
Embedded Hardware Face Detection* 

T.Theocharides, G. Link, N. Vijaykrishnan, 

M.J. Irwin 

Dept. of Computer Science and Engineering, 
Pennsylvania State University {theochar, 

link, vijay, mji}@cse.psu.edu 

W.Wolf 

Electrical Engineering, Princeton 
University

wolf@princeton.edu

Abstract

Face detection is the first step towards face 
recognition and is a vital task in surveillance and 
security applications. Current software 
implementations of face detection algorithms lack the 
computational ability to support detection in real time 
video streams. Consequently, this work focuses on the 
design of special-purpose hardware for performing 
rotation invariant face detection.  The synthesized 
design using 160nm technology is found to operate at 
409.5 kHz providing a throughput of 424 frames per 
second and consumes 7 Watts of power. The 
synthesized design provided 75% accuracy in detecting 
faces from a set of 55 images that is competitive with 
existing software implementations that provide around 
80-85% accuracy.  

1. Introduction

Face detection is defined as the process of identifying 
all image regions that contain a face regardless of the 
position, the orientation and the environment 
conditions in the image. In essence, it is different than 
face recognition, because face recognition process 
already knows that an image contains a face, the 
problem now shifts into identifying the person whom 
the particular face belongs to [10, 13, 25]. As a result 
face detection has been a major research topic both in 
academia and industry, and the popularity of the topic 
appears in a wide range of applications and fields. 
From security to identification systems, face detection 
plays a primary role. It is the primary step towards face 
recognition [18] and serves as a fore step towards 
multiple applications such as identification, 
monitoring, tracking, etc. Face detection algorithms 
have been developed through the years, and have 
improved drastically both in terms of performance and 
speed. However, with today’s design technology, we 
are given the chance to perform face detection at a 
higher level, which involves the real time domain, and 
independent of image and environment variations. 
Face detection so far has been extensively done in 
software, but with the technologies approaching the 
nanometer era, and the improvement of the algorithms, 

                                                          

 * This work was supported in part by grants from 

NSF 0093085 and MARCO 98-DF-600 GSRC 

we are able to shift the detection stage in the hardware 
domain, to achieve several advantages. 
Software face detection methods have reached a very 
high level of both effectiveness and detection rate, as 
well as a condition-invariant level, where detection can 
be performed under harsh environments. However, the 
state-of-the-art software face detection require around 
3 seconds to detect a single image and are not quite 
suitable for real-time deployment. While there are 
some software implementations that operate in less 
than 1 second, their detection rates in the presence of 
environmental variations are poor. Hence, a fast 
hardware implementation that can be integrated either 
on a generic processor or as part of a larger system, 
directly attached to the video source, such as a security 
camera or a robot’s camera is desirable.  

There has been extensive research in the field, 
ranging mostly in the software domain [1, 2, 3, 4, 5, 8, 
10, 12, 14, 15, and 17]. There have been a few 
attempts at hardware implementations that implement 
face detection on FPGAs as well as various 
microcontrollers and multiprocessor platforms using 
programmable hardware [7, 12, 13, and 19]. However, 
many of the proposed solutions are not compact. For 
example, the FPGA implementation utilizes nine 
boards [7]. Also, the attempted hardware 
implementations generally feature algorithms that are 
not as effective as traditional software approaches such 
as Competitive Feature Approach [7]. An exception is 
the implementation using neural networks in [19]. 
However, the implementation is not purely on 
hardware; rather than on a reconfigurable multi-
processor platform integrated with embedded software.  
In contrast to previous approaches, our goal is to 
design a real time face detection system that provides 
real time detection while maintaining the detection 
accuracies achieved by state-of-the-art software 
implementations. Many software algorithms have been 
developed that can detect faces over a variety of 
environments and lighting conditions. A problem with 
almost all of these detection algorithms for real time 
support is the complexity of the preprocessing and 
filtering stages that the image goes through before the 
detection stage [1, 2, and 12]. Therefore, the focus of 
this paper is to implement an already established face 
detection algorithm in hardware, focusing on the 
speed, accuracy and area of the implementation. The 
next section describes face detection algorithms and 
relevant research issues. Section 3 provides the details 
of the proposed architecture. Section 4 shows the 

Proceedings of the 17th International Conference on VLSI Design (VLSID’04) 
1063-9667/04 $ 20.00 © 2004 IEEE 



Figure 1: Algorithm Block Diagram 
performance parameters of the synthesized hardware. 
Conclusions are provided in Section 5. 

