
Platform Express Component
Integrator’s Guide

Software Version 1.1

Release 1.1

Copyright  Mentor Graphics Corporation 2002.
All rights reserved.

This document contains information that is proprietary to Mentor Graphics Corporation. The original
recipient of this document may duplicate this document in whole or in part for internal business purposes
only, provided that this entire notice appears in all copies. In duplicating any part of this document, the
recipient agrees to make every reasonable effort to prevent the unauthorized use and distribution of the

proprietary information.

This document is for information and instruction purposes. Mentor Graphics reserves the right to make
changes in specifications and other information contained in this publication without prior notice, and the
reader should, in all cases, consult Mentor Graphics to determine whether any changes have been
made.

The terms and conditions governing the sale and licensing of Mentor Graphics products are set forth in
written agreements between Mentor Graphics and its customers. No representation or other affirmation
of fact contained in this publication shall be deemed to be a warranty or give rise to any liability of Mentor
Graphics whatsoever.

MENTOR GRAPHICS MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE.

MENTOR GRAPHICS SHALL NOT BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL, OR
CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS)
ARISING OUT OF OR RELATED TO THIS PUBLICATION OR THE INFORMATION CONTAINED IN IT,
EVEN IF MENTOR GRAPHICS CORPORATION HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

RESTRICTED RIGHTS LEGEND 03/97

U.S. Government Restricted Rights. The SOFTWARE and documentation have been developed
entirely at private expense and are commercial computer software provided with restricted rights. Use,
duplication or disclosure by the U.S. Government or a U.S. Government subcontractor is subject to the
restrictions set forth in the license agreement provided with the software pursuant to DFARS 227.7202-
3(a) or as set forth in subparagraph (c)(1) and (2) of the Commercial Computer Software - Restricted
Rights clause at FAR 52.227-19, as applicable.

Contractor/manufacturer is:
Mentor Graphics Corporation

8005 S.W. Boeckman Road, Wilsonville, Oregon 97070-7777.

This is an unpublished work of Mentor Graphics Corporation.

Table of Contents

Table of Contents
About This Manual ...vii

Chapter 1
Components ... 1-1

Defining a Component.. 1-1
General Procedure for Creating a Component ... 1-3

Understanding XML and XML Schemas ... 1-5
Understanding XPath and Platform Express Extensions.................................... 1-5

containsToken .. 1-6
decode .. 1-6
pow... 1-7
log... 1-7

Creating the Component Definition File .. 1-7
Top-Level Elements ... 1-8
Bus Interfaces... 1-10
Numeric Values.. 1-12
Variables in Platform Express XML Documents... 1-12

Using the pxedit Application .. 1-14
Invoking the Editor .. 1-14
Creating a New Component Definition File .. 1-15
Editing an Existing Component Definition File... 1-19

 Packaging Components ... 1-20
Running the mkIndex Utility .. 1-21
Licensing a Library... 1-22
Setting Up a Default Design ... 1-23

Chapter 2
User-Input Parameters and Configurators ... 2-1

Configurators .. 2-2
The Default Configurator ... 2-4
Writing a Configurator Java Class.. 2-23
Single Panel Configurators ... 2-25

Minimum Implementation for Single Panel Configurators 2-25
Optional Methods for Single Panel Configurators... 2-28
Platform Express Component Integrator’s Guide, V1.1 iii

Table of Contents (cont.)

Table of Contents
Legacy Configurators ... 2-28
MultiPanel Configurators ... 2-30

Summary: Selecting a Base Class .. 2-38
Validators.. 2-39

Chapter 3
Generators.. 3-1

Introduction... 3-1
Design Database ... 3-1
The Platform Express API .. 3-2
Creating a Generator Class ... 3-4
Generator Chains .. 3-5
Soft Paths and Generators... 3-5
Generator Author Responsibility .. 3-6

Chapter 4
Decoder Templates .. 4-1

Introduction... 4-1
Pins: Logical and Physical, Master and Slave .. 4-1
Some Basic Concepts and Syntax... 4-2

Code Sections... 4-3
Handling Data Busses Of Differing Widths ... 4-9
Some Tips For Bus Decoder Template Writers.. 4-9
Examples... 4-9
Platform Express Component Integrator’s Guide, V1.1iv

Table of Contents

List of Figures
Figure 1-1. Typical Component Directory Structure... 1-2
Figure 1-2. Component Library Structure ... 1-20
Figure 3-1. Design Database.. 3-2
Platform Express Component Integrator’s Guide, V1.1v

List of Figures (cont.)

Table of Contents
Platform Express Component Integrator’s Guide, V1.1vi

About This Manual

This manual is for engineers who create components for use with Platform
Express. The Platform Express application enables rapid creation and initial
debugging of system designs based on standard processor platforms. To use this
manual effectively, you should have knowlege of embedded system design
concepts, including the use of Hardware Description Languages, embedded
processor programming, and simulation. Additionally, you need to have a basic
understanding of the Extensible Markup Language (XML). For some aspects of
Platform Express component development, you need to know Java programming.

Manual Organization
This manual contains the following chapters:

Chapter 1, “Components,” describes what a component consists of and provides
guidelines for integrating a component into Platform Express.

Chapter 2, “User-Input Parameters and Configurators,” which discusses how to
handle user-configurable parameters for components.

Chapter 3, “Generators” discusses generators, which are Java classes that create
HDL code, software, simulation environment scripts, simulation stimulus or
anything else that contributes to building and verifying a design in Platform
Express.

Chapter 4, “Decoder Templates” discusses bus decoder template files, which
specify the hardware logic and connections that need to be created to allow a
peripheral to function properly on a particular bus.
Platform Express Component Integrator’s Guide, V1.1 vii

About This Manual
Related Publications
See the online User’s Guide that is accessable from the Platform Express main
window for additional information on using components within a design. For an
introduction to XML, see the following web pages:

• http://www.xml.com/pub/a/98/10/guide0.html

• http://www.w3schools.com/xml/default.asp
Platform Express Component Integrator’s Guide, V1.1viii

http://www.xml.com/pub/a/98/10/guide0.html
http://www.w3schools.com/xml/default.asp

Chapter 1
Components

A Platform Express component is a set of files containing all the information that
Platform Express needs to instantiate the component into a design and verify that
it works correctly within the design. This chapter describes what a component
consists of and provides guidelines for integrating a component into Platform
Express.

