

Platform based on Open-Source Cores for
Industrial Applications1

Abstract

The latest version of the International Technology
Roadmap for Semiconductors predicts that design reuse will
be essential in the near future to face the constantly
increasing design complexity. The concept comes from
software engineering in which reuse is a fundamental
technology. In order to provide libraries and applications to
reuse in software development, some open-source initiatives
(e.g. Linux, gcc, X, mysql) have appeared during the last
decades. The basic idea is to distribute the library or
application source code (normally free-of-charge) and allow
any developer to use, modify, debug and improve it.

Several initiatives have tried to port this idea to hardware
development. The main goal of this paper is to develop a
synthesizable platform described in SystemC from an open
architecture. The platform includes a CPU (OpenRISC) and
some basic peripherals, such as a bus controller, watchdog
and UART. A set of software development tools (compiler,
assembler, debugger) and RTOS (eCos) has also been
developed. This work enables the evaluation of the advantages
and disadvantages of the open-source model in electronic
system design.

1. Introduction1

In order to allow the huge increase in design productivity
(50x [1]) that seems necessary to exploit the constantly
increasing system and silicon complexities, a system-level
design methodology that allows reuse-based and platform-
based design in both HW and SW domains will be essential in
the coming years [1][2]. This has created a new business
segment [3] (commerce in HW and SW IPs) in which a lot of
IP-developments, IP-vendors and IP-catalogs have appeared
during recent years. However, to be practical, the reuse-based
methodology must guarantee that the IP integration process is
successful (satisfying specification and constraints, error-free
and cheaper than homemade development) thus some
proposals have been made with this objective. Firstly, some
standards (e.g. VSIA standards [4]), specification languages
[5] and IP design rules (e.g. Reuse Methodology Manual [6])
were defined. Secondly, some electronics catalogs that

facilitate core selection and transfer were developed (e.g.
[7][8]). Finally, some CAD tools that provide the necessary
infrastructure for IP-based design were proposed [9].

But even taking into account the previously commented
techniques, reuse can doom a project to failure. This has
forced a review of approaches (e.g. VSIA [10]) and an
analysis of the main cost involved in reuse [11]. There are
three primary metrics that can determine the magnitude of cost
and saving via reuse [11]: original development time, amount
of design modification and verification effort.

Verification is one of the main bottlenecks of system-level
design [1], thus it is also a problem in IP-based design [12].

Another problem is IP modifications. In theory, only the IP
interface can be modified, but in practical cases some
modifications have to be introduced in the IP to cover
specifications and constraints. A core is not really reusable
until it has been reused (and modified) several times [13].
Additionally, it is expensive to do forward-looking design of a
function or module; today it is easer and cheaper to solve very
specific problems than anticipate demands of future projects.
Thus, new projects sometimes require new features of existing
cores that have to be implemented in the IP. The core provider
can do these modifications (commercial solution) with a
substantial increment of the core cost. Another possibility (ad-
hoc solution) is to use open-source cores in order to create an
internally developed core [11].

The open-source approach seems to have several
advantages: the core is very cheap (normally free), the user
can have source code access and there is a group of
developers that provide know-how, maintain and improve the
core. However, it may also have several disadvantages such as
instability (the development group changes or disappears),
incomplete development, poor or no support of existing IP-
reuse infrastructures and standards, poor documentation and
verification methodology.

The main goal of this paper is to explore the ad-hoc
solution [11] to enable reuse. Thus, a microprocessor (based
on the open-source OpenRISC core) and the basic HW (buses,
memories, peripherals) and SW (compiler, debugger, RTOS)
platform elements have been developed. The system has been
described in SystemC and implemented within a FPGA.

OpenRISC 1000[14][15] is a common MIPS-based
architecture for a family of free, open source cores [16]. It is a
32/64-bit load and store RISC architecture designed with
emphasis on performance, simplicity, low power
requirements, scalability and versatility.

