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Abstract 
 

The latest version of the International Technology 
Roadmap for Semiconductors predicts that design reuse will 
be essential in the near future to face the constantly 
increasing design complexity. The concept comes from 
software engineering in which reuse is a fundamental 
technology. In order to provide libraries and applications to 
reuse in software development, some open-source initiatives 
(e.g. Linux, gcc, X, mysql) have appeared during the last 
decades. The basic idea is to distribute the library or 
application source code (normally free-of-charge) and allow 
any developer to use, modify, debug and improve it. 

Several initiatives have tried to port this idea to hardware 
development. The main goal of this paper is to develop a 
synthesizable platform described in SystemC from an open 
architecture. The platform includes a CPU (OpenRISC) and 
some basic peripherals, such as a bus controller, watchdog 
and UART. A set of software development tools (compiler, 
assembler, debugger) and RTOS (eCos) has also been 
developed. This work enables the evaluation of the advantages 
and disadvantages of the open-source model in electronic 
system design.  
 
 

1. Introduction1 
 

In order to allow the huge increase in design productivity 
(50x [1]) that seems necessary to exploit the constantly 
increasing system and silicon complexities, a system-level 
design methodology that allows reuse-based and platform-
based design in both HW and SW domains will be essential in 
the coming years [1][2]. This has created a new business 
segment [3] (commerce in HW and SW IPs) in which a lot of 
IP-developments, IP-vendors and IP-catalogs have appeared 
during recent years. However, to be practical, the reuse-based 
methodology must guarantee that the IP integration process is 
successful (satisfying specification and constraints, error-free 
and cheaper than homemade development) thus some 
proposals have been made with this objective. Firstly, some 
standards (e.g. VSIA standards [4]), specification languages 
[5] and IP design rules (e.g. Reuse Methodology Manual [6]) 
were defined. Secondly, some electronics catalogs that 

facilitate core selection and transfer were developed (e.g. 
[7][8]). Finally, some CAD tools that provide the necessary 
infrastructure for IP-based design were proposed [9]. 

But even taking into account the previously commented 
techniques, reuse can doom a project to failure. This has 
forced a review of approaches (e.g. VSIA [10]) and an 
analysis of the main cost involved in reuse [11]. There are 
three primary metrics that can determine the magnitude of cost 
and saving via reuse [11]: original development time, amount 
of design modification and verification effort.  

Verification is one of the main bottlenecks of system-level 
design [1], thus it is also a problem in IP-based design [12]. 

Another problem is IP modifications. In theory, only the IP 
interface can be modified, but in practical cases some 
modifications have to be introduced in the IP to cover 
specifications and constraints. A core is not really reusable 
until it has been reused (and modified) several times [13]. 
Additionally, it is expensive to do forward-looking design of a 
function or module; today it is easer and cheaper to solve very 
specific problems than anticipate demands of future projects. 
Thus, new projects sometimes require new features of existing 
cores that have to be implemented in the IP. The core provider 
can do these modifications (commercial solution) with a 
substantial increment of the core cost. Another possibility (ad-
hoc solution) is to use open-source cores in order to create an 
internally developed core [11]. 

The open-source approach seems to have several 
advantages: the core is very cheap (normally free), the user 
can have source code access and there is a group of 
developers that provide know-how, maintain and improve the 
core. However, it may also have several disadvantages such as 
instability (the development group changes or disappears), 
incomplete development, poor or no support of existing IP-
reuse infrastructures and standards, poor documentation and 
verification methodology.  

The main goal of this paper is to explore the ad-hoc 
solution [11] to enable reuse. Thus, a microprocessor (based 
on the open-source OpenRISC core) and the basic HW (buses, 
memories, peripherals) and SW (compiler, debugger, RTOS) 
platform elements have been developed. The system has been 
described in SystemC and implemented within a FPGA.  

OpenRISC 1000[14][15] is a common MIPS-based 
architecture for a family of free, open source cores [16]. It is a 
32/64-bit load and store RISC architecture designed with 
emphasis on performance, simplicity, low power 
requirements, scalability and versatility. 