Defining a Component
A component resides in a single uniquely named directory within a Platform
Express component library. Figure 1-1 shows the structure of an example
component that resides in a component library created for Platform Express. A
component library is simply a defined directory structure. The root directory for a
library should have a name that indicates what kind of components the library
contains. Beneath the root directory, a directory named componentLibrary
contains all the components, along with an index.xml file, which is an index of the
components that the library contains, the Pxkey file, which contains licensing
information, and optional directrories and supporting files as necessary. Platform
Express accesses component libraries either through the PXPATH environment
variable or through a default search method; this is discussed in more detail in
“Packaging Components,” later in this chapter.

The componentLibrary directory may contain any of the following subdirectories:
component, busdef, class, generator, or decoder. The component directory may
contain any number of components, each with a standard directory structure. The
root directory of the component in this example is MyTimer. Each component has
to have a name that is unique across all component libraries. Within the
component directory are one or more directories containing specific versions of
the component; in this example the only version present is 1.0.
Platform Express Component Integrator’s Guide, V1.1 1-1

Defining a Component Components
Figure 1-1. Typical Component Directory Structure

The 1.0 directory and its contents actually define the component. For the
MyTimer example, the files and directories are follows:

• The XML file MyTimer.xml specifies the component structure in detail. All
components must have such a component-definition file, and this is the
only item that is required to be in the version directory. This file names the
component, defines the component’s I/O pins (names, active logic level,
and so on), and much more.
Platform Express Component Integrator’s Guide, V1.11-2

Components Defining a Component
• The files MyTimerGenerator.class and MyTimerInstanceValidator.class,
are Java object files for a generator and an instance validator, respectively.
Notice the class directory can be present under the componentLibrary
directory as well as under the component itself. Generators are discussed in
Chapter 3. Validators are discussed in Chapter 2, under “Validators.”

• Other files and subdirectories may be present, but these depend entirely on
the how the component is specified in the XML file. Components do not
necessarily need such directories, and they need not be named in any
particular way.

The component structure is covered in more detail in subsequent sections.

General Procedure for Creating a Component

Here is a suggested process for creating a Platform Express component:

1. Gain an understanding of XML and XML Schema syntax. See
“Understanding XML and XML Schemas,” which follows this section.

2. Gain a general understanding of the Platform Express component structure.
You should study the syntax and structure of the XML-based component
definition file and be aware of the kinds of supporting files and programs
that may be required for a component. This is described in detail in
“Creating the Component Definition File,” later in this chapter.

3. Find a component in an existing component library that is similar to the one
you are designing and use it as a template.

4. Create a working component directory structure. You could copy one from
an existing component.

5. Create a component definition (component.xml) file. Depending on how
similar the component is to an existing one, the pxedit application supplied
with Platform Express may be useful. See “Using the pxedit Application”
later in this chapter for more information.

6. Study the Generator, Configurator, and Validator documentation and
examples to determine which of these, if any, your component will need. If
Platform Express Component Integrator’s Guide, V1.1 1-3

Defining a Component Components
required, create new ones and specify them in the component.xml file. See
Chapter 2, “User-Input Parameters and Configurators,” and Chapter 3,
“Generators,” for additional information.

7. Package the component and place it in a component library. Along with the
component.xml file, you may need to package additional supporting files:

• Place any software files (target processor code, initialization code,
command files, and so on) required for the component in appropriate
directories within the component structure.

• Place any HDL simulation models and associated files required for the
hardware portion of the component in appropriate directories.

See “Packaging Components” later in this chapter for more information.

8. Run the mkIndex utility on the component library where you installed the
component. This creates an index of all the components in the library and
validates the component’s .xml file against the schema. Repeat this step
until the .xml file is valid. See “Running the mkIndex Utility” for additional
information.

9. Run the Platform Express license key generator for the component library,
as described in “Licensing a Library.” This generates a key that Platform
Express requires in order to use the library. A new key must be generated
whenever anything within the componentLibrary subdirectory hierarchy is
modified.

10. Test the component and integrate it into Platform Express:

• Make sure the component library in which your component resides is
specified in your PXPATH environment variable or is located in the
pxLibraries directory.

• Invoke Platform Express, note any parsing errors or other problems that
Platform Express detects, and fix those problems.
Platform Express Component Integrator’s Guide, V1.11-4

Components Understanding XML and XML Schemas
• Add the component to a design and build the design. Examine the
generated files and make any corrections needed to the generators or
component structure.

• Run a verification session and check the component for correct
behavior within the design.

Understanding XML and XML Schemas
Creating a component definition file requires some understanding of XML and
XML schemas. Good starting references for XML and XML schemas can be
found at the following locations:

• http://www.w3schools.com/xml/default.asp.

• http://www.xml.com/pub/a/2000/11/29/schemas/part1.html

The schema for component files can be found in the Platform Express installation
directory (PXHOME) under the schema subdirectory. Documentation for these
schema, in the form of HTML files that depict the structure of the schema, can be
found in $PXHOME/doc/schema. Invoke your HTML browser on index.html to
gain access to this documentation.

Understanding XPath and Platform
Express Extensions

XPath is a language used to navigate through XML structures. In Platform
Express it is useful to generator and configurator writers for locating specific
component elements. It is also useful in the component and bus definition files for
setting up dependencies on configurable values.

An XPath tutorial can be found at http://www.w3schools.com/xpath. The standard
language definition can be found at http://www.w3.org/TR/xpath.

Platform Express has extended XPath to address some unique requirements. The
following is the complete list of XPath functions added by Platform Express.
Platform Express Component Integrator’s Guide, V1.1 1-5

http://www.w3schools.com/xpath
http://www.w3.org/TR/xpath
http://www.w3schools.com/xml/default.asp
http://www.xml.com/pub/a/2000/11/29/schemas/part1.html

Understanding XPath and Platform Express Extensions Components
containsToken

boolean containsToken(string, string)

The containsToken function returns true if the first argument string contains the
second argument string as a token, and otherwise returns false. To be interpreted
as a token, the second string must be found within the first string, and be separated
by white space from any other characters in the first string that are not white space
characters.

Example: containsToken(’default spine driver’, ’pin’) evaluates to
false, whereas the standard XPath function contains would have evaluated true
with the same arguments.

