

Design Capture and Management

Highlights
■ Capture

- Schematic capture via block diagram

editor

- Built-in source code editor

- Use of external source code editors

(vi, GNU Emacs, …)

- Model wizard, eases creation of

SystemC models

- Hierarchy browser
■ Linked model views

- Interface (all model types)

- Source code (leaf level models

and SystemC)

- Header file (architectural models)

- Schematic / Finite State Machine

(hierarchical models)

- Symbol (all model types)
■ Design checks

- Connectivity

- Parameterization

- Syntax

- Absence of deadlocks (static DFGs)

- Dataflow consistency (DFGs)

- Causality (control models)

■ Management

- Automatic generation of HTML

documentation

- Organization of models in workspaces

and libraries

- Detection (+replacement) of out-of-date

model instances

- Configurable compiler and linker

options

- Automatic Makefile generation (models,

libraries, simulation)

- Configurable link to revision control

systems

- Search models by name, description,

or category

- Generate an executable specification

from any level of abstraction

Verification of Algorithms

Algorithms are captured, verified and

optimized in System Studio using intuitive

dataflow graphs (DFGs) and finite state

machines (FSMs). System Studio is a

fast simulator of algorithmic control and

dataflow systems. At the lowest level (e.g.

leaf level), blocks of C/C++ and SystemC

source code form a natural representation

of the input and output behavior and the

signal processing function that the block

performs. Blocks are cleanly organized to

form hierarchical structures by means of

dataflow graphs and control models.

System Studio is integrated with a powerful

finite state machine editor that can be used

to create hierarchical and concurrent finite

state machines for modeling reactive control,

dynamic switching, and concurrent execution.

Both modeling styles (dataflow and control)

work together and can be nested to any

level of depth. For example, a designer can

model a state machine in which each state

is best modeled as a dataflow, and the

algorithm contained within such a dataflow

block can contain further dataflow or control

models. The natural and intuitive hierarchical

structure avoids errors, simplifies debugging

and promotes the reuse and sharing of

design blocks with other projects.

2

System Studio supports the use of “type

parameters”. Type parameters enable users

to create models that are independent of the

data type (floating-point, fixed-point,

bit-vectors, etc.) allowing the same block

to be reused in a variety of designs. The

benefit is a dramatic reduction in the number

of library models to be maintained. The same

model can be reused employing appropriate

data types.

Using its unique “transparent modeling”

capability, System Studio can parse the

design and analyze it for various character-

istics such as data rate consistency and

static versus dynamic behavior.

Algorithm Verification Highlights
■ Very easy and intuitive to use – can

model even the most complicated

algorithms very rapidly
■ Arbitrary nesting of dataflow and control

- Full control from dataflow

- Control other models

- Reset

- Suspend/resume

- Change parameters
■ Different model types (PRIM, SDS,

DFG, GATED, AND, OR)

■ Multi-rate control models
■ Static and dynamic dataflow
■ Type parameters
■ Different types of functional parameters

- Dynamic parameters

- Read-on-reset parameters

- Structural parameters

Algorithm Libraries and Reference

Design Kits

A vast library containing over 2000 algorithmic

models is shipped with System Studio.

Additionally, complete reference design kits

(RDKs) are available for all major multimedia

coding and wireless telecommunications

standards, even including fully compliant

receivers and channel models that are

required, yet not specified in the standard.

Time is saved and risk averted by checking

conformance to standards very early in the

design. Existing Synopsys COSSAP® models

and designs can be reused freely as part of

any new system definition. This completely

protects existing COSSAP investments by

enabling the reuse, as well as the modification

of COSSAP models, libraries, and systems

in the System Studio environment without

any porting efforts.