 
1  This work has been supported by the MEDEA+ (removed 
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The quality of the open-source core will be analyzed in the 
next section. After this, the developed platform will be 
presented (section 3) and its main hardware (section 4) and 
software (section 5) components described. Section 6 will 
comment the core verification methodology and environment. 
Finally, the simulation and synthesis results will be presented 
in section 7 and some conclusion will be provided in section 
8. 

2. Open-Source IP Core Quality 
IP core quality assessment is an important issue in reuse-

based design methodologies [32][33]. Many metrics and 
techniques have been proposed for this objective, such as the 
VSIA Quality IP Metric (QIP) [4] or the Mentor&Synopsys 
OpenMORE [29]. In this work, we have used the OpenMORE 
quality assessment program to evaluate the open-source IP 
core. We have selected this program because it can be 
downloaded free, it has been used to qualify some commercial 
cores and it was donated to VSIA and integrated into QIP 
(currently under VSIA member review). 

The first step is to analyze the core distribution. The 
OpenRISC Team at OpenCores [15] has developed a first 
implementation: OpenRISC 1200 (OR1200). This soft core 
[17] is a 32-bit scalar RISC with Harvard microarchitecture, 
5-stage integer pipeline, virtual memory support (MMU) and 
basic DSP capabilities. The core has been described in Verilog 
and implemented in FPGAs and ASICs. 

The distribution includes a complete Software Development 
Kit (SDK) based on GNU tools. It includes binary utilities 
(assembler, linker), C/C++ compiler, debugger and an 
architectural simulator.  There is also a port of the µClinux 
Operating System [19] and some groups are working to port 
other OS such as Linux, RTERM [18] and eCos. 

The OpenRISC Team has also developed a platform 
specification called ORP (OpenRISC Reference Platform).  
Complying with this reference platform, ORPSoC is a 
System-on-Chip that is intended to be used by SoC developers 
as a starting point. It includes several software packages, such 
as µCLinux RTOS and ORPmon (a bootstrapping monitor 
following ORP specification). Additionally, several OR1200 
functional tests have been included in the development kit. 
There are also development boards and silicon 
implementations of this platform [21]. 

When the selected quality assessment program 
(openMORE) is applied to the previously described IP core, 
the first problem is that only the synthesizable RT model of 
the core is evaluated and the rest of the distribution (basically, 
the SDK) is ignored. OpenMORE splits the soft-core 
evaluation into 3 main sections:  

 
• Macro Design Guidelines. The OpenCores project 

provides a HDL coding guideline document [24] that 
verifies most of the OpenMORE recommendations. 
Additionally, the main core developers are design-
company engineers that use standard industrial 

design practices. Thus, the overall coding-style 
quality of the OR1200 core is quite good (283 of 396 
points, that is an OpenMORE rating of 71%). The 
Macro Design Guidelines have three sections: 
System-Level Design Issues, RTL Coding and 
Synthesis Guidelines. Concerning “System-Level 
Design Issues”, the core rating is very good (64 of 70 
points, rating of 91%). The weaker aspect of the core 
is the documentation of clocks. The rating of the 
RTL coding section is lower (158 of 218 points, 
71%), mainly because the naming and port 
conventions are different. The poorest rating is 
obtained in the synthesis section (61 of 108 points, 
51 %) because the distribution only includes a simple 
global synthesis script. 

 
• Verification Guidelines. The OpenCores IPs should 

fulfil the verification strategies defined in [20]. This 
draft is a preliminary version that defines the main 
verification procedures but it is poorer than up-to-
date approaches such as the VSIA functional 
verification deliverables [35]. Nevertheless, the 
verification rating of the open-source core is quite 
good (54 of 74 points, 73%). The rating of the macro 
verification section is very poor (11 of 22 points, 
50%) but the system-level verification rating is very 
good (43 of 48 points, 89%). These results were 
surprising because it was thought that verification 
was one of the weaker aspects of the core.  The 
reason could be the verification goals. The main goal 
of the OR1200 verification environment might be to 
enable the IP integrator to perform an acceptance test 
or even an integration test. However, in our work we 
needed a more complete verification environment 
that could validate source code modifications. 
Section 6 presents the proposed verification 
environment. 