Purpose: Some attributes used in Platform Express are of type NMTOKENS
which is a list of tokens separated by white space. This function allows XPath
selection based on whether the attribute contains a specific token.

decode

number decode(string?)

The decode function decodes the string argument to a number and returns the
number, or returns the NaN number if the string cannot be decoded. If the
argument is omitted, it defaults to the context node converted to a string. If the
string argument is a decimal formatted number, it is returned unchanged. If it is a
hexadecimal representation starting with “0x” or “#”, it is converted to a decimal
number and returned. If it is in engineering notation ending in a ‘k’, ‘m’, ‘g’, or ‘t’
suffix, case insensitive, the numeric part is multiplied by the appropriate power of
two magnitude.

Examples: decode(’0x4000’) evaluates to 16384. decode(’4G’) evaluates to
4294967296.

Purpose: Platform Express allows numbers to be expressed in hexadecimal
format and engineering format. When setting up dependencies on configurable
values, it is sometimes necessary to perform some arithmetic in the dependency
XPath expression. However, XPath only supports arithmetic on numbers and it
Platform Express Component Integrator’s Guide, V1.11-6

Components Creating the Component Definition File
only recognizes decimal strings as numbers. This function allows the alternate
formats to be converted to numbers recognizable by XPath.

pow

number pow(number, number)

The pow function returns a number which is the first argument raised to the power
of the second argument.

Example: pow(2, 10) evaluates to 1024.

Purpose: It is common for a Platform Express component to have a configurable
number of address bits. When this happens, the size of the address range it
occupies on a memory map varies exponentially with the number of address bits.
This function gives XPath the mathematical capabilities needed to describe this
relationship in a dependency expression.

log

number log(number, number)

The log function returns a number that is the log of the second argument in the
base of the first argument.

Example: log(2, 1024) evaluates to 10.

Purpose: This is the inverse of the pow function. It is intended to express the
reverse of the dependency described for the pow function. In this case the range of
an address block might be configurable and the number of address bits might be
expressed as a dependency of the address range using the log function.

Creating the Component Definition File
The component definition file is an XML file that describes the properties of a
component. Each component has a unique component definition file named
component.xml, where component represents the name of the component. An
example is timers.xml. The first step in creating a component is to specify the
Platform Express Component Integrator’s Guide, V1.1 1-7

Creating the Component Definition File Components
component’s properties in the component.xml file using a predefined set of XML
elements. These elements are defined in the schema file PxComponents.xsd,
which can be found in the schema directory under PXHOME.

A convenient starting point for creating a new component.xml file is to find an
existing component that is similar and copy that file. The excerpt below is the
beginning of a component definition file for a UART component.

<?xml version="1.0" encoding="UTF-8"?>
<!--
Copyright Mentor Graphics Corporation 2001
All Rights Reserved
-->
<component xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="schema/1.0/pxComponents.xsd">
 <name>uart</name>
 <version>2.37</version>
 <busInterfaces>
 <busInterface interfaceId="ambaAPB">
 <busType>ambaAPB</busType>
 <slave>
 <memoryMap>
 <addressBlock name="ambaAPB">

The file refers to the schema in schema/1.0/pxComponents.xsd, which is found
under PXHOME. The first element of significance is the <name> element, which
is uart. Just below that, the <version> element specifies the version number of the
component, which is 2.37. The <busInterfaces> element specifies all the buses
that the component connects to. This component connects to the ambaAPB bus, as
specified by the <busInterface> element. The uart component is a bus slave, as
specified by the presence of the <slave> element. Additional subelements under
<busInterface> specify the memory map and various other properties.

Top-Level Elements

A component is defined in terms of the following top-level XML elements, each
of which can have numerous subelements:

• name

The name element is the name of the component and must match the name
of the component directory in which it is installed.
Platform Express Component Integrator’s Guide, V1.11-8

Components Creating the Component Definition File
• version

The version element is the version number assigned to the component and
must match the name of the version directory in which it is installed

• busInterfaces

Lists bus interfaces supported by the component. See “Bus Interfaces” for
additional information

• componentInstances

Reserved for future use in defining hierarchical components. Currently this
element is only used in design files to list all the component instances in the
design.

• busInstances

Reserved for future use in defining hierarchical components. Currently this
element is only used in design files to list all the bus instances in the design
and describe their connectivity.

• addressSpaces

For bus masters, lists all the address spaces defined for the component.

• presentation

Contains information that affects the display of the component in various
Platform Express views.

• hwModel

Describes the hardware model including its signal list, its verification
environment, and references to the files used in the verification
environment.
Platform Express Component Integrator’s Guide, V1.1 1-9

Creating the Component Definition File Components
• generators

Lists all generators that the component requires. See Chapter 3,
“Generators,” for additional information.

• configurators

Lists all the non-default configurators the component requires. See Chapter
2, “User-Input Parameters and Configurators for additional information.

• ui

The ui element is discussed in Chapter 2, “User-Input Parameters and
Configurators”

• fileSets

Specifies files associated with the component.

• persistentInstanceData

This is a container for any data that is specific to an instance of the design
object. The contents are not interpreted or validated by Platform Express.
This element is saved with the design and restored when the design is
loaded. It is intended to be used by configurators and generators to store
and retrieve instance-specific data.

Bus Interfaces

Each component has one or more bus interfaces that determine how it can be
connected to other components. Platform Express considers all intercomponent
connections to be through busses, including connections such as interrupt lines
and clock input. The following excerpt (from the UART example) defines two bus
interfaces: an ambaAPB bus and an Interrupt signal. The UART is an ambaAPB
bus slave, as specified by the <slave> element. The <memoryMap> defines the
memory space occupied by the UART: 6 bits wide by 16 bytes long, mapped to
the low-order bits of the bus (bitOffset = 0). The base address for the UART is a
user-input value, as indicated by the resolve=”user” attribute (which is discussed
in more detail in Chapter 2, “User-Input Parameters and Configurators”). In both
Platform Express Component Integrator’s Guide, V1.11-10

Components Creating the Component Definition File
the ambaAPB and Interrupt interfaces, the <signalName> element maps external
bus signals to UART signals.