2. Face Detection – A General Background 

This section gives a short background of the face
detection process, and emphasizes the reasons behind
our approach. Most of the face detection algorithms
operate in three stages, two of which are common to all 
algorithms. The first stage is image pyramid
generation. The purpose of this stage is to divide the
input image into multiple segments of equal size, in
order to allow parallel searches, as well as to perform
search for a face in a greedy approach. This is 
enhanced by down scaling the original image by a
constant scale factor, and by generating additional
segments, thereby ensuring that if a face in the image
happens to be larger than the generated segment size, it
will still be a part of a down scaled segment.

The second stage is the preprocessing stage. This 
stage is also common to all algorithms, however it 
varies among algorithms in the way it performs its
task. The task of this stage is to eliminate as much
environment and lighting variations from an input
image as possible, by performing various filtering
functions over the image, reducing the variance. The 
filtering functions used during this stage depend on the
robustness of the detection stage, which is the third and 
final stage.

The generalized task of the third stage is to take an
image segment that has been filtered for adjustment to
maintain environment and pose invariance, and to
output whether or not the segment contains a face. This 
stage is initialized with a training set of data, that is a 
database of features that are used to match the presence 
of a face or not. The training set should contain both 
positive and negative examples that are both images
with faces, and without faces [10, 13, 14]. 

Face detection algorithms can be classified into two
major categories: Feature Based / Template Matching
Approach, and Image Based / Pattern Classification
Approach [10]. The first approach deals with face 
detection by searching for features that are unique to 
faces, or uses image features such as color and 
geometric models to search for a face. The second 
approach employs classification – it treats the image as
data to be classified into containing a face or not. This 
second approach is more commonly employed, and 
includes neural networks, support vector machines and
linear subspace methods such as PCA and ICA [10, 
13]. As mentioned earlier, a generic face detection unit 
can be partitioned into the three major stages: image
search, image processing and detection. The first two 
stages require most of the data manipulation, as well as
large-scale mathematical operation such as down 

scaling and filtering. The third stage operates in a
different manner however, and that makes it special – 
given that the detection unit classifies an image as a 
potential face or not, it has to have two different modes
of operation – training and recognition. During the
training mode, the detection unit is given data that
contains faces and data that does not contain faces. 
During the detection stage, the unit uses the data from
the training phase to classify the image as a face or not.

3. Architecture and System Overview

Figure 2: Hardware Block Diagram. Note that 
the external input buffers receive processed 
data from the internal output buffers of each 
unit at each system clock cycle, and serve as
inputs to the next unit. 

Our hardware implementation is based on the
classification-based rotation invariant neural network
algorithm proposed originally by Rowley, et al [1, 2].
The algorithm was selected because of the high
parallelism capabilities as well as the high detection
rate achieved by this algorithm.  The algorithm and the
corresponding hardware block diagram of the
proposed implementation are shown in figures 1 and 2, 
respectively. The system consists of 7 stages. The first
stage is the image pyramid generation [1], which
generates 20x20 image segments (windows) and at the
same time, down scales the original. Downscaling is
necessary for faces that are larger than the processing 
window, to be included in the search. For example, if a 
face in the picture covers the entire image, it will be 
included in the final 20x20 window by successive 
downscaling of the image.  The second stage is a
histogram equalization unit, which performs discrete

Proceedings of the 17th International Conference on VLSI Design (VLSID’04) 
1063-9667/04 $ 20.00 © 2004 IEEE 



histogram equalization over each window [4, 14]. The 
third stage is a rotation detection neural network [2];
this unit assumes that there is a face in the input
window, and its task is to determine the angle of
rotation of the presumed face. Upon determining the 
rotation angle, the fourth stage rotates the window on
the opposite direction by the angle detected, thus
bringing the presumed face in the upright position. The
fifth stage performs brightness adjustment [4, 14] on
the window in order to emphasize contrast between
features. The sixth stage performs discrete histogram
equalization on the window again, as rotation and
brightness adjustment adjust the intensity values of the
window. Finally, the seventh stage consists of three
neural networks that are trained to detect upright
images. Each network outputs a 0 (non face) or 1 
(face) and the final output is selected by a majority
vote of the 3 networks. In order to exploit parallel
searches, each 20x20 window is processed in parallel
as 5 groups of 80 pixels each.