1 This work has been supported by the MEDEA+ (removed

for blind revision)

The quality of the open-source core will be analyzed in the
next section. After this, the developed platform will be
presented (section 3) and its main hardware (section 4) and
software (section 5) components described. Section 6 will
comment the core verification methodology and environment.
Finally, the simulation and synthesis results will be presented
in section 7 and some conclusion will be provided in section
8.

2. Open-Source IP Core Quality
IP core quality assessment is an important issue in reuse-

based design methodologies [32][33]. Many metrics and
techniques have been proposed for this objective, such as the
VSIA Quality IP Metric (QIP) [4] or the Mentor&Synopsys
OpenMORE [29]. In this work, we have used the OpenMORE
quality assessment program to evaluate the open-source IP
core. We have selected this program because it can be
downloaded free, it has been used to qualify some commercial
cores and it was donated to VSIA and integrated into QIP
(currently under VSIA member review).

The first step is to analyze the core distribution. The
OpenRISC Team at OpenCores [15] has developed a first
implementation: OpenRISC 1200 (OR1200). This soft core
[17] is a 32-bit scalar RISC with Harvard microarchitecture,
5-stage integer pipeline, virtual memory support (MMU) and
basic DSP capabilities. The core has been described in Verilog
and implemented in FPGAs and ASICs.

The distribution includes a complete Software Development
Kit (SDK) based on GNU tools. It includes binary utilities
(assembler, linker), C/C++ compiler, debugger and an
architectural simulator. There is also a port of the µClinux
Operating System [19] and some groups are working to port
other OS such as Linux, RTERM [18] and eCos.

The OpenRISC Team has also developed a platform
specification called ORP (OpenRISC Reference Platform).
Complying with this reference platform, ORPSoC is a
System-on-Chip that is intended to be used by SoC developers
as a starting point. It includes several software packages, such
as µCLinux RTOS and ORPmon (a bootstrapping monitor
following ORP specification). Additionally, several OR1200
functional tests have been included in the development kit.
There are also development boards and silicon
implementations of this platform [21].

When the selected quality assessment program
(openMORE) is applied to the previously described IP core,
the first problem is that only the synthesizable RT model of
the core is evaluated and the rest of the distribution (basically,
the SDK) is ignored. OpenMORE splits the soft-core
evaluation into 3 main sections:

• Macro Design Guidelines. The OpenCores project

provides a HDL coding guideline document [24] that
verifies most of the OpenMORE recommendations.
Additionally, the main core developers are design-
company engineers that use standard industrial

design practices. Thus, the overall coding-style
quality of the OR1200 core is quite good (283 of 396
points, that is an OpenMORE rating of 71%). The
Macro Design Guidelines have three sections:
System-Level Design Issues, RTL Coding and
Synthesis Guidelines. Concerning “System-Level
Design Issues”, the core rating is very good (64 of 70
points, rating of 91%). The weaker aspect of the core
is the documentation of clocks. The rating of the
RTL coding section is lower (158 of 218 points,
71%), mainly because the naming and port
conventions are different. The poorest rating is
obtained in the synthesis section (61 of 108 points,
51 %) because the distribution only includes a simple
global synthesis script.

• Verification Guidelines. The OpenCores IPs should

fulfil the verification strategies defined in [20]. This
draft is a preliminary version that defines the main
verification procedures but it is poorer than up-to-
date approaches such as the VSIA functional
verification deliverables [35]. Nevertheless, the
verification rating of the open-source core is quite
good (54 of 74 points, 73%). The rating of the macro
verification section is very poor (11 of 22 points,
50%) but the system-level verification rating is very
good (43 of 48 points, 89%). These results were
surprising because it was thought that verification
was one of the weaker aspects of the core. The
reason could be the verification goals. The main goal
of the OR1200 verification environment might be to
enable the IP integrator to perform an acceptance test
or even an integration test. However, in our work we
needed a more complete verification environment
that could validate source code modifications.
Section 6 presents the proposed verification
environment.

• Deliverable Guidelines. The OpenRISC deliverables

obtain a good rating: 74 of 104 points that is a
71.4%. The weaker part is related with the
“verification files”.