 <busInterface interfaceId="ambaAPB">
 <busType>ambaAPB</busType>
 <slave>
 <memoryMap>
 <addressBlock name="ambaAPB">
 <baseAddress format="long" id="baseAddress"
 prompt="Base Address:" resolve="user"
 configGroups="requiredConfig"/>
 <bitOffset>0</bitOffset>
 <range>16</range>
 <width id="width">6</width>
 </addressBlock>
 </memoryMap>
 <connection>required</connection>
 <signalMap>
 <signalName busSignal="PCLK">PCLK</signalName>
 <signalName busSignal="PRESETN">PRESETN</signalName>
 <signalName busSignal="PADDR">PADDR</signalName>
 <signalName busSignal="PWDATA">PWDATA</signalName>
 <signalName busSignal="PRDATA">PRDATA</signalName>
 <signalName busSignal="PWRITE">PWRITE</signalName>
 <signalName busSignal="PSELx">PSEL</signalName>
 <signalName busSignal="PENABLE">PENABLE</signalName>
 </signalMap>
 </slave>
 </busInterface>

 <busInterface interfaceId="Interrupt">
 <busType>singlePinInterrupt</busType>
 <slave>
 <connection>required</connection>
 <signalMap>
 <signalName busSignal="interruptAH">IRQ</signalName>
 </signalMap>
 </slave>
 </busInterface>

 </busInterfaces>
Platform Express Component Integrator’s Guide, V1.1 1-11

Creating the Component Definition File Components
Numeric Values

Numeric values in component files are interpreted as decimal, hexadecimal or
octal numbers depending on their prefix.

A numeric value may also contain a magnitude specifier suffix.

The following XML contains examples of numeric values:

<baseAddress>0x400000</baseAddress>
<addressRange>128k</addressRange>

Variables in Platform Express XML Documents

Platform Express is platform independent and generates files for many different
programs such as operating system shells, Tcl intpreters, make, and so on.
Because the variable syntax changes from one environment to another, variables
in Platform Express XML documents must be expressed in a canonical form, and
will then be converted to the appropriate syntax.

Variables in Platform Express documents take the following canonical form:

Prefix: Format:

none decimal

0x hexadecimal

hexadecimal

0 octal

Suffix: Multiplier:

k or K 1,024

m or M 1,048,576

g or G 1,073,741,824

t or T 1,099,511,627,776
Platform Express Component Integrator’s Guide, V1.11-12

Components Creating the Component Definition File
${variableName}

Reserved Variables

There are two Platform Express reserved variables:

${PXVAR_COMPONENT_LOCATION}
${PXVAR_COMPONENT_LIBRARY}

The first reserved variable can be used to refer to the top-level directory of the
component. It will be resolved at Platform Express runtime. This is most
commonly used to specify file pathnames, as in the following example:

${PXVAR_COMPONENT_LOCATION}/software/include/defs.h

For most file specifications inside a Platform Express component document, this
variable is not needed. File specifications should be relative pathnames. Platform
Express resolves a pathname at runtime, first looking for the file relative to the
component directory, then looking relative to the component library that contains
the component. Exceptions are the configurable elements <flags> that are
specified for files and defaultBuilders. A typical flags argument may be
something like this:

<flags>-c -g -DCPU=arm7tdmi
 -I${PXVAR_COMPONENT_LOCATION}/software/include</flags>

In this case, the -I switch in the flags specifies an include directory that the
compiler will look in for included files. The variable for the component location is
needed because the content of <flags> is just taken as a string.

The second variable, ${PXVAR_COMPONENT_LIBRARY}, will be resolved to
the component library directory that contains the component. This would typically
be used to specify common files in a component library that are used for more
than one component.

Any other variable in the component .xml file will simply be converted to the
appropriate variable syntax for the environment in which it is being generated.
Platform Express Component Integrator’s Guide, V1.1 1-13

Using the pxedit Application Components
Using the pxedit Application
For components intended for the ModelSim and Seamless simulation
environment, the pxedit application supplied with Platform Express can
significantly reduce the amount of hand editing required in creating component
definition files. The application allows you to automatically generate bus interface
mappings from compiled HDL models, as well as to edit various other aspects of
the component definition files.

Invoking the Editor

1. Set the following environment variables:

MODELTECH must point to the ModelSim installation directory.

PXHOME must point to the Platform Express installation directory.

2. Invoke the pxedit application:

$PXHOME/tools/bin/pxedit

The pxedit main window appears.
Platform Express Component Integrator’s Guide, V1.11-14

Components Using the pxedit Application
Creating a New Component Definition File

1. In the pxedit main window, select File > New. The New dialog box
appears, as shown below.

2. Enter or select the following information in the dialog box:

• Top-level model name of the component.

• Simulation environment. For example, for the ModelSim/Seamless
CVE environment, you would select modelsimcve. The simulation
environments are as follows:

modelsim: The component can be instantiated in a design with
ModelSim alone.

modelsimcve: The component requires Seamless libraries and can be
instantiated only when used with Seamless CVE.

Location of the compiled HDL library. This is typically the “work”
directory.
Platform Express Component Integrator’s Guide, V1.1 1-15

Using the pxedit Application Components
• For a design in the Modelsim/Seamless CVE environment, enter the
Seamless CVE configuration filename.

3. Click OK. At this point, pxedit extracts the top-level signal names from the
model. When it is finished, the pxedit application displays the signal list, as
shown below. The pxedit main window presents a tabbed input area in
which you supply information about the component.

4. At this point, you can begin editing the information for the output XML
file. You can start by selecting a Bus Interface. Shown below is the list of
available buses. To choose a bus, click on the name in the Bus Available
column and click Select. The bus name moves to the Bus Selected column
Platform Express Component Integrator’s Guide, V1.11-16

Components Using the pxedit Application
and the name appears at the left of the signal column. You can edit the
signal list as necessary to match IP signal names to bus signals.
Platform Express Component Integrator’s Guide, V1.1 1-17

Using the pxedit Application Components
5. As shown below the tabbed input area of the main window presents a tab
for each major element of the component definition file. Click on the tab to
enter and edit subelement values for that element.

Some values are displayed in tables, as shown below. When entering values
in these tables, remember to press Return after entering the value.

6. When you are through editing values for the component, select File > Save
or File > Save As to save the information to an XML file. You need to add
the .xml extension to the file name.