Reference Design Kits and Algorithm

Libraries
■ Broadband Access

- ADSL

- DOCSIS cable modem
■ 3G Wireless

- cdma2000 1xRTT

- WCDMA/FDD

- EDGE

- TD-SCDMA
■ Other Wireless

- Bluetooth™

- GSM/GPRS

- IS-136

- cdmaOne

- DECT

- PDC
■ Digital Video

- MPEG-4 video

- MPEG-2 video
■ Broadcast standards

- DVB

- DAB
■ Error Correction Coding
■ Speech Coding

- ITU G.72x speech

- AMR speech

- GSM speech

3

Figure 2. Algorithms are captured,

verified and optimized in System

Studio using intuitive dataflow

graphs and finite state machines

Verification of Architectures

System Studio provides complete support

for SystemC. Existing SystemC models can

easily be used in System Studio. New

SystemC models are quickly created using

the model creation wizard and the context

sensitive editor. Hierarchical blocks can

be created graphically by drag and drop

operations.

Full support of SystemC is one reason why

System Studio is ideal for architecture

modeling and exploration. An SoC architec-

ture contains processing elements (CPUs,

DSPs), interconnection elements (buses)

and storage elements (memories, caches)

in addition to other peripherals (address

generators, multiply-accumulators, I/O).

System Studio supports transaction-level

modeling (TLM). TLM tremendously benefits

the design and verification of architectures.

As opposed to algorithm modeling, where

communication is modeled as point-to-point

between blocks, in architecture modeling,

a finite set of resources transacts with each

other over shared communication channels

(e.g., buses). Using the TLM capability, it is

possible to achieve significant simulation

performance speedups compared to tradi-

tional RTL-based methods. System-level

bottlenecks can be found and fixed much

more productively at the transaction level

as models can be developed easily and

become available early in the design.

Software developers can use the TLM-based

model of the architecture to evaluate the

throughput of the software and study the

interaction of the software and the hardware

models. System Studio designers can

create and import pin-level models, which

can be simulated together with TLM models

enabling the verification of synthesizable

models in a high-speed system context.

Architecture Verification Highlights
■ Full support of SystemC at all levels

of abstraction
■ User-defined SystemC channels
■ Parametizable models

- Template parameters

- Custom constructors

- Dynamic parameters

- Change during runtime

- Models can detect data changes

(event notification) and react

- Change from simulation control file
■ Use existing SystemC code developed

with the OSCI reference simulator
■ Export SystemC models

■ Architecture performance analysis early

in design
■ Executable TLM architecture models for

joint HW/SW design and verification
■ Pin-accurate models (e.g., for HW

synthesis)
■ Mix and match models of different

abstraction levels
■ Integrate algorithmic models simply via

drag-n-drop

- Model SoC environment

- Stimuli generation

- Data post-processing

- Use timed or untimed algorithmic

models as placeholder for still-to-be

designed components

Simulation

System Studio has a simulation engine,

which automatically evaluates the different

models being used (dataflow, FSM,

SystemC) and optimizes the simulation of

the total system through different compile

and scheduling techniques. This powerful

functionality enables the user to freely mix

and match static and dynamic algorithm

models along with architectural models and

FSMs, while the tool optimizes the simulation

execution. It benefits users by allowing

them to focus on design and verification

4

Figure 3. TLM in System Studio

greatly benefits the design and

verification architectures. Software

developers can use the TLM-based

model of the architecture to evaluate

the throughput of the software and

study the interaction of the software

and the hardware models

ARM9/AHB

instead spending efforts to port models

between different abstraction levels or

tools. Mixing of architectural and algorithmic

models in the same simulation ensures a

mixed-mode capability that enables software

designers to simulate software in a hard-

ware context.

CoCentric System Studio works seamlessly

with leading HDL simulators such as

Synopsys VCS™ and Scirocco™, Cadence®

Verilog-XL® and Mentor Graphics®

ModelSim® to co-simulate RTL blocks written

in VHDL or Verilog. Users of Matlab® from

The Mathworks, Inc. can import their models

into the System Studio environment for

co-simulation. System Studio models can

be integrated into the ITUZ.100 Specification

and Description Language (SDL) context by

making use of System Studio’s slavable

simulation capability. For example, imagine

a software engineer wishes to verify protocol

stack software using the Telelogic Tau®

SDL Suite to simulate the system from an

SDL point of view. Operation of the base-

band, simulated by System Studio, auto-

matically communicates bi-directionally with

SDL Suite. This unlocks the opportunity for

early verification of the full complement of

HW/SW across multiple ISO layers.