As a conclusion, the overall quality of the open-source core

is 411 of 570 points that is a rating of 73%. In OpenMORE, a
rating greater than 60% usually means that the core is “good
for reuse” thus we can conclude that the OpenRISC core has
enough quality to be integrated in an industrial development.

3. Proposed OpenRISC-Based Platform
One of the requirements of this work was to develop in

SystemC a platform that could be included in a low cost and
high performance family of products. An OR1200-based
platform does not verify this requirement thus a new platform
had to be developed. It includes a new microprocessor core

(OpenRISC 1500) and the minimum set of elements needed to
provide basic functionality (see Figure 1): main Wishbone
bus, bus access controller, Flash/ROM controller and UART.
Additionally, the platform should include an operating system
with low memory-size requirements such as the open-source
eCos RTOS.

Bus controller

FLASH

RAM

UART

Wishbone bus

Ins.
Cache

Data.
Cache

INTEGER UNIT

Except
Unit

Timer

PIC

Watchd.

Power
manag.

Perf.
Count

Debug
Unit

Development
Interface

JTAG

CPU

Figure 1: Proposed Platform Structure

The basic communication channel of the platform is an

OpenCores Wishbone Compatible Bus [22]. The bus
controller manages the CPU access to the bus. This element is
connected to the instructions and data caches or directly to the
integer unit (no-cache core configurations). Additionally, this
controller has a connection to the development interface in
order to allow readings and writings from/to peripherals for
in-circuit debugging.

The platform includes the slave controllers that manage the
access to Flash and RAM memories and, optionally, it could
include a 16550 compatible UART. This element provides an
additional method to access the microprocessor and RTOS
from the environment that can be used for on-board software
debugging.

The synthesizable description of the CPU peripherals
(excluding the UART) takes about 2500 SystemC code lines.

4. CPU Description
OR1500 is a 32-bit RISC processor that fulfils the OR1000

architecture and offers a lot of configuration possibilities and
optional units that enable its use in a wide range of
application. It is composed of eleven units (see figure 1) that
will be described in the following subsections in order to
provide a system complexity overview. These units have been
described in about 14500 SystemC code lines.

4.1. Integer Unit
The pipeline of this unit has been optimized in order to

improve the OR1200 performance. This obligated us to
duplicate some resources to avoid structural hazards. For
example, a structure of two dual-port memories was needed to

implement the register file in FPGAs. Control hazards were
solved by using delay slot techniques and data dependency
hazards were solved by data forwarding. With the proposed
pipeline design no stall for data dependency is needed.
Instead, this pipeline only stalls execution when caches have
no data ready or the multiplier is executing a multicycle
operation.

Several simulations of the proposed Integer Unit have
shown that it takes about 17% fewer cycles than the
OpenRISC 1200 implementation. The SystemC description of
this unit has 4100 code lines.

4.2 Data and instruction caches
The degree of associativity was decided after several test-

case simulations. The decision was to implement 2-way
associative caches.

Cache size and data block size are parametrizable. Cache
size can be set from 2 KB to 8 KB and the block size can be
set to 16, 32 or 64 bytes. The LRU (Least Recently Used)
replacement algorithm is used. The system integrator can
choose between the two possible cache write policies: copy
back and write through [23].

Additionally, some cache operations can be performed by
software: block locking, block prefetch, block flush, block
invalidate and block write-back [16]. Finally, two additional
techniques are used to improve performance: load through and
write buffer [23]. The design has minimized the stalls in
cache, so they currently cause a stall only when they are
waiting for the data from main memory after a miss has
occurred. The data and instruction caches are described in
5900 SystemC code lines.

4.3 Exception management unit
This CPU can raise ten different types of exceptions that

can be hardware-caused or software-caused. This unit is
described in about 600 SystemC code lines.

4.4 Debug unit and development interface
The debug unit is an optional facility that provides the

ability to create hardware breakpoints and watchpoints based
on complex comparison conditions with stored or loaded
values, data and instruction memory addresses. It is very
closely related to the development interface that allows
complete in-system debugging. The development interface is
accessed by the debugging software via a JTAG port. Through
the development interface, the debugging software can
analyze the status of the CPU, memory contents, trace
information, etc.