Each unit interfaces to an output buffer of 400 pixels 
size, receiving each unit’s outputs at the unit’s internal
clock speed, and outputs the entire 400 pixels to the
external input buffer of the next stage at the system
clock speed. Within a stage, all units perform internal
operations using a faster local clock. Internal units
communicate with each other via a sequence of 2
handshake signals, named ready and valid. Data is 
transferred if and only if the destination unit’s ready
signal and the sending unit’s valid signal are high
during a positive transition of the local clock. Each
output buffer, once full, drops its ready signal and does 
not take any further inputs until the end of the system
clock cycle. At that time, it transfers the data to the
next stage and raises its ready signal to continue
operation. This architectural choice permits the use of 
a slow clock for the entire design and a fast clock for
each individual unit. Let us now take a closer look at 
each stage and explain the operation of each unit. 

3.1. Image Pyramid Generation Unit (IPGU) 

The IPGU is responsible for taking a 300x300 pixel
image and generating 20x20 image windows. At the
same time, the unit down scales the image
subsequently to 240x240, 180x180, 120x120, 60x60 
and finally, to 20x20 pixels. The IPGU interfaces with 
two on-chip RAM’s, of sizes 300x300 and 240x240 
bytes (pixels) respectively. Initially, the input image is
stored into the 300x300 RAM (RAM 1). For each 2
local cycles, the IPGU reads 8 pixels from RAM 1 and
stores them in an input buffer, with their corresponding
x, y coordinates (i.e. RAM addresses). Then it shifts
these 8 pixels to the output 80 pixel buffers, and in
parallel, calculates the new pixel coordinates in order 
to down scale the image. Image scaling is performed
using the matrix scaling equation

' 0

0'

X X S x

S yY Y
where X’ and Y’ are the new pixel coordinates, and Sx 
and Sy the scale factor in each direction [20]. In our
implementation, the five scale factors required to
generate the necessary images are stored in a lookup
table. The execution unit consists of eight 8-bit
multipliers, therefore for each pixel it takes two 
multiplication cycles. The resulting coordinates along 
with the corresponding pixels are stored in another
buffer that communicates with the second RAM
(240x240). Since different pixels map to the same
coordinates when downscaling, each pixel’s generated 
coordinates are compared and only the intensity of the
pixel with the largest coordinates from the original
image among the matching coordinates (in the down 
scaled image) are written into the 240x240 RAM
(RAM 2). In addition, since the windows are 

overlapping, the pixels that have already been mapped
will not need to be mapped again, hence they are
simply propagated to the output. The process of 
downscaling is repeated for all the pixels in the 20x20
window. At this point, the five 80-pixel output buffers
that feed to the histogram equalization stage are full. It
must be noted that when all 20x20 windows have been
scaled down, the roles of the input/output RAMs
switch. Hence RAM 2 serves as the input for
generating the 180x180 scaled down image, and so on. 
The IPGU needs 100 local cycles to complete its
operation.

