

A Network on Chip Architecture and Design Methodology

Shashi Kumar¹

Axel Jantsch¹, Juha-Pekka Soininen², Martti Forsell², Mikael Millberg¹, Johnny Öberg¹, Kari Tiensurjä², Ahmed Hemani¹

¹Lab. Of Electronics and Computer Systems, Royal Institute of Technology, Stockholm

²VTT Electronics, Oulu, Finland

Outline

Background and Introduction

➢ NOC Architecture: Basic features

- Physical Level_Architectural Level Design Integration
- Packets switched communication rather than wires
- Region
- ➢ Evaluation of NOC
- ➤ A Methodology for NOC design
- Conclusions

ISVLSI 2002, Pittsburgh 25-26th April 2002

25-26th April 2002

ISVLSI 2002, Pittsburgh 25-26th April 2002

Challenges

- ➤ How to use available capacity of the chip?
 - 1 Billion gates by 2008
- Developing efficient and scalable architectures for connecting a large number of cores
- ➢ Fast time to market
 - Reuse as much as possible: Architecture, Components, Software, O.S.
- Small development cost for a new product
 - Programmable, Configurable and Up-gradable platform
- Low power consumption

Platform Based Design

Fixed interconnection infrastructure

- Time-share the resources
- Bus based platform is not scalable

ISVLSI 2002, Pittsburgh 25-26th April 2002

NoC Architecture Overview

Resource Slot

- Scalable packet switched communication infrastructure
- Physical-Architectural Level design integration:
 - o A Resource must fit in the slot
 - o Layout same as topology

-Predictable electrical properties

Resource-Network Interface

Resource Types: ||

Processor of any type with/without local memory

≻Memory

➢IP Functional Cores

➢FPGAs

Dedicated Hardware block

ISVLSI 2002, Pittsburgh 25-26th April 2002

NoC Switch

ISVLSI 2002, Pittsburgh 25-26th April 2002 Shashi Kumar

10

NoC layout: Square Switch

256

ISVLSI 2002, Pittsburgh 25-26th April 2002 Shashi Kumar

11

Communication in NoC: Layered Communication

Standard and uniform interfaces

- Standard layered communication protocols adapted from OSI
 - Physical level : Number of wires, control signals, clock signals for every connection(S-S, S-R), electrical levels,
 - Data-Link Level: Word from one switch to its neighbor, Number of bits per word, Error detection and correction mechanism, encoding,.....
 - Network Layer: Packet from a resource to any other resource, routing algorithm, addressing resources, packet buffering, ...
 - Application Level: Message vs. packet size

Comparison with communication in core based SoC

by A

•Interfaces A-B and A-C may use different protocols

ISVLSI 2002, Pittsburgh 25-26th April 2002

OCH KONST

KTH

Application Layer in NoC Architecture

ISVLSI 2002, Pittsburgh 25-26th April 2002

Network Layer in NoC Architecture

- Packet size vs. word size
- Different packets may get routed independently
- Routing algorithm Static vs. dynamic
- Priority classes
- Buffer in switch

Data-link layer

- Moving a word from one switch to a neighboring switch using interconnection resources
- Error detection and correction
- Encoding for efficiency

Concept of Region

- Resources larger than a slot
 - FPGA
 - Shared Memory blocks
 - Special parallel processor
- Wrapper will make the region transparent to outside traffic
- Communication within a region could happen differently than outside

NoC Simulation using ns-2

- ns-2 is a network simulator from Univ. of Berkeley
 - Has been extensively been used for research and teaching of computer networks
- Architectural Parameters
 - Topology: 5 X 5 NoC
 - Protocol: UDP(no acknowledgement)
 - Link Bandwidth: 200 Mbits/sec
 - Routing algorithm: Static-shortest distance to destination
- Application Parameters
 - Random bursty traffic with strong bias for locality
- Performance Experiments
 - Packet delay vs. buffer size
 - Drop probability vs. buffer size
 - Packet delay vs. network load
 - Drop probability vs. network load

ISVLSI 2002, Pittsburgh 25-26th April 2002

Drop probability vs. **Buffer size**

ISVLSI 2002, Pittsburgh 25-26th April 2002 Shashi Kumar

19

Basic requirements for NOC design methodology

Reuse of intellectual property blocks

- best performance/energy ratio
- best mapping to application characteristics

Reuse of hardware (and architecture)

- best complexity/cost and performance/cost ratio
- only way to even dream of achieving time-to-profit requirements

Reuse of design methods and tools

only way to deal with heterogenuous application set

Partitioning of problems

by encapsulation and hiding of the complexity of the overall system

ISVLSI 2002, Pittsburgh 25-26th April 2002

NOC Design Methodology

ISVLSI 2002, Pittsburgh 25-26th April 2002

Development of NOC based systems

Network-on-a-Chip Design Space

Conclusions

NoC architecture provides a SoC development platform which allows reuse at many levels

- Reduces time to design
- Reduces time to test
- NoC design has a lot in common with Distributed System design

For NoC approach to become usable we require to develop new tools for

- Evaluation of NoC architecture and estimation of performance
- NoC Specialization
 - Resource Selection and allocation
 - Protocol specialization
- Mapping of applications to NoC
 - Application partitioning and scheduling

ISVLSI 2002, Pittsburgh 25-26th April 2002