The pxedit application validates the saved XML file against the schema. If
the file is not valid, an information message appears, pointing out any errors
in the file.
Platform Express Component Integrator’s Guide, V1.11-18

Components Using the pxedit Application
Editing an Existing Component Definition File

To edit an existing component definition file, select File > Open. The pxedit
application opens the file and displays the element data in the appropriate places.
You can edit the values as described in the preceding section.

Note

pxedit cannot edit all elements of a component definition file, so
some information may be lost when you open an existing file.
Platform Express Component Integrator’s Guide, V1.1 1-19

Packaging Components Components
Packaging Components
Your components and component libraries must conform to a standard structure
so that Platform Express can locate them. The overall structure of a component
library is shown below.

Figure 1-2. Component Library Structure

Platform Express locates component libraries through two different routes. The
first, and primary, route is the PXPATH environment variable. The PXPATH
variable is a colon-separated list of paths in which each path points to the top of a
component library. If the PXPATH variable is not set, Platform Express looks in
the current working directory for a pxLibraries directory, and then searches under
that directory for component libraries. If Platform Express cannot find the
pxLibraries directory in the current working directory, it looks for it in the parent
Platform Express Component Integrator’s Guide, V1.11-20

Components Running the mkIndex Utility
directory of $PXHOME (at the same level as $PXHOME).

Within each library, Platform Express looks for components in their uniquely
named directories under the componentLibrary directory. Each library must
contain a Pxkey file, to license the library, and it may contain an index.xml file,
which serves as an idex to the components in the library.

Shown below is the general structure for a component.

The minimum requirements for a component are a uniquely named directory with
a version number directory containing a component_name.xml file. Most
components will contain additional supporting files organized in subdirectories
below the version number directory.

Running the mkIndex Utility
The mkIndex utility creates the file index.xml in the component library. This file is
an index of all the components in the library. The utility also validates the
component’s .xml file against the schema.

Invoke the mkIndex utility as follows:

$PXHOME/tools/bin/mkIndex <path_to_component_library>
Platform Express Component Integrator’s Guide, V1.1 1-21

Licensing a Library Components
Correct errors and repeat this step until the .xml file is valid. The index file is not
required to invoke Platform Express, but it can speed up the invocation. If the file
does not exist, Platform Express creates an internal index of the library.

Licensing a Library
To make a library available for Platform Express, it must contain a valid key file.
A new key must be generated whenever anything within the componentLibrary
subdirectory hierarchy is modified. You create a key file by running the Pxkeygen
program. Three levels of licensing, each sold as a separate product, are available
to Platform Express component developers:

• Platform, which licenses platform cores (CPUs plus core
components).This level includes the following two.

• IP, which licenses peripheral components (memory, UARTs, timers, and so
on). This level includes the following one.

• EDA, which licenses items such as generators and software that support
components.

To use the Pxkeygen program, first set the PXHOME variable to point to the
Platform Express installation. Also set either the MGLS_LICENSE_FILE or
LM_LICENSE_FILE variable to point to the Platform Express license file.
Invoke the Pxkeygen program as follows:

$PXHOME/tools/bin/Pxkeygen.sh [-h] [-e date] {pxLibrary1 ...}

where the -h option displays a help message, the -e date option specifies an
expiration date for the library (or libraries), and {pxLibrary ...} is a list of paths to
top-level directories of properly structured component libraries.

The program places a Pxkey file at the top level of the component library. The
Pxkey file contains an expiration date and an encoded key.

Note

Be careful not to leave an out-of-date index in the component
library. If the index.xml file is present, Platform Express will use it
as-is, possibly ignoring any components added to the library.
Platform Express Component Integrator’s Guide, V1.11-22

Components Setting Up a Default Design
Setting Up a Default Design
For platform cores, you can set up a default design configuration containing
multiple components that will automatically be instantiated when the component
is selected from the Component Library.

1. Prepare the platform (such as a926_etm_tcm, for example) and other
components (RAM, ROM, and so on) for inclusion in libraries.

2. In Platform Express, create a design the has all the components instantiated.

3. Save the design. This results in a “.plx” file, such as a926min.plx, for the
design that is saved in the design directory.

4. Move the .plx file to the library directory for the platform core. For
example, move a926min.plx to
myPxLib/componentLibrary/component/a926_etm_tcm/1.0.

5. Remove the saved design directory (from Step 3).

6. Edit the platform’s .xml file
(myPxLib/componentLibrary/component/a926_etm_tcm/1.0/a926_etm_tcm
.xml) as follows.

Near the end of the .xml file (after </cpu>) add the add the default design
element:

</cpu>

<designFile> a926min </designFile>

</platformCore>

7. Run the Pxkeygen licensing utility, as described in “Licensing a Library,”
earlier in this chapter.

8. Reinvoke Platform Express, instantiate the platform, and verify that the
default design is in place.
Platform Express Component Integrator’s Guide, V1.1 1-23

Setting Up a Default Design Components
Platform Express Component Integrator’s Guide, V1.11-24

Chapter 2
User-Input Parameters and

Configurators

Every component in any Platform Express component library is described by a
component file, and every bus defined in a Platform Express library has a bus
definition file. Component files and bus definition files are written using XML
syntax. The meaning of each XML element is described in the XML schema,
which is covered in “Creating the Component Definition File,” in Chapter 1

When a component or bus is instantiated in the design, an internal structure is
created to represent the XML file. Multiple instantiations of the same library
component or bus result in multiple structures. These structures can be modified
by generators, or more commonly by user interaction managed by configurators.
Configurators are discussed later in this chapter, in “Configurators.”

To preserve the integrity of the original XML file, only specially designated
configurable elements can be modified. In the XML file, some elements, as
directed by the schema, may be given a resolve attribute. The resolve attribute can
take any of the following values: immediate, user, dependent or generated. These
are described below.

• immediate resolve
This is the same as if the element has no resolve attribute. The element is
faithfully represented in the structure. If a generator or configurator
attempts to modify the element through any standard or Platform Express
API, an exception is thrown.

• user resolve
This designates a configurable element (also called a property).
Configurators and generators can modify the content of the element through
either the PxProperty class or the ComponentDocument class. Textual
Platform Express Component Integrator’s Guide, V1.1 2-1

Configurators User-Input Parameters and Configurators
content can be replaced and child elements of arbitrary structure can be
added. The attributes of a configurable element cannot be modified in any
way, and any of its child elements from the original XML file cannot be
removed. However, added child elements can be modified without
restriction.