The debug and development interface description takes
about 2600 SystemC code lines.

4.5 Programmable interrupt controller, Tick Timer and
Watchdog

The OpenRISC 1000 architecture only provides one line of
external interrupt. Thus a programmable interrupt controller
(PIC) has to be included when more interrupt lines are needed.
Other interrupt sources are the tick timer and watchdog. Tick
timer’s aim is to provide the software with a precise clock
reference. The watchdog is a classical way to recover the CPU
from software failures such as endless loops or an erroneous
routine. These modules have been described in 466 SystemC
lines.

4.6 Performance counters and power management unit
Performance counters keep a count of the number of times

that a certain event has occurred. These events are: instruction
fetches, load and store accesses, cache misses and watch
points. The programmer can obtain profiling information
about the software executed by checking these counters. The
performance counter unit has been described in 734 SystemC
code lines.

The power management unit can modify the system clock
frequency, shut down modules or force the CPU to enter sleep
mode in order to reduce the power consumption. The software
can access all these features. The module description has only
138 code lines.

5. Software Development Kit
Our first idea was to reuse the set of software development

tools (assembler, linker, C/C++ compiler, debugger and
architectural simulator) that the OpenRISC distribution
includes and focus our work on the eCos RTOS porting.
However, those tools are neither very stable nor well-tested,
and with a daily use they prove to be prone to errors that are
not acceptable for the development of an industrial
application. In fact, even the Application Binary Interface
(ABI) was not totally defined and some work with the
OpenRISC Team was needed to fix it.

In order to find a solution for these problems, a profound
analysis of each of the tools has been made. The C/C++
compiler (GCC) seemed to have some errors because the
OpenRISC port uses pieces of code borrowed from ports of
other architectures, in an effort to obtain a working compiler
in the shortest possible time. Additionally, many developers
have been simultaneously working on the code without clear
guidelines. The chosen solution was to rewrite the port,
emphasizing on producing a clear and robust code. In order to
develop a new port, both a set of target description macros
(which summarize basic characteristics of target architecture)
and a machine description file (that defines the way to
translate from the parsed C/C++ code to OR1K assembly)
need to be written (about 2000 code lines and 4 man-month
effort). This port is being integrated with the latest version of
the OpenRISC port and included in the OpenRISC
distribution.

The available debugger (GDB [26]) has a very limited
functionality and it fails when complex tasks, such as stack
backtrace or function identification, are performed. The
reasons for these problems are an incomplete development
status, stressed by a strong dependency on the previously
commented unstable compiler. This dependency is so strict
that rewriting the compiler obliges rewriting the debugger
almost completely. A complete rewriting was thus carried out,
synchronizing the debugger with the new compiler and
integrating it within the new GBD multi-architecture
framework [25]. Additionally, a software module to
communicate the GDB with the in-circuit development
interface has been developed.

Existing binary utilities for OpenRISC (mainly assembler
and linker) are in working status. Thus, the distribution
version works correctly with the new compiler and debugger,
and it is being used in our design flow.

The simulator is a key element for both embedded
application developers and platform designers. The former use
it to verify the functionality of the application software, while
the latter utilize it as a golden model of the platform. The
simulator provided by the OpenRISC Team (or1ksim), is a
classical Instruction Set Simulator (ISS) that lacks the ability
to measure performance improvements gained by means of
architectural modifications or to provide cycle-accurate
information. In order to fix these problems, a cycle-accurate
simulator has been developed (more than 10000 C code lines,
including debugger support).

The Embedded Configurable Operating System (eCos)
[27][28] was chosen as embedded RTOS, mainly due to its
small memory size, which makes it an ideal choice for low-
cost embedded systems. Additionally, the OpenRISC core
configuration has been integrated within the eCos
Configuration Tool environment, merging both tasks and
avoiding misconfigurations between hardware and software.

In order to port eCos to the OR1500-based platform, a new
Hardware Abstraction Layer (HAL) [30] had to be developed
(more than 2500 C and assembler code lines). This RTOS also
includes an important set of test benches that have allowed the
verification of the port, the SDK and the complete hardware
platform.

