
Figure 1: Bridging the design productivity gap. [1]

Integrating and Verifying Intellectual Property Blocks using
Platform Express and ModelSim

Mardav Wala
Electrical & Computer Engineering,

University of Tennessee
Knoxville, TN, 37996-2100

mwala@tennessee.edu

Don Bouldin
Electrical & Computer Engineering,

University of Tennessee
Knoxville, TN, 37996-2100

dbouldin@tennessee.edu

Abstract
Platform-based design is a proven method for minimizing
the time and risks involved in designing and verifying a
system-on-chip (SoC). Our experiences in using Mentor
Graphics' Platform Express (PX) tool to design an SoC
platform will be described in this paper. The tool allows
Intellectual Property (IP) developers to add their IP cores
and enables system designers to explore different system
architectures rapidly by integrating pre-installed IP com-
ponents. Thus, the designers work directly at the compo-
nent level instead of the usual register-transfer description
level. We have successfully added an open IP core to the
PX component library and have used it in our system de-
sign. Also, since we intend to add only freely-available IP
cores—or the ones that are internally generated—to ex-
pand our component library, it can be shared with anyone
using Platform Express. This paper discusses integrating
IP components to build a baseline platform for future, de-
rivative SoC designs as well as verification for correctness
using ModelSim. The complete IP integration and system
design flow is outlined along with a workaround for de-
signs involving IPs specified using both, VHDL and Ver-
ilog. Pointers are also provided as recommendations for
first-time users to avoid possible errors.

Keywords
Platform Express, Platform-based Design, System-on-Chip,

I. INTRODUCTION
It is not uncommon for an SoC to contain tens of millions
of gates consisting of processor cores, on-chip intercon-
nects, specialized DSP units and analog components.
Hence, it is a challenging task for the chip design team to
design all the components completely from scratch. More-
over, a product launch deadline must be met. Circum-
stances such as these have resulted in a trend towards in-
creased intellectual property (IP) reuse, which requires
little or no modification of the reusable IP blocks. A major
benefit of this approach is that properly defined IP blocks
can be reused across multiple designs. Figure 1 illustrates
the role of IP reuse methodology in closing the design pro-
ductivity gap.
Many educational institutions have been able to acquire
comprehensive electronic design automation tools via gen-
erous university programs supported by Synopsys, Mentor

Graphics, Cadence Design Systems, etc. However, what is
generally missing is the availability of affordable IP blocks,
which are needed to build a large SoC and its derivatives
using those tools. The graduate program in the Electrical
and Computer Engineering department at the University of
Tennessee [2] spanning four semesters has addressed this
issue by offering courses intended to equip individual stu-
dents with the understanding of design for reuse and a team
of students with the understanding of design with reuse.
In the spring of 2003, the graduate class consisting of six-
teen students was split into groups of twos and fours and
each group was assigned the task to simulate, synthesize
and test a single IP core—either internally generated or
obtained for free. The intention was to verify each IP block
for functionality before integrating it with the open core
Volunteer SoC platform [3].
When the SoC platform was completed in August 2004, the
next step in the design process was to raise the level of
abstraction through which the platform designers integrated
the IP blocks. This way the designers could work directly
at the component level rather than at the VHDL-entry level
and they could also rapidly identify, select and integrate (or
remove) the required IP block into (or from) their design.
The idea thus conceived, was the major motivational factor
for taking the Volunteer SoC project to the next level and
selecting Platform Express™ (PX) [4], an EDA tool by
Mentor Graphics® for this purpose. Working from two

different design perspectives, we have been successful,
both as an IP integrator and as a System Designer in using
PX for designing SoC platforms [5].
In this paper, we describe the complete IP integration and
platform development process using Platform Express. In
section II we present an overview of the PX environment.
Section III illustrates our complete design flow and ex-
plains IP integration using PX. In section IV we perform
the role of a System Designer to design a system platform
using the integrated IP. We conclude in section V.

II. THE PLATFORM EXPRESS ENVIRONMENT
Platform Express is an electronic design automation tool,
which allows the system designer to build a system design
quickly using the components that the IP integrators have
created from their own hardware designs. The PX interface
(see Figure 2) presents users with a graphical interface and
allows them to enter designs as block diagrams by selecting
processors, memories and peripherals from various librar-
ies of pre-installed IP components. PX offers automatic bus
decoding and automatic bus and interrupt-bridging.
The tool also allows creating and implementing user-
defined libraries and provides a built-in IP meta-data gen-
eration interface—PxEdit—to realize that objective. The IP
meta-data describes the characteristics of the IP compo-
nents; this includes information about invoking simulation
and verification environment that the component requires,
and also allows setting up and logging of design configura-
tion. Platform Express uses the open source Extensible
Markup Language (XML) as the meta-data language to

describe the IP components for integration with the PX
component libraries. The XML meta-data, in association
with the PX tool also initiates other code written in Java,
VHDL and Verilog that allow components to function in a
design.
The PX tool speeds up design creation by presenting the
significant design elements in detail. Once the design is
created, PX provides tools for automating the build proc-
ess. The resulting build files also include ones that could be
used for validation with Seamless Co-verification Envi-
ronment (CVE).

III. INTEGRATING IP COMPONENTS
Starting with the compiled HDL model of the IP compo-
nent, the IP integrator can install ready-to-use modules by
following the steps outlined in Figure 3. Note that the two
HDL flows in the illustration are interchangeable. The raw
IP can be described using either VHDL or Verilog. RAMs
are added if the IP needs memory for storing pre- and post-
processed data. A bus-compliant top-level wrapper is de-
fined for connecting components together. The PxEdit tool
[6] supplied with the PX software is used to generate the
IP’s XML meta-data file before installing it into the com-
ponent library. The tool allows the user to enter data for
standard elements of the component and then generates a
valid XML file with the recorded information. The gener-
ated XML file can be modified according to needs outside
of PxEdit using a simple text editor.