3.2. Histogram Equalization Unit (HEU) 

The HEU transforms a set of input pixels from the
20x20 window into a set of output pixels, such that the
intensity distribution of the output pixels is more
uniform. In the proposed architecture, equalization is
performed locally, among a 4x4 pixel window. The 16 
pixels are fed into a CAM/shift register (CAM/SR) 
structure [11] sequentially. If the intensity of the pixel
matches an already existing entry, a corresponding
counter associated with that entry is incremented. If no
match is found, a new entry is created for that intensity
and the counter is set to one. Intensity values are sorted
on the fly in the CAM structure, using a linear address 
sorting technique presented in [21] such that the
minimum intensity is at the entry 0 of the CAM/SR. 
Note that the counters associated with the intensities 
move correspondingly during sorting. After the sorting
is complete, the sum of the counters is evaluated from
counter 0 to n (where n is the number of distinct
intensities). Next, the pixels of the 4x4 window are 
used to address the corresponding cumulative sum in
the counter associated with their intensity. The value
of the counter and the intensity of the pixel, along with
a scaling factor are used to obtain the pixel in the 
equalized image. The scaling factor is given as (max
intensity – min intensity +1) / 16, which is 
implemented using a subtractor and a right shift. In our 
synthesized design the unit requires a total of 38 cycles
to complete its operation. There are five units per 80 
pixels (25 units total).

3.3. Rotation Detection Network (RDN) 

The next stage is a neural network classifier (Fig. 5) 
that detects the angle of rotation of the presumed face 
in the image. The network is trained to distinguish
between 36 classes, each class representing an angle of 
rotation from 0º to 360º, in increments of 10º. The 
network consists of three layers of neurons that are 
forward fully connected. The network consists of three
different types of neurons. First we provide details of
our hardware implementation of each type of neuron, 
which are the basic processing elements in our
network. Each neuron (Fig. 3) takes a vector input of n 
components. Each vector component is multiplied by a 
fixed weight value, which is determined at training
time. Weights are updated during the training process, 
but remain constant during the detection process. The
user also sets a threshold value t, which is subtracted
from the sum of the products. The result is then passed
as an input to an activation unit. In our case, the
activation function used is the hyperbolic tangent
implemented using a ROM.

Proceedings of the 17th International Conference on VLSI Design (VLSID’04) 
1063-9667/04 $ 20.00 © 2004 IEEE 



Figure 3: The Neuron 

Figure 4: The three different types of neurons 

We exploit the symmetric property of the hyperbolic
function about the two axes in reducing the number of
ROM entries. The ROM takes the rounded 8-bit result
of the MAC operation and returns the value of the
hyperbolic tangent in a +/- 3.5 (a sign bit, 3 bits for
integer and 5 bits for fraction) format. Figure 4 shows 
the three different types of neurons; type A, B and C.
Type A neurons are the input neurons, taking all 400 
pixels from the incoming 20x20 window as inputs, and
output a value between 1 and -1. Type B neurons are 
the ones that are in the hidden layer, taking the outputs
of type A neurons as inputs, and similarly output a 
value between 1 and -1. Type C neurons take as inputs
all the outputs of the type B neurons, and use a lookup
table (LUT) to return a single digit, either 0 or 1. Note
that the numeric format of the data between neurons is
also shown in figure 4. In the RDN shown in figure 5, 
there are a total of 66 neurons. The first layer is made
up of type A neurons and each neuron takes all the 
pixels in the 20x20 window as inputs. Due to the large
fan-in for this operation, we allocate extra hardware
for this stage as compared to the others. Hence, the
type A neuron operates on five pixels in parallel as 
compared to sequential operation on pixels in the case
of type B and type C neurons. The second layer is
made up of type B neurons, and each neuron takes the
outputs of all the first layer neurons. Finally, the output
layer takes the outputs of the second layer as inputs,
and outputs a single bit. Since there are 36 type C
neurons in the output layer, an array of 36 bits makes
the output of the RDN, and is sent to the rotation unit.
In order to perform the rotation detection, type A 
neurons need a total of 104 cycles, type B neurons 
need a total of 17 cycles, and finally type C neurons 
need again 17 cycles.