6. Verification Methodology
One of the most important aspects to guarantee the quality

of an IP core is the verification methodology. As it was
previously commented, the OpenRISC verification
methodology was too poor to validate the new core, thus a
new verification environment had to be developed. Our
verification methodology defines 3 verification levels.

6.1 Block-level verification
 Every system component must have its own verification

environment. Classical signal-oriented tests or transaction-
based tests are used to verify the system blocks. The modeling
style defined in the SystemC Verification Guide [31] has been

used to generate the transaction-based tests. The use of
transactors has represented an important reduction of the test
environment size, test documentation and modification, with
the consequent reduction of the verification effort. Coverage
metrics have been used to certify the test quality. In this
project, the block test environments achieve 100% line
coverage in all the blocks. The GNU ‘gcov’ tool has been
used to calculate this coverage. Table 1 shows the total
number of block-level test bench lines, classified by module.

Modules Number

of Blocks
Block Test
Bench lines

Module Test
Bench lines

Integer unit 11 2007 1056
Excep. unit 1 284 284
Data cache 3 171 903
Ins Cache 2 198 747
Debug unit 1 1930 1930
Dev. Interface 2 72 2044
Perf. Counters 1 359 359
Power Manag. 1 190 190
Tick Timer 1 135 135
Watchdog 1 99 99
PIC 1 120 120

Table 1: Block and module oriented tests

6.2 Module-level verification
At module level, functional test benches and random tests

have been used. These tests verify the block relationships and
detect special corner cases. It is interesting to highlight that
the transaction-based random tests have detected more than 30
very specific corner cases with a simple test infrastructure.
The SystemC Verification Library (SCV) has allowed us to
define very complex random tests (e.g. correct instruction
sequences) very easily and with a low effort [34]. At module
level, the behavior of the RT description is compared with the
cycle-accuracy architectural simulator, providing an automatic
checking of the RT core outputs. Thus, the simulator has been
used as a golden model of the system. To increase the
simulator confidence, different engineering teams have
developed the simulator and the RT-model. Table 1 shows the
total number of lines of the module-oriented verification
environment.

6.3 System-level verification
At this level, some test programs are used to verify the

platform. Our verification environment includes two types of
test programs: functional tests and application example
programs.

About 220 assembler functional test programs have been
developed to validate particular aspect of the platform.
Engineers, who were not involved in the CPU design, derived
these tests from the system specification document.
Additionally, a new test is included every time that a new bug
is detected.

The main application-example test is the complete set of
eCos tests. It includes 154 tests that explore all the RTOS

possibilities. Some of these tests are very big, taking more
than 60 hours in the architectural simulator (several months in
the RT-level description). These tests have also been used to
verify the GDB interface with the development interface
through JTAG core facilities.

7. Results
In this section several aspects of the developed platform

will be analyzed.
Firstly, the architectural design of the microprocessor is

evaluated. The new microprocessor core (OR1500) needs on
average 17% less clock cycles than OR1200 when it is
configured without caches. With caches, the performance gain
is close to 40%. Considering that a 3-clock cycle delay is
needed to access the main memory, a 40MHz implementation
of OR1500 will reach 34.6 MIPS. Without caches, the
microprocessor reaches 6.2 MIPS.

Secondly, the simulation performance of the core is
commented. As has been previously commented, two models
have been developed: a functional model (that include the
architectural simulator, ISS, and functional models of other
platform components) and a synthesizable RT-level model.
The functional mode reaches about 850,000 instructions per
second while the RT-level model reaches about 7,400
instructions per second. Thus, the functional model is about
115 times faster than the RT-level model although it maintains
the cycle accuracy. These simulation results have been
obtained in a 2GHz PC, with Linux OS. The SystemC RT-
level simulation time is close to the Verilog simulation time
(using the Synopsys VCS simulator) although the Verilog
simulation could sometimes be up to 10% faster. The Verilog
descriptions have been automatically generated from the
SystemC code using the Synopsys SystemC Compiler.