 
• Deliverable Guidelines. The OpenRISC deliverables 

obtain a good rating: 74 of 104 points that is a 
71.4%. The weaker part is related with the 
“verification files”. 

 
As a conclusion, the overall quality of the open-source core 

is 411 of 570 points that is a rating of 73%. In OpenMORE, a 
rating greater than 60% usually means that the core is “good 
for reuse” thus we can conclude that the OpenRISC core has 
enough quality to be integrated in an industrial development. 

3. Proposed OpenRISC-Based Platform 
One of the requirements of this work was to develop in 

SystemC a platform that could be included in a low cost and 
high performance family of products. An OR1200-based 
platform does not verify this requirement thus a new platform 
had to be developed. It includes a new microprocessor core 



 

(OpenRISC 1500) and the minimum set of elements needed to 
provide basic functionality (see Figure 1): main Wishbone 
bus, bus access controller, Flash/ROM controller and UART. 
Additionally, the platform should include an operating system 
with low memory-size requirements such as the open-source 
eCos RTOS.  
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Figure 1: Proposed Platform Structure 

 
The basic communication channel of the platform is an 

OpenCores Wishbone Compatible Bus [22]. The bus 
controller manages the CPU access to the bus. This element is 
connected to the instructions and data caches or directly to the 
integer unit (no-cache core configurations). Additionally, this 
controller has a connection to the development interface in 
order to allow readings and writings from/to peripherals for 
in-circuit debugging. 

The platform includes the slave controllers that manage the 
access to Flash and RAM memories and, optionally, it could 
include a 16550 compatible UART. This element provides an 
additional method to access the microprocessor and RTOS 
from the environment that can be used for on-board software 
debugging.  

The synthesizable description of the CPU peripherals  
(excluding the UART) takes about 2500 SystemC code lines. 

4. CPU Description 
OR1500 is a 32-bit RISC processor that fulfils the OR1000 

architecture and offers a lot of configuration possibilities and 
optional units that enable its use in a wide range of 
application. It is composed of eleven units (see figure 1) that 
will be described in the following subsections in order to 
provide a system complexity overview. These units have been 
described in about 14500 SystemC code lines.  

 

4.1. Integer Unit 
The pipeline of this unit has been optimized in order to 

improve the OR1200 performance. This obligated us to 
duplicate some resources to avoid structural hazards. For 
example, a structure of two dual-port memories was needed to 

implement the register file in FPGAs. Control hazards were 
solved by using delay slot techniques and data dependency 
hazards were solved by data forwarding. With the proposed 
pipeline design no stall for data dependency is needed. 
Instead, this pipeline only stalls execution when caches have 
no data ready or the multiplier is executing a multicycle 
operation. 

Several simulations of the proposed Integer Unit have 
shown that it takes about 17% fewer cycles than the 
OpenRISC 1200 implementation.  The SystemC description of 
this unit has 4100 code lines. 

 

4.2 Data and instruction caches 
The degree of associativity was decided after several test-

case simulations. The decision was to implement 2-way 
associative caches. 

Cache size and data block size are parametrizable. Cache 
size can be set from 2 KB to 8 KB and the block size can be 
set to 16, 32 or 64 bytes. The LRU (Least Recently Used) 
replacement algorithm is used. The system integrator can 
choose between the two possible cache write policies: copy 
back and write through [23]. 

Additionally, some cache operations can be performed by 
software: block locking, block prefetch, block flush, block 
invalidate and block write-back [16]. Finally, two additional 
techniques are used to improve performance: load through and 
write buffer [23]. The design has minimized the stalls in 
cache, so they currently cause a stall only when they are 
waiting for the data from main memory after a miss has 
occurred. The data and instruction caches are described in 
5900 SystemC code lines. 

 

4.3 Exception management unit 
This CPU can raise ten different types of exceptions that 

can be hardware-caused or software-caused. This unit is 
described in about 600 SystemC code lines. 