Figure 2: The Platform Express™ interface.

A key is generated to protect the IP from modifications and
also so that it appears in the component browser of the PX
tool. The meta-data file contains all the information: com-
ponent hierarchy, associated HDL file sets, bus configura-
tion and choice of verification environment.
A black box component (step 3) is required when the top-
level wrapper is written in an HDL other than the one used
to define the raw IP. For example, in a case where an in-
house bus-compliant module is written in VHDL for a Ver-
ilog IP module obtained from somewhere else. When a
component is described as a black box, only the bus inter-
face signals are imported into the XML file. The informa-
tion about the lower-level sub-modules, specified using a
different HDL, is kept hidden from the PX tool. This work-
around is useful to avoid errors generally encountered
while compiling designs involving components specified in
multiple HDLs. Figure 4 shows the component design
browser with an AES Rijndael IP component [7] installed
as a black box under the bbcLib component library and its
unmodified version under the VOLIPository component
library.

IV. DESIGNING IP-BASED SoC PLATFORMS
Designing SoC platforms using PX is relatively easy once
the required IP is installed within the PX component librar-
ies. System developers can choose any of the visible com-
ponents in the component browser for their designs. How-
ever, not all component libraries will be visible when start-
ing a new design. This is because initially, PX shows com-
ponents that can be dragged onto the design editor pane,
i.e., CPU cores only. PX updates the component browser
once a CPU core is selected and only shows the compatible
bus architectures and IP cores. When IP cores are added

into the design, PX also checks for inserting bus bridges
wherever necessary, thus allowing the designer to focus on
product enhancement and differentiation.
The process of compiling the design is known as ‘building’
in PX terminology. This is performed using a hardware
simulator such as ModelSim or NCSim and has to be speci-
fied in the IP meta-data during component integration.
Building a design from PX invokes ModelSim (or NCSim)
in the background and the compilation messages are dis-
played on the PX tool’s output pane as well as on the com-
mand line terminal.

Figure 3: IP integration & system design using Platform Express.

Figure 4: Updated component browser

This process also generates a build.xml file containing the
command line equivalent instructions for compiling HDL
scripts, which is used to invoke Seamless CVE. This is
known as ‘executing the build’.
The CVE session brings up the ModelSim tool and its
Waveform Viewer interface. Users can now examine inter-
nal signals and check the functional operation of the de-
sign. Additionally, It also starts the XRAY Debugger (if a
Processor Support Package (PSP) exists for the selected
CPU core) to enable users to monitor the execution results
of CPU instructions and the changes in contents of the in-
ternal registers.
Building a design involving black boxes, compiles without
any errors. However, with no substantial information re-
garding the underlying sub-modules in the black box com-
ponent, it is not possible to use a hardware simulator for
checking functional correctness of the component. This
problem can be overcome by adding a few intermediate
steps between ‘performing a build’ and ‘executing the
build’. The build.xml file generated after building the de-
sign is modified using a text editor by adding the proper
HDL compile arguments. Then, the Java equivalent of
make command – ant [8], which uses XML-based configu-
ration files to execute tasks – is executed from the com-
mand line terminal to compile the entire mixed-HDL de-
sign using the modified build.xml script. Hence, in this
exercise we are building the design from PX, then execut-
ing ant from the command line (outside of PX) and finally
invoking the Seamless CVE, again from PX. It should be
noted that ant is completely independent of the PX tool.

V. CONCLUSIONS
In this paper, we discussed using Platform Express in con-
junction with ModelSim for IP integration and platform
design. We addressed the topic from the IP integrator’s as
well as a system designer’s viewpoint. We identified issues
regarding mixed-HDL compilation and validation and pro-
vided workarounds to overcome them. A sample checklist
is illustrated in Figure 5 to help first-time PX users in their
design tasks. In our experiences, Platform Express is an
excellent tool to rapidly explore different system architec-
tures and to rapidly evaluate various IP components before
incorporating them into a design. Our findings may enable
academic institutions to investigate platform-based SoC
design opportunities and may allow sharing of internally-
developed IPs.

VI. ACKNOWLEDGMENTS
The authors thank Mentor Graphics Corporation for the
support of the laboratory with its design tools. Thanks also
to Mr. Tomas Thoresen and the entire technical staff at
Mentor Graphics for providing technical support for Plat-
form Express.

VII. REFERENCES
[1] Borel, J., “Design Automation in MEDEA: Present

and Future,” IEEE Micro, Vol. 19, No. 5, pp. 71-79
(1999)

[2] Bouldin, D., Microelectronic Systems Courses, Uni-
versity of Tennessee. Available at
<http://vlsi1.engr.utk.edu/ece/bouldin_courses/>

[3] Bouldin, D., and R. Srivastava, “An Open System-on-
Chip Platform for Education,” Proceedings of 2004
European Workshop on Microelectronics Education
(EWME), Lausanne, Switzerland (2004).

[4] Platform Express Client, Mentor Graphics Corpora-
tion. Available at
<http://www.mentor.com/platform_ex/>

[5] Wala, M., “Using Platform Express for System-on-
Chip Design,” Masters’ Thesis, University of Tennes-
see, Knoxville, TN (2005).

[6] Mentor Graphics Corporation, “Platform Express Inte-
grator’s Guide.” Available at
<http://www.mentor.com/products/embedded_softwar
e/platform_baseddesign/platform_express/upload/pxC
ompIntGuide.pdf/>

[7] OpenCores. Available at <http://www.opencores.org/>
[8] Apache Ant. Available at <http://ant.apache.org/>

Figure 5: Platform Express checklist.