Figure 5: Rotation Detection Neural Network

3.4. Image Rotation Unit (IRU) 

The rotation unit receives the 20x20 image from the
HEU, and waits until the RDN generates the 36-bit
array in order to rotate the image around its center to
bring the face upright. There are 5 identical execution 
units (XUs), which operate on 80 pixels each, 
therefore a total of 25 XUs. Rotation is performed by
determining the value of the new pixel coordinates,
based on the old ones, using the equation

' c o s s in

s in c o s'

X X

Y Y
Each unit uses a lookup table which takes as inputs

the 36 bits, and returns the values of sin  and cos ,
and for each pixel coordinate, and generates the new
coordinates for the 80 pixel window. Each control unit
then writes its 80 pixels on a 20x20 register, which
will hold the rotated window. To generate the rotated 
version of a 20x20 window the IRU requires 4
multiplications and 2 additions per pixel. There are 4
multipliers and 2 adders in each XU, which perform
the requested operations in parallel per pixel for the x 
and y coordinates. The IRU XU operates on one pixel
per local clock cycle, and takes 80 cycles.

3.5. Brightness and Contrast Adjustment Unit
(BCAU)

BCAU performs brightness and contrast adjustment
in order to emphasize the contrast between facial 
characteristics. Since, the algorithm outlined in [1]
required excessive hardware resources to be 
considered, we implemented a variation of the
algorithm from [18]. The idea is to look over a small
region, and find the average intensity. Then, we find
the deviation of each pixel from the average. Next, we 
add/subtract a constant value read from a look-up table
to/from each intensity value, emphasizing the places
where the intensities are higher than the average, and
lowering the intensities which are smaller than the
average, emphasizing the contrast. 

There are five units, each operating on an 80-pixel 
group. The adjustment itself is done in five 4x4 pixel
groups of each 80-pixel group. A total of 185 cycles 
are required for each 80 pixels.

Proceedings of the 17th International Conference on VLSI Design (VLSID’04) 
1063-9667/04 $ 20.00 © 2004 IEEE 



3.6. Detection Neural Network (DNN) 

The final unit of our detector consists of 3 parallel
neural network units. A single unit is shown in figure
6. Each network is partitioned into 3 parallel stages.
The first network stage segments the image in 4 
regions, searching for large facial features such as
nose, eyebrows, glasses, etc. The second stage
segments the image in 16 5x5 regions, searching for
small features, such as eyes, moles, etc. The third stage 
segments the image in six overlapping strips, each of
size 5x20 pixels. This stage searches for features such 
as pairs of eyes and the mouth. Each DNN is made of 
three layers of types A, B and C neurons respectively,
identical to the ones explained earlier. Each layer is
fully connected to the next layer, and all three outputs
from each DNN are then used to classify the input 
20x20 window as a face or not. Each layer of neurons 
has to receive all inputs from the previous layer to 
compute its own outputs. As seen in figure 6, layer 1
consists of types A and B neurons. The third layer is
made of a type C neuron, which takes 3 inputs, as 
shown in figure 6. The total number of cycles required
to perform detection is 51.

4. Synthesis and Detection Results 

4.1. Synthesis Results 

The system was implemented in Verilog HDL, and 
synthesized using Synopsys Design Compiler® using
160nm technology. For the particular design, grayscale
images of size 300x300 pixels were used, and the
hardware was designed to accommodate images of this 
size. In our synthesized design, the local clock operates
at 13.2ns. The system clock now can operate at the
largest time each of the units requires to finish all 400
pixels. The BCAU, taking a total of 185 cycles, has the
largest overall delay of 2442ns. That allows the system
clock to operate at 409.5 kHz. 

Chip Details 
System Clock Frequency(kHz) 409.5
Local Clock Frequency (MHz) 75.75
Area(mm2) 30.4
Power(W)(@VDD = 1.8V) 7.35
Detection Frame Rate (fps) 424
Frame Size (pixels) 300x300

Table 1: Summary of Synthesis Results 

Table 1 shows the synthesis results for the entire
detection system. The overall clock frequency is at
409.5 kHz. That translates into a total of approximately
409000 20x20 windows per second. A 300x300 image
generates a total of 965 20x20 windows. The frame
rate of the entire system is therefore timed at 
approximately ~424 (entire) image frames per second, 
a frame rate that not only meets real time requirements,
but also provides sufficient time for other related
operations to be completed once detection has been 
achieved. It also provides us a large slack to explore
possible area reduction or addition of more accuracy 
and precision mechanisms. Table 1 also summarizes
other relevant synthesis results, such as the area and
the power consumption.