 

4.4 Debug unit and development interface 
The debug unit is an optional facility that provides the 

ability to create hardware breakpoints and watchpoints based 
on complex comparison conditions with stored or loaded 
values, data and instruction memory addresses. It is very 
closely related to the development interface that allows 
complete in-system debugging. The development interface is 
accessed by the debugging software via a JTAG port. Through 
the development interface, the debugging software can 
analyze the status of the CPU, memory contents, trace 
information, etc.  

The debug and development interface description takes 
about 2600 SystemC code lines. 

 



 

4.5 Programmable interrupt controller, Tick Timer and 
Watchdog 

The OpenRISC 1000 architecture only provides one line of 
external interrupt. Thus a programmable interrupt controller 
(PIC) has to be included when more interrupt lines are needed. 
Other interrupt sources are the tick timer and watchdog. Tick 
timer’s aim is to provide the software with a precise clock 
reference. The watchdog is a classical way to recover the CPU 
from software failures such as endless loops or an erroneous 
routine.  These modules have been described in 466 SystemC 
lines. 
 

4.6 Performance counters and power management unit 
Performance counters keep a count of the number of times 

that a certain event has occurred. These events are: instruction 
fetches, load and store accesses, cache misses and watch 
points. The programmer can obtain profiling information 
about the software executed by checking these counters. The 
performance counter unit has been described in 734 SystemC 
code lines. 

The power management unit can modify the system clock 
frequency, shut down modules or force the CPU to enter sleep 
mode in order to reduce the power consumption. The software 
can access all these features. The module description has only 
138 code lines. 

5. Software Development Kit 
Our first idea was to reuse the set of software development 

tools (assembler, linker, C/C++ compiler, debugger and 
architectural simulator) that the OpenRISC distribution 
includes and focus our work on the eCos RTOS porting. 
However, those tools are neither very stable nor well-tested, 
and with a daily use they prove to be prone to errors that are 
not acceptable for the development of an industrial 
application. In fact, even the Application Binary Interface 
(ABI) was not totally defined and some work with the 
OpenRISC Team was needed to fix it. 

In order to find a solution for these problems, a profound 
analysis of each of the tools has been made. The C/C++ 
compiler (GCC) seemed to have some errors because the 
OpenRISC port uses pieces of code borrowed from ports of 
other architectures, in an effort to obtain a working compiler 
in the shortest possible time. Additionally, many developers 
have been simultaneously working on the code without clear 
guidelines. The chosen solution was to rewrite the port, 
emphasizing on producing a clear and robust code. In order to 
develop a new port, both a set of target description macros 
(which summarize basic characteristics of target architecture) 
and a machine description file (that defines the way to 
translate from the parsed C/C++ code to OR1K assembly) 
need to be written (about 2000 code lines and 4 man-month 
effort). This port is being integrated with the latest version of 
the OpenRISC port and included in the OpenRISC 
distribution. 

The available debugger (GDB [26]) has a very limited 
functionality and it fails when complex tasks, such as stack 
backtrace or function identification, are performed. The 
reasons for these problems are an incomplete development 
status, stressed by a strong dependency on the previously 
commented unstable compiler. This dependency is so strict 
that rewriting the compiler obliges rewriting the debugger 
almost completely. A complete rewriting was thus carried out, 
synchronizing the debugger with the new compiler and 
integrating it within the new GBD multi-architecture 
framework [25]. Additionally, a software module to 
communicate the GDB with the in-circuit development 
interface has been developed. 

Existing binary utilities for OpenRISC (mainly assembler 
and linker) are in working status. Thus, the distribution 
version works correctly with the new compiler and debugger, 
and it is being used in our design flow. 

The simulator is a key element for both embedded 
application developers and platform designers. The former use 
it to verify the functionality of the application software, while 
the latter utilize it as a golden model of the platform. The 
simulator provided by the OpenRISC Team (or1ksim), is a 
classical Instruction Set Simulator (ISS) that lacks the ability 
to measure performance improvements gained by means of 
architectural modifications or to provide cycle-accurate 
information. In order to fix these problems, a cycle-accurate 
simulator has been developed (more than 10000 C code lines, 
including debugger support). 