After the simulation performance analysis, the synthesis
results of the platform are presented. The system has been
described in about 14500 synthesizable SystemC code lines.
This code was automatically translated to Verilog (as was
previously commented) and synthesized with Synopsys tools.
The target technology was a Xilinx Virtex2 FPGA with a
medium speed grade (-5). Table 2 shows the area and critical
paths of four configurations: Minimal (only the integer unit
without multiplier), Minimal with multiplier (hardware
resources for one-cycle multiplication and MAC instructions
are included), common (8Kbyte data and instruction caches
are included) and maximum (all the optional modules, such as
debug unit, development interface, performance counters, etc,
with maximum configuration parameters are included).

Configuration Area (gates) Critical path (ns)

Minimal 67481 17,5
Minimal with multiplier 80619 19,2
Common 1166541 24,6
Maximum 1241016 24,6

Table 2. Synthesis results

Now, the platform is being implemented in a FPGA
development board and verified in a real demonstrator.

Finally, some comments about the design effort. We have
estimated that about 4.5 man-years have been spent in
platform development. About 30% of the effort has been spent
in the SDK and the rest (70%) in the hardware development.
The software effort has been distributed between the simulator
(30%), eCos port (28%), GCC port (22%) and GDB port
(20%). The GDB port includes the communication with the
in-circuit development interface. The hardware effort has been
distributed between the platform design (48%), verification
(42%) and synthesis (10%).

We also estimated that the use of an open-source core has
reduced the total development effort by 50% even although
huge modification has been performed.

8. Conclusions
A first conclusion of this work is that an open-source core

(such as OpenRISC) has enough quality to be integrated in an
industrial project and it is a very good way to develop
modified cores that cover specific company requirements at
low cost.

Additionally, we think that an open-source core is not really
reusable until at least two different implementations have been
performed. Most of our problems have been a consequence of
the fact that the original OpenRISC SDK source code has not
been reviewed deeply enough and the core documentation has
not been properly updated. After the profound revision and
code improvements that this work has introduced in the open-
source core, the distribution (especially the SDK) can be
reused and modified with less effort.

We have developed a new platform that covers most of the
predefined requirements (low cost and high performances).
This platform is based on a new microprocessor core,
OR1500. This core, and in general any microprocessor IP, is
not a “normal” core because it needs a complex software
development kit to support it (compiler, debugger, RTOS,
simulators, performance analysis tools, etc). Thus, this type of
core needs particular quality metrics and design reuse
methodologies.

The platform has been described in synthesizable SystemC
code and implemented in an FPGA. The use of SystemC has
had a very positive impact in the project, especially in the
verification part. The integration of C/C++ programs (such as
the architectural simulator) into the SystemC verification
environment has been very easy, direct and efficient and the
SystemC Verification Library (SCV) [31] has allowed the
reduction and clarification of all the test benches with an
important decrease in the verification effort.

References
[1] The International Technology Roadmap For Semiconductors. 2001

Edition. Design. http://public.itrs.net/Files/2001ITRS/Home.htm
[2] R. Wilson. Design reuse expands across industry. EETimes. March 27,

2003.
[3] G. Moertti. Your Core, my design, our problem. EDN. October 11,2001.
[4] http://www.vsi.org/

[5] P. Flake, S. Davidmann, D. Kelf, C. Burish. The IP Reuse Requirements
for System-Level Design Languages. Eedesign. November 27, 2000

[6] P. Bricaud, M. Keating. Reuse Methodology Manual. Kluwer Academic
Publisher. 1998.

[7] http://www.us.design-reuse.com/
[8] G. Saucier, T. Pfirst, M. Have, M. Radetzki, P. Neuman. IP Transfer: a

mapping problem. IP-Based SoC Design Workshop. 2002.
[9] W. Savage, J. Chilton, R. Camposano. IP Reuse in the System on Chip

Era. ISSS’00. 2000.
[10] D. Lammers. VSIA’s new leader has ‘revitalization’ plan. EEdesign.