User resolved elements are persistent. Any modifications made to a user
resolvable element are saved with the design and restored when the design
is loaded. Elements with a resolve=user attribute must also have an id
attribute set to an identifier that is unique within the XML file. The id
attribute is used internally to support persistence and user configuration.

• dependent resolve
The element’s text value is dependent on the value of other elements.
Typically the other elements will be user resolved elements. Elements with
dependent resolve must have a dependency attribute which contains an
expression used to evaluate the text value. The expression language is
XPath with Platform Express extensions (see “Understanding XPath and
Platform Express Extensions” in the Components chapter). The
expression’s context node is the dependent element itself. For the typical
case where a dependent element evaluates to the setting of a user resolved
element, you can use XPath’s id function to access the user resolved
property through its id attribute. For example, if the user resolved property
has an id attribute of baseAddress, then the dependent property can assume
the configurable property value by setting its dependency attribute to
id(‘baseAddress’).

• generated resolve
The element’s value is typically written by generators. It can be modified
just like a user resolved property, however the modifications are not
persistent (they are not saved with the design). The id attribute is not
required on elements of generated resolve.

Configurators
Configurators are Java classes that Platform Express executes to configure an
object, usually through user interaction. For Platform Express to detect a
Platform Express Component Integrator’s Guide, V1.12-2

User-Input Parameters and Configurators Configurators
configurator it has to be declared in the configurators section of an XML file, as
described in “Creating the Component Definition File,” in Chapter 1.

Configurators are applied to various object types (components, busses, design
settings, etc.). Platform Express provides several default configurators and
declares them in PXHOME/etc/pxDefaultConfigurators.xml.

You can add new configurators and override default configurators by adding
configurator elements to the configurators section of your component or bus
definition file.

 <configurator>
 <type>MyConfigurtor</type>
 <javaClass>MyConfiguratorJavaClass</javaClass>
 <presentation>
 <displayLabel>My Configurator</displayLabel>
 </presentation>
 <parameter name=”parameter1”>value1</parameter>
 <parameter name=”parameter2”>value2</parameter>
 .
 .
 .
 </configurator>

The type element can be used for component override of a default configurator of
the same type. The javaClass element indicates the configurator class to be loaded
and executed. The displayLabel element contains the text for a label that appears
on a pop-up menu to invoke the configurator. The parameter elements supply
name-value pairs to the configurator. The configurator class defines which, if any,
parameters it uses.

The default configurators declared in pxDefaultConfigurators may be sufficient
for most components. One of the default component configurators is declared as
follows:

 <configurator configureOnCreation="true">
 <type>Basic</type>
 <javaClass>com.mentor.px.configurator.DefaultConfigurator</javaClass>
 <presentation>
 <displayLabel>Basic</displayLabel>
 <displayLabel views="menu">Basics</displayLabel>
 </presentation>
 <parameter name="configGroup">requiredConfig</parameter>
 </configurator>
Platform Express Component Integrator’s Guide, V1.1 2-3

The Default Configurator User-Input Parameters and Configurators
This configurator has a configureOnCreation attribute to indicate that it is run
when the component is first created. It invokes the DefaultConfigurator Java
class, passing it a configGroup parameter with the value requiredConfig. The
DefaultConfigurator class automatically builds a configuration dialog from
information in the component XML file. The dialog presents input fields for all
the component’s configurable properties that have a configGroups attribute
matching the passed in configGroup parameter value.

You can use the DefaultConfigurator class for more than just the basic
configurator that is run on component instantiation. For example, you may want to
use it on a secondary configurator that does not run on instantiation but does have
a pop-up menu entry for explicit invocation. Or you may want to use it as a bus
configurator. In either case, you can add the configurator declaration to your
component or bus definition file, giving it the same Java class as the Basic
configurator, but giving it a different configGroup parameter. Example:

 <configurator>
 <type>MyDefault</type>
 <javaClass>com.mentor.px.configurator.DefaultConfigurator</javaClass>
 <presentation>
 <displayLabel>My Default</displayLabel>
 </presentation>
 <parameter name="configGroup">myGroup</parameter>
 </configurator>

The above xml element will add a configurator to the component to configure the
elements marked with configGroup=”myGroup” with the default configurator
rules.

Following sections describe how to use the default configurator and how to write
and install your own configurators.

The Default Configurator
The default configurator supports general purpose configuration without having to
write a configurator Java class. A configuration dialog is built automatically from
information in the XML files. Its class name is
com.mentor.px.configurator.DefaultConfigurator and it requires a name
parameter. Unless overridden in the configurators section of their XML file, all
Platform Express Component Integrator’s Guide, V1.12-4

User-Input Parameters and Configurators The Default Configurator
components run the default configurator on component creation, passing in a
name parameter of requiredConfig.

This section shows how to write a component file to take advantage of the default
configurator that comes up when the component is added to the design.

Here is a partial listing of a memory component file with three user settable
properties.

 <?xml version="1.0" encoding="UTF-8"?>
 <!--
 Copyright Mentor Graphics Corporation 2002
 All Rights Reserved
 -->
 <component xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="schema/1.0/pxComponents.xsd">
 <name>ahbRam</name>
 <version>1.0</version>
 <busInterfaces>
 <busInterface interfaceId="ambaAHBLite">
 <busType>ambaAHBLite</busType>
 <slave>
 <memoryMap>
 <addressBlock>

<baseAddress resolve="user”
 configGroups="requiredConfig"
 id="baseAddress"/>
 <bitOffset>0</bitOffset>
 <range resolve="dependent"
 dependency="pow(2,id(’addrWidth’))"
 id="addressRange"/>
 <width>8</width>
 ...
 <hwParameters>

<hwParameter name="addressSize" dataType="integer"
id="addrWidth" resolve="user"

 configGroups="requiredConfig"/>
 </hwParameters>
 ...
 <fileSet fileSetId="fs-memtest">
 ...
 <swFunction>
 <fileRef>file-memtest</fileRef>
 ...

<enabled id="diagsEnabled" resolve="user"
 configGroups="requiredConfig">true</enabled>
 </swFunction>
 </fileSet>
...
Platform Express Component Integrator’s Guide, V1.1 2-5

The Default Configurator User-Input Parameters and Configurators
Adding this component to the design causes the following dialog box to appear.