The Embedded Configurable Operating System (eCos) 
[27][28] was chosen as embedded RTOS, mainly due to its 
small memory size, which makes it an ideal choice for low-
cost embedded systems. Additionally, the OpenRISC core 
configuration has been integrated within the eCos 
Configuration Tool environment, merging both tasks and 
avoiding misconfigurations between hardware and software. 

In order to port eCos to the OR1500-based platform, a new 
Hardware Abstraction Layer (HAL) [30] had to be developed 
(more than 2500 C and assembler code lines). This RTOS also 
includes an important set of test benches that have allowed the 
verification of the port, the SDK and the complete hardware 
platform. 

6. Verification Methodology 
One of the most important aspects to guarantee the quality 

of an IP core is the verification methodology. As it was 
previously commented, the OpenRISC verification 
methodology was too poor to validate the new core, thus a 
new verification environment had to be developed. Our 
verification methodology defines 3 verification levels. 

 
6.1 Block-level verification 
 Every system component must have its own verification 

environment. Classical signal-oriented tests or transaction-
based tests are used to verify the system blocks. The modeling 
style defined in the SystemC Verification Guide [31] has been 



 

used to generate the transaction-based tests. The use of 
transactors has represented an important reduction of the test 
environment size, test documentation and modification, with 
the consequent reduction of the verification effort. Coverage 
metrics have been used to certify the test quality. In this 
project, the block test environments achieve 100% line 
coverage in all the blocks. The   GNU ‘gcov’ tool has been 
used to calculate this coverage. Table 1 shows the total 
number of block-level test bench lines, classified by module. 

 
Modules Number 

of Blocks 
Block Test 
Bench lines 

Module Test 
Bench lines 

Integer unit 11 2007 1056
Excep. unit 1 284 284
Data cache 3 171 903
Ins Cache 2 198 747
Debug unit 1 1930 1930
Dev. Interface 2 72 2044
Perf. Counters 1 359 359
Power Manag. 1 190 190
Tick Timer 1 135 135
Watchdog 1 99 99
PIC 1 120 120

Table 1: Block and module oriented tests 
 
6.2 Module-level verification 
At module level, functional test benches and random tests 

have been used. These tests verify the block relationships and 
detect special corner cases. It is interesting to highlight that 
the transaction-based random tests have detected more than 30 
very specific corner cases with a simple test infrastructure. 
The SystemC Verification Library (SCV) has allowed us to 
define very complex random tests (e.g. correct instruction 
sequences) very easily and with a low effort [34]. At module 
level, the behavior of the RT description is compared with the 
cycle-accuracy architectural simulator, providing an automatic 
checking of the RT core outputs. Thus, the simulator has been 
used as a golden model of the system. To increase the 
simulator confidence, different engineering teams have 
developed the simulator and the RT-model. Table 1 shows the 
total number of lines of the module-oriented verification 
environment. 

 
6.3 System-level verification 
At this level, some test programs are used to verify the 

platform. Our verification environment includes two types of 
test programs: functional tests and application example 
programs. 

About 220 assembler functional test programs have been 
developed to validate particular aspect of the platform. 
Engineers, who were not involved in the CPU design, derived 
these tests from the system specification document. 
Additionally, a new test is included every time that a new bug 
is detected. 

The main application-example test is the complete set of 
eCos tests. It includes 154 tests that explore all the RTOS 

possibilities. Some of these tests are very big, taking more 
than 60 hours in the architectural simulator (several months in 
the RT-level description). These tests have also been used to 
verify the GDB interface with the development interface 
through JTAG core facilities. 

7. Results 
In this section several aspects of the developed platform 

will be analyzed. 
Firstly, the architectural design of the microprocessor is 

evaluated. The new microprocessor core (OR1500) needs on 
average 17% less clock cycles than OR1200 when it is 
configured without caches. With caches, the performance gain 
is close to 40%. Considering that a 3-clock cycle delay is 
needed to access the main memory, a 40MHz implementation 
of OR1500 will reach 34.6 MIPS. Without caches, the 
microprocessor reaches 6.2 MIPS. 