Figure 6: Detection Neural Network

4.2. Detection Results 

The system was trained using 130 faces from the
CMU face database [22, 23] as well as faces used
initially by similar algorithms [1]. In order to test the
system from the detection point of view, various
images from existing face databases as well as the 
World Wide Web were collected, and a database of 55
images was constructed. 10 of the images belonged to
the training set, in order to ensure that the system
worked from a functional standpoint. In the 45 images
not in the training set, 40 had faces in them and 5 did
not have. Of the 40 images containing faces, 15 
contained rotated images, at various possible angles.
The images were then tested against the face detection 
software constructed by Rowley et al. and then tested
against our implementation. We trained our system in
the same procedure, and obtained the weight values.
We converted the values into the hardware
representation format, and stored them in the RAMs. 
Table 2 shows a summary of the results.

Table 2: H/W vs. S/W Detection Performance
The testing procedure involved some preprocessing

as the images had to be scaled to the size that our 
hardware version supported. The entire image set was
down scaled to 300x300 grayscale images, and the
intensity values were exported in a text file. A script
then was used to direct a Verilog testbench to read
each text file and use the intensity values as inputs to 
the RAM module. The testbench collected intensity
values upon completion of each image, and exported
them again to text files, with coordinates of the faces 
detected in the text file. The weights as well as all the

Proceedings of the 17th International Conference on VLSI Design (VLSID’04) 
1063-9667/04 $ 20.00 © 2004 IEEE 



other constant values (such as intensity and histogram 
necessary values) were rounded to the corresponding 
format, and a C program was used to generate text files 
containing the weight values as represented in 
hardware. The Verilog testbench read the values and 
placed them on the on-chip memory of each 
component.  

As seen in Table 2, the performance of the 
hardware detection system is close to the performance 
of the software system, matching its detection rate at 
90%. The software version detected 230 faces, where 
as the hardware version detected 207 faces. There are 
quite a few reasons why the results in software are 
relatively better. Hardware performance was affected 
from the HEU as well as the BCAU given that we 
operated in a smaller window for these units instead on 
the entire 20x20 window. However, it is to our belief 
that the most important reason is of course the 
mathematical operations during the detection stages, 
where lots of multiply and accumulate operations are 
forced into rounding. Given these results, it is very 
interesting to explore possible alternatives for 
performing the multiplication using a higher number of 
bit representation, or even going into the floating point 
domain, that involves tradeoffs in area and speed. In 
comparing the two detectors in terms of speed – the 
software version processes an image in an average 
time of 2 seconds [1,2,10], where as our proposed  
hardware model processes ~424 images per second.  

5. Conclusions 
This paper presents a hardware implementation of 

face detection and demonstrates that the proposed 
architecture achieves 75% detection accuracy. The 
proposed hardware makes it possible to detect faces in 
real time that is not possible using existing software 
presentations and the improved throughput is of 
significant importance for surveillance and security 
applications. There are lots of issues yet to be 
explored, the most important of which is to improve 
the accuracy of the detection rate of the hardware 
implementation.  

6. References 
[1] H. A. Rowley, S. Baluja, T. Kanade, “Neural Network-
Based Face Detection”, IEEE Trans. On PAMI, Vol.20, No. 
1, Page(s).39-51, 1998. 

[2] H. Rowley, S. Baluja, and T. Kanade. Rotation invariant 
neural network- based face detector. In Proc. IEEE Conf on 
Computer Vision and Pattern Recognition, Page(s) 38-44, 
Santa Barbara, CA, June 23-25, 1998 

[3] B. Nagendra, “Pixel Statistics in Neural Networks for 
Domain Independent Object Detection”, MSc Thesis, RMIT 
University, Melbourne, Australia, 2001. 

[4] K. Sung, “Learning and Example Selection for Object 
and Pattern Recognition”, PhD Thesis, MIT, MIT Press, 
1995.

[5] S. Ben-Yacoub, B. Fasel, “Fast Multi-Scale Face 
Detection” IDIAP, Eurecom, Sofia-Antipolis, France, 1998.

[6] Oki Semiconductor, http://www.oki.com, June 27th, 
2003.