March 17, 2003.
[11] A. Dey, J. Moudy. Cost Savings via Reuse. Electronic Design Process

Workshop (EDP), 2002
[12] G. Moretti. Your Core – My Problem? Integration and Verification of

IP. Panel of the 38th Design Automation Conference. DAC’01. 2001.
[13] J. Ganssle. The Failure of Reuse. Embedded.com .December 14, 2001.
[14] Peter Clarke, Free 32-bit processor hits the Net. EE Times, February

28th, 2000. http://www.eetimes.com
[15] OPENCORES – Project: OpenRISC 1000.

http://www.opencores.org/projects/or1k/
[16] OpenRISC 1000 Architecture Manual. OpenCores, January 28th, 2003.
[17] Damjan Lampret. OpenRISC 1200 IP Core Specification. Rev. 0.7,

Preliminary Draft. OpenCores, September 6th, 2001.
[18] RTEMS. http://www.rtems.com/RTEMS/rtems.html
[19] µClinux – Embedded Linux Microcontroller Project – Home Page.

http://www.uclinux.org
[20] R. Usselmann. Verification Strategies. Rev 0.1. February 4, 2001.
[21] Flextronics PDA Development Board Datasheet. Flextronics, April

2002.
Available:
http://www.synplicity.com/partners/pip/Flextronics_RISC_Development
_Board.pdf

[22] WISHBONE System-on-Chip (SoC) Interconnection Architecture for
Portable IP Cores. OpenCores, September 7, 2002

[23] J.L. Hennessy and D.A. Patterson. Computer Architecture. A Quantitive
Approach. Morgan Kaufmann Publishers, San Mateo, CA, second
edition, 1996

[24] OpenCores Coding Guidelines. Rev 1.2. July 14, 2003.
http://www.opencores.org/tmp/cvsget_cache/common/opencores_coding
_guidelines.pdf

[25] Andrew Cagney. What is multi-arch. Cygnus Solutions, 1999.
Available: http://sources.redhat.com/gdb/papers/multi-arch/whatis.html

[26] John Gilmore, Stan Shebs (2nd ed.) GDB Internals: A guide to the
internals of the GNU debugger, 2nd edition. Cygnus Solutions, 2002.

[27] eCos. http://sources.redhat.com/ecos/
[28] Anthony J. Massa. Embedded Software Development with eCos. Prentice

Hall, 2002.
[29] http://www.openmore.com/
[30] Anthony J. Massa. eCos Porting Guide. Embedded Systems

Programming, Vol. 15 No. 1, January 2002. http://www.embedded.com
[31] SystemC Verification Standard Specification. Members of the SystemC

Verification Working Group, December 8, 2002.
[32] L. Cooke. Why we don´t have IP quality yet. EEDesign. July 24, 2003.
[33] N. Mokhoff. DAC panel finds IP quality lacking. EEDesign. June 3,

2003.
[34] J. Rose, S. Swan. SCV Randomization. August 13, 2003.

http://www.testbuilder.net/reports/scv_randomization.pdf
[35] T. Anderson. A Preview of VSIA Functional Verification Deliverables.

VSIA European Forum. March 3, 2003. http://www.vsia.org/events/
date03/date03ver.pdf

http://public.itrs.net/Files/2001ITRS/Home.htm
http://www.us.design-reuse.com/
http://www.eetimes.com/
http://www.opencores.org/projects/or1k/
http://www.rtems.com/RTEMS/rtems.html
http://www.uclinux.org/
http://www.flextronicssemi.com/
http://www.synplicity.com/partners/pip/Flextronics_RISC_Development_Board.pdf
http://www.synplicity.com/partners/pip/Flextronics_RISC_Development_Board.pdf
http://www.opencores.org/tmp/cvsget_cache/common/opencores_coding_guidelines.pdf
http://www.opencores.org/tmp/cvsget_cache/common/opencores_coding_guidelines.pdf
http://sources.redhat.com/gdb/papers/multi-arch/whatis.html
http://sources.redhat.com/ecos/
http://www.openmore.com/
http://www.embedded.com/
http://www.testbuilder.net/reports/scv_randomization.pdf