Secondly, the simulation performance of the core is 
commented.  As has been previously commented, two models 
have been developed: a functional model (that include the 
architectural simulator, ISS, and functional models of other 
platform components) and a synthesizable RT-level model. 
The functional mode reaches about 850,000 instructions per 
second while the RT-level model reaches about 7,400 
instructions per second. Thus, the functional model is about 
115 times faster than the RT-level model although it maintains 
the cycle accuracy. These simulation results have been 
obtained in a 2GHz PC, with Linux OS. The SystemC RT-
level simulation time is close to the Verilog simulation time 
(using the Synopsys VCS simulator) although the Verilog 
simulation could sometimes be up to 10% faster. The Verilog 
descriptions have been automatically generated from the 
SystemC code using the Synopsys SystemC Compiler. 

After the simulation performance analysis, the synthesis 
results of the platform are presented. The system has been 
described in about 14500 synthesizable SystemC code lines. 
This code was automatically translated to Verilog (as was 
previously commented) and synthesized with Synopsys tools. 
The target technology was a Xilinx Virtex2 FPGA with a 
medium speed grade (-5). Table 2 shows the area and critical 
paths of four configurations: Minimal (only the integer unit 
without multiplier), Minimal with multiplier (hardware 
resources for one-cycle multiplication and MAC instructions 
are included), common (8Kbyte data and instruction caches 
are included) and maximum (all the optional modules, such as 
debug unit, development interface, performance counters, etc, 
with maximum configuration parameters are included). 

  
Configuration Area (gates) Critical path (ns) 

Minimal    67481 17,5 
Minimal with multiplier 80619 19,2 
Common  1166541 24,6 
Maximum 1241016 24,6 

Table 2. Synthesis results 
 



 

Now, the platform is being implemented in a FPGA 
development board and verified in a real demonstrator.  

Finally, some comments about the design effort. We have 
estimated that about 4.5 man-years have been spent in 
platform development. About 30% of the effort has been spent 
in the SDK and the rest (70%) in the hardware development. 
The software effort has been distributed between the simulator 
(30%), eCos port (28%), GCC port (22%) and GDB port 
(20%). The GDB port includes the communication with the 
in-circuit development interface. The hardware effort has been 
distributed between the platform design (48%), verification 
(42%) and synthesis (10%). 

We also estimated that the use of an open-source core has 
reduced the total development effort by 50% even although 
huge modification has been performed. 

8. Conclusions 
A first conclusion of this work is that an open-source core 

(such as OpenRISC) has enough quality to be integrated in an 
industrial project and it is a very good way to develop 
modified cores that cover specific company requirements at 
low cost. 

Additionally, we think that an open-source core is not really 
reusable until at least two different implementations have been 
performed. Most of our problems have been a consequence of 
the fact that the original OpenRISC SDK source code has not 
been reviewed deeply enough and the core documentation has 
not been properly updated. After the profound revision and 
code improvements that this work has introduced in the open-
source core, the distribution (especially the SDK) can be 
reused and modified with less effort.  

We have developed a new platform that covers most of the 
predefined requirements (low cost and high performances). 
This platform is based on a new microprocessor core, 
OR1500. This core, and in general any microprocessor IP, is 
not a “normal” core because it needs a complex software 
development kit to support it (compiler, debugger, RTOS, 
simulators, performance analysis tools, etc). Thus, this type of 
core needs particular quality metrics and design reuse 
methodologies.  

The platform has been described in synthesizable SystemC 
code and implemented in an FPGA. The use of SystemC has 
had a very positive impact in the project, especially in the 
verification part. The integration of C/C++ programs (such as 
the architectural simulator) into the SystemC verification 
environment has been very easy, direct and efficient and the 
SystemC Verification Library (SCV) [31] has allowed the 
reduction and clarification of all the test benches with an 
important decrease in  the verification effort. 
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