During simulation, an interactive control

panel gives users control over the execution

of the simulation. A designer may interactively

set breakpoints at any node in the design

and single-step through simulation

sequences of interest. Once the simulation

is paused, the designer has access to

variable values, can view the internal states

and parameters of models, see values of

nets connecting models, or examine the

active state of any control model. In short,

System Studio offers complete visibility into

the design.

System Studio simulations can be controlled

via simulation control files (SCF). Based on

the widely used Tcl language, an SCF can

be used to automatically sweep a range of

parameter values for critical blocks in the

design. It allows polling (or setting) model

parameter values to change simulation

scenarios based on intermediate simulation

result values, thereby enabling automatic

iterative optimization of parameters.

This allows converging on a desired

output result more rapidly than by using

simple iterative simulation over a range of

parameter values. In addition, SCF permits

the distribution of simulations over a

network of workstations using the popular

Platform LSF® load sharing facility from

Platform Computing, Inc. and Sun™ Grid

Engine from Sun Microsystems, Inc.

An incremental compilation option ensures

that the simulation setup time is optimized.

When this option is invoked, simulation

code is generated and compiled only on the

sections of the design that have been modi-

fied. This is useful in a development envi-

ronment where designers change minor

sections of the design and require a rapid

turnaround in simulation results.

Simulation Highlights
■ Simulation engine

- Fastest control/dataflow simulator

- Compiled statically scheduled code

- Dynamic dataflow

- Slavable simulations

- SystemC simulation

- Fully compatible with OSCI

reference implementation

- Mix and match models of different

levels of abstraction
■ Co-Simulation

- VCS, Scirocco

- ModelSim

- Verilog-XL

- Matlab

5

Figure 4. The debugging and

analysis capability in System

Studio provides designers with

all the feedback they need for

design productivity

Bus

Memory

Debugger

Simulation

■ Slavable simulation enables integration of

algorithmic models into

- Telelogic SDL Suite environment

- HDL context

- User-proprietary tools
■ Tcl simulation control files

- Regression testing

- Parameter optimization

- Load sharing (Platform/SUN)
■ Integration of processor models into

architectural and algorithmic models
■ Incremental compilation (short modify-

compile-simulate cycles)
■ Optional run-time checks (range checks)
■ Simulation reports (activation counts,

samples, etc.)
■ Orders of magnitude faster than RTL
■ Cycle-accurate hardware simulation

Debugging and Analysis

The debugging and analysis capability in

System Studio provides designers with

all the feedback they need for design

productivity. Designers can choose from

numerous options to portray or graph the

data in a manner that is most helpful for

analysis. Multiple levels of debugging are

available: the macro-debugging environment,

which is extremely efficient for block level

debugging, and micro-debugging, which

can be used to debug detailed block

implementation at the C++ source-code level.

The macro-debugger enables designers to

debug designs at the block level. The tool

allows users to set breakpoints when a

given block is executed or when a given

state in an FSM is entered. This provides

for efficiency in the debugging process

since the overheads are very minimal.

Once a problematic block is identified,

System Studio allows the designer to dive

into the source code of that block at the

push of a button. Source code debugging,

also called “micro-debugging” is performed

using standard source-code debuggers.

Special print and display functions aid the

designer in tracking down bugs.

Signal transitions can be analyzed interactively,

or written to a file and post-processed,

using either the integrated DAVIS or VirSim

data visualization environments. DAVIS

provides several capabilities including

creation of signal graphs and complex

signal calculation on sets of graphs in both

the analog and the digital world. VirSim is

a waveform viewer for viewing contents of

VCD data files at the end of a simulation.

VirSim can also steer the simulation and

interactively display SystemC signals and

parameters. On-demand data tracing

ensures the highest possible simulation

speed.