The default configurator found three configurable elements in the component
XML file that belonged to the configuration group that matched its name
parameter, requiredConfig. It created a form to allow input of all three values. The
second and third input fields are labeled “hwParameter” and “enabled” which are
the element names of the corresponding configurable elements. However, the first
input field is labeled “Base address:” even though the element name is
“baseAddress”.

The memoryMap.xsd file of the component schema contains an element
description for the baseAddress element. It sets a default value for the prompt
attribute with the following line:

 <xs:attribute ref="prompt" default="Base Address:"/>

This shows that baseAddress elements have a prompt attribute. If none is specified
in the XML file, then it takes “Base Address:” as the default value. The schema
for the other two elements also allow a prompt attribute, but do not assign it a
default value. Since no prompt attribute was supplied, the default configurator
used the element name to prompt for the value.

Now notice that the enabled field is a check box instead of a text entry field like
the other two fields. Its element definition found in file.xsd contains the line
Platform Express Component Integrator’s Guide, V1.12-6

User-Input Parameters and Configurators The Default Configurator
 <xs:attributeGroup ref="bool.prompt.att"/>

This refers to an attribute group defined in common.xsd which contains the
following definition of the format attribute.

 <xs:attribute name="format" type="formatType" default="bool">

Since this element has a format attribute set to “bool” by default, the configurator
displayed a check box for obtaining the boolean value.

You can alter the displayed prompts by providing your own prompt attribute
values in the component file. The following changes,

 <hwParameter name="addressSize" dataType="integer"
 id="addrWidth" resolve="user"
 configGroups="requiredConfig"

prompt="Address Width:"/>

and

 <enabled id="diagsEnabled" resolve="user"
 configGroups="requiredConfig"

prompt="Enable Diagnostics:">true</enabled>

yield the following dialog.

Validators described in “Validators,” later in this chapter, allow you to check the
validity of user input. However, you can use the XML component file to do some
validity checking without having to write a validator. We have already seen the
format attribute, which constrains the data type that may be entered. For numeric
Platform Express Component Integrator’s Guide, V1.1 2-7

The Default Configurator User-Input Parameters and Configurators
data, you can specify minimum and maximum values. For example, if the address
width of this component must be between 14 and 20, you can constrain the input
value with some additional attributes. Notice that the hwParameter element is not
by default a numeric element, so to get minimum and maximum constraints to
work you must explicitly give it a numeric format.

 <hwParameter name="addressSize" dataType="integer" id="addrWidth"
 resolve="user" configGroups="requiredConfig"
 prompt="Address Width:"

format="long" minimum="14" maximum="20"/>

Now if the user enters an invalid number, an error message appears when the form
is submitted.

You may set the value of a user resolved element in the XML file. This provides
users with a default value they can change if needed.

 <hwParameter name="addressSize" dataType="integer" id="addrWidth"
 resolve="user" configGroups="requiredConfig"
 prompt="Address Width:"
 format="long" minimum="14" maximum="20">18</hwParameter>
Platform Express Component Integrator’s Guide, V1.12-8

User-Input Parameters and Configurators The Default Configurator
You can control the order that the input fields appear in the form by using order
attributes. Platform Express orders the fields according to ascending order
attributes. It is tolerant of gaps and duplicates in the order number sequence.

As an example we will temporarily swap the first two fields of the dialog.

 <baseAddress resolve="user" configGroups="requiredConfig"
 id="baseAddress" order="2"/>
 ...
 <hwParameter name="addressSize" dataType="integer" id="addrWidth"
 resolve="user" configGroups="requiredConfig"
 prompt="Address Width:"
 format="long" minimum="14" maximum="20"

order="1">18</hwParameter>

Note that we did not include an order attribute on enabled so it was placed after
all the ordered fields.
Platform Express Component Integrator’s Guide, V1.1 2-9

The Default Configurator User-Input Parameters and Configurators
Since there is a limited range of allowed values for the address width, it might be
simpler for the user to choose a value rather than type one in. This can be
accomplished in the component XML by adding a ui element to the component if
it doesn’t already exist, then adding a uiChoice element as a child of ui. Each
uiChoice element has an id attribute so it can be referenced by properties with
enumerated values. In this example, we add a uiChoice element that inclusively
enumerates all numbers between the minimum and maximum allowed address
widths.

 ...
<ui>

 <uiChoice id="widthOptions">
 <uiChoiceElement>14</uiChoiceElement>
 <uiChoiceElement>15</uiChoiceElement>
 <uiChoiceElement>16</uiChoiceElement>
 <uiChoiceElement>17</uiChoiceElement>
 <uiChoiceElement>18</uiChoiceElement>
 <uiChoiceElement>19</uiChoiceElement>
 <uiChoiceElement>20</uiChoiceElement>
 </uiChoice>
 </ui>

The address width element’s format attribute needs to change from its default
value of long to choice. A choiceRef attribute must be added to refer to the
uiChoice element listed above. Also note that the minimum and maximum
attributes are no longer necessary.

 <hwParameter name="addressSize" dataType="integer" id="addrWidth"
 resolve="user" configGroups="requiredConfig"
 prompt="Address Width:"

format="choice" choiceRef="widthOptions">18</hwParameter>
Platform Express Component Integrator’s Guide, V1.12-10

User-Input Parameters and Configurators The Default Configurator
The default width value of 18 is preselected.

The display for a choice element is controlled by two attributes. The choiceStyle
attribute has a default value of radio which causes radio buttons to be used. The
direction attribute has a default value of horizontal which causes radio buttons to
be laid out horizontally. You can change the layout direction by explicitly setting
the direction attribute.

 <hwParameter name="addressSize" dataType="integer" id="addrWidth"
 resolve="user" configGroups="requiredConfig"
 prompt="Address Width:" format="choice" direction="vertical"
 choiceRef="widthOptions">18</hwParameter>
Platform Express Component Integrator’s Guide, V1.1 2-11

The Default Configurator User-Input Parameters and Configurators
You can change the choice style to a drop-down combo box.