[7] R. McCready, “Real-Time Face Detection on a 
Configurable Hardware System”, International Symposium 
on Field Programmable Gate Arrays, 2000, Monterey, 
California, United States. 

[8] R. Herpers, G. Verghese, et al, “Detection and Tracking 
of Faces in Real Environments”, University of Applied 
Sciences, Sankt Augustin, Germany. 

[9] Fraunhofer Institute of Integrated Circuits, IIS 
[http://www.iis.fraunhofer.de/]. 

[10] Erik Hjelmås, Boon Kee Low, “Face Detection: A 
Survey”, Computer Vision and Image Understanding, Vol. 
83, No. 3, September 2001. 

[11] N.Ranganathan, VLSI Algorithms and Architectures,
IEEE Computer Society Press, Los Alamitos, California, 
USA, 1993. 

[12] Viola and Jones, “Robust Real-time Object Detection”,  
Statistical and Computational Theories of Vision Modeling, 
Learning, Computing and Sampling, Vancouver, Canada, 
2001.

[13] Yang Ming-Hsuan, DJ Kriegman, N Ahuja, “Detecting 
faces in images: a survey”, IEEE Trans. on PAMI, Volume: 
24 Issue: 1, Page(s): 34 -58,  Jan. 2002; 

[14] K. Sung, T Poggio, “Example-based learning for view-
based human face detection”, IEEE Trans. on PAMI,
Volume: 20 Issue: 1, Page(s): 39 -51, Jan. 1998. 

[15] R. Feraund, O.J. Bernier, J. Viallet, M Collobert, “A 
fast and accurate face detector based on neural networks”, 
IEEE Trans. On PAMI, Volume: 23 Issue: 1 , Page(s): 42 -
53, Jan. 2001 

[16] A. K. Jain, J. Mao, “Artificial Neural Networks: A 
Tutorial”, IEEE Computer, Vol. 29, No. 3, Page(s) 56-63, 
March 1996. 

[17] Zhang ZhenQiu, Zhu Long, S.Z. Li, Zhang HongJiang, 
“Real-time multi-view face detection” Proc. of the 5th  IEEE 
International Conference on  Automatic Face and Gesture 
Recognition, Page(s): 142 -147, 20-21 May 2002. 

[18] F. Soulie, T. Huang, “Face Recognition, From Theory 
to Applications”, NATO ASI Series, Series F: Computer and 
Systems Sciences, Vol.163, Springer, NY, 1997.

[19] B. Srijanto, “Implementing a Neural Network based 
face detection onto a reconfigurable computing system using 
Champion”, MS Thesis, University of Tennessee, Knoxville, 
August 2002. 

[20] E. Trucco, A. Veri, Introductory Techniques for 3-D 
Computer Vision, Prentice Hall, New York, 1998 

[21] M. Verleysen, B. Sirletti, A.M. Vandemeulebroecke, P. 
G. Jespers, “Neural Networks for High-Storage Content-
Addressable Memory: VLSI Circuit and Learning 
Algorithm”, IEEE Journal of Solid State Circuits, Vol. 24, 
No. 3, June 1999. 

[22] Henry Schneiderman, Takeo Kanade, and Jay Pujara.  
"CMU Face Detection Algorithm Demonstration.," 
http://www.vasc.ri.cmu.edu/cgi-bin/demos/findface.cgi.
2001

[23] H. Schneiderman and T. Kanade, "Object Detection 
Using the Statistics of Parts", International Journal of 
Computer Vision, 2002. 

[24] FERET Web Based Face Image Database,  , 
http://www.itl.nist.gov/iad/humanid/feret/feret_master.html,
June 2003.

[25] J.L. Ayala, “Design of a Pipeline Hardware 
Architecture for Real-Time neural network computations”, 
Universidad Politechinca de Madrid, Spain, 2002. 

[26] R. Frischholz, The Face Detection Homepage,
http://home.t-online.de/home/Robert.Frischholz/face.htm,
July 2003.

Proceedings of the 17th International Conference on VLSI Design (VLSID’04) 
1063-9667/04 $ 20.00 © 2004 IEEE 


	footer1: 