While signal transitions are essential to

understand the behavior of an individual

block, it is difficult to analyze system-level

parameters with signal transitions. For

example, it is very difficult to study bus

utilization with signal transitions. Therefore,

System Studio provides designers with

unique data monitoring capabilities such

as message and table monitors. These

monitors display aggregate data using

several displays such as pie charts, tables

and histograms.

Debugging and Analysis Highlights
■ Macro-debugging (e.g., at the block level)

- Start/stop/pause simulation

- Run for number of cycles, number of

model activations, specified amount of

time (architectural models)

- Step-into (dive into source code;

architectural models only)

- Breakpoints - stop when model is

activated or suspended

- Highlighting of active model instance in

schematic

- Highlighting of state transitions

- Peek/poke (signals/nets, parameters)

- Online statistics of model activations

and data flow

- Hierarchy browser of data/parameters

(level watch)

- Create custom data collection

(data watch)

6

Figure 5. System Studio works

seamlessly with leading HDL

simulators. Signal transitions

can be analyzed interactively,

or written to a file and post-

processed

7

■ Micro-debugging (e.g., at the source

code level)

- Print and display values of ports and

signals

- Print and display SystemC data types
■ Interactive and post-simulation waveform

displays

- DAVIS

- Waveforms

- Calculator

- Eye diagram

- Scatter diagram

- Histogram

- Analog + digital

- Timed and untimed

- VirSim

- Standard HDL waveform viewer

- Simulation control

- Signals and parameters

- Both DAVIS and VirSim can be

connected interactively

- Data is only recorded upon request

- No penalty if data is not recorded

- High simulation speed

■ Data monitors

- Easy-to-use model instrumentation;

on-demand data visualization

- Analyze bus traffic

- Peek at memories

- Visualize statistics

- Present status information

- Table monitor

- Table representation

- Graphical representation

(pie, bar, Gantt, …)

- Message monitor

- Data monitor

Path to Implementation

System Studio enables the fastest route

to implementation of hardware blocks

right from the system level of abstraction.

For unit-rate algorithms specified using

data flow diagrams, FSMs and leaf level

C-based models, System Studio can auto-

matically generate synthesizable SystemC

code. This synthesizable SystemC code

output is then input into CoCentric

SystemC Compiler. SystemC Compiler

accepts behavioral and RTL SystemC

descriptions and generates hardware using

state-of-the-art synthesis technology from

Synopsys. This automatic path to hardware

boosts design team productivity by enabling

the quick capture of a design and the sub-

sequent rapid generation of prototype

FPGA or ASIC hardware.

Path to Implementation Highlights
■ Design synthesizable SystemC models

- RTL coding style

- Behavioral coding style
■ SystemC code generation

- Automatic synthesis of hardware

- Generated directly from unit-rate

algorithmic models

- PRIM models

- DFGs

- Control models

- Nested dataflow and control

- Flattened or hierarchical implementation

- Generation of scripts to aid synthesis

using SystemC Compiler and

Design Compiler™

- Powerful FSM optimization
■ Verification of generated hardware in the

system context

CoCentric Sytem Studio
Executable Specification

C/C++/SystemC

CoCentric SystemC Compiler C/C++
Software

Implementation
Flow

FPGA
Compiler II

FPGA SoC

Design
Compiler

Physical
Compiler

Figure 6. System Studio simulates any

SystemC model at any abstraction

level. The companion product,

CoCentric SystemC Compiler, closes

the gap from system design to gates by

providing HW synthesis from SystemC.

Quality of Results (QoR) is identical to

using a traditional RTL starting point

but has the additional advantage of

early and more complete HW/SW

verification

700 East Middlefield Road, Mountain View, CA 94043 www.synopsys.com

Synopsys, the Synopsys logo, CoCentric and COSSAP are registered trademarks and VCS, Scirocco and Design Compiler are trademarks of Synopsys, Inc.

All other products or service names mentioned herein are trademarks of their respective holders and should be treated as such. Printed in the U.S.A.

©2002 Synopsys, Inc. 2/02.TM. WO

6