 <hwParameter name="addressSize" dataType="integer" id="addrWidth"
 resolve="user" configGroups="requiredConfig"
 prompt="Address Width:" format="choice" choiceStyle="combo"
 choiceRef="widthOptions">18</hwParameter>
Platform Express Component Integrator’s Guide, V1.12-12

User-Input Parameters and Configurators The Default Configurator
You can provide display text for radio or combo entries that differ from the
corresponding element values. This is done by placing a text attribute in the
uiChoiceElement elements. For example, instead of showing relatively
meaningless bit counts in the combo box, you can display the memory size they
translate to.

 <uiChoice id="widthOptions">
 <uiChoiceElement text="64K">14</uiChoiceElement>
 <uiChoiceElement text="128K">15</uiChoiceElement>
 <uiChoiceElement text="256K">16</uiChoiceElement>
 <uiChoiceElement text="512K">17</uiChoiceElement>
 <uiChoiceElement text="1M">18</uiChoiceElement>
 <uiChoiceElement text="2M">19</uiChoiceElement>
 <uiChoiceElement text="4M">20</uiChoiceElement>
 </uiChoice>

Since the meaning of the displayed values has changed, it is a good idea to change
the label too.

 <hwParameter name="addressSize" dataType="integer" id="addrWidth"
 resolve="user" configGroups="requiredConfig"

prompt="Memory Size:" format="choice" choiceStyle="combo"
 choiceRef="widthOptions">18</hwParameter>
Platform Express Component Integrator’s Guide, V1.1 2-13

The Default Configurator User-Input Parameters and Configurators
Note that since 18 is the default value, the corresponding text of 1M is initially
selected.

You can add a decorative image or company logo to the form by placing a uiIcon
element inside the ui element. The uiIcon element contains the pathname relative
to the component directory, the component library or PXHOME of a gif or jpeg
image file. In order to be picked up by the configurator, its configGroups attribute
must contain the configurator’s name parameter value.

 <ui>
<uiIcon configGroups=”requiredConfig>images/MGlogo_rg_sm.gif</uiIcon>

 <uiChoice id="widthOptions">
...
Platform Express Component Integrator’s Guide, V1.12-14

User-Input Parameters and Configurators The Default Configurator
By default Platform Express lays out all elements of a form in a single column.
You can control the layout with a uiForm element inside the ui element. The
uiForm element must contain a configGroup attribute which equals the
configurator’s name parameter value. Configurable elements referenced in a
uiForm do not require their own configGroups attribute. UiForm allows you to
create any number of nested rows, columns and grids to hold the input fields. It
also allows additional text and icons to be placed at any location within the form.

For example, you could lay out the above form into a row of two columns, the first
column containing the logo and the check box, and the second column containing
the other two fields. Use the uiRow element to define a row. This can contain
nested uiColumn elements. The input fields are selected with the uiProp elements.
These have propId attributes which refer to the user resolved properties.
Platform Express Component Integrator’s Guide, V1.1 2-15

The Default Configurator User-Input Parameters and Configurators
 <ui>
 <uiForm configGroup="requiredConfig">
 <uiRow>
 <uiColumn>
 <uiIcon>images/MGlogo_rg_sm.gif</uiIcon>
 <uiProp propId="diagsEnabled"/>
 </uiColumn>
 <uiColumn>
 <uiProp propId="baseAddress"/>
 <uiProp propId="addrWidth"/>
 </uiColumn>
 </uiRow>
 </uiForm>
 <uiChoice id="widthOptions">
...

Explicitly laid out forms usually require some tweaking to improve their
appearance.

The first improvement would be better alignment of the base address and memory
size. This can be accomplished using a grid. A grid contains either rows or
columns of objects which are aligned with objects in the same position in adjacent
rows or columns. Platform Express provides a shortcut such that a uiProp directly
under a grid is considered to be a row consisting of one label on the left and one
entry field on the right. We can try this by replacing the uiColumn element that
contains the two uiProp entries with a uiGrid.
Platform Express Component Integrator’s Guide, V1.12-16

User-Input Parameters and Configurators The Default Configurator
<uiGrid>
 <uiProp propId="baseAddress"/>
 <uiProp propId="addrWidth"/>

</uiGrid>

This is a slight improvement, but the entry field of the base address appears to be
too narrow to accommodate a 32 bit address expressed in hexadecimal. This
wasn’t a problem when there was a single column because the minimum form
width was wide enough for the entry to expand to a usable width.

Platform Express forms use the GridBag layout from the AWT package of the
Java Runtime Environment. Most of the GridBag constraints can be used as
attributes of the ui elements in a form. See
http://java.sun.com/docs/books/tutorial/uiswing/layout/gridbagConstraints.html.

The ipadx constraint is used to increase the minimum width of an element. If we
were to place this constraint on the affected uiProp, the whole row widens
including the space used by the label. We instead place it on its container uiGrid.
The contained uiProps expand as they are designed to, with only the entry field
filling out the remainder.

 <uiGrid ipadx="20">
 <uiProp propId="baseAddress"/>
 <uiProp propId="addrWidth"/>
 </uiGrid>
Platform Express Component Integrator’s Guide, V1.1 2-17

http://java.sun.com/docs/books/tutorial/uiswing/layout/gridbagConstraints.html

The Default Configurator User-Input Parameters and Configurators
Some additional GridBag constraints can be placed on uiGrid to improve its
placement in the form. In the above display the two entries are uncomfortably
close to the logo. This can be remedied using an inset on the left side of the grid to
move it away from the logo. They also look somewhat unsettled being vertically
centered in their column. This can be improved by anchoring the grid to the
bottom of the column so that it rests on the same level as “Enable Diagnostics”.

 <uiGrid ipadx="20" insetLeft="8" anchor="south">
 <uiProp propId="baseAddress"/>
 <uiProp propId="addrWidth"/>
 </uiGrid>

Now notice that “Enable diagnostics” appears much different than it did in the
default layout. Platform Express uses components from the Swing package of the
Platform Express Component Integrator’s Guide, V1.12-18

User-Input Parameters and Configurators The Default Configurator
Java Foundation Classes. Swing’s check box component has its own text field.
When a uiProp is used by itself to reference boolean user input, the default
configurator puts the prompting text in the text field of the check box component.
However when the configurator generates its own layout, the prompt is displayed
in a label which is placed to the left of a text-less check box.

The uiPropText and uiPropEntry elements allow separate reference to a user
defined property’s prompt label and its prompt-less entry field. Both require a
propId attribute to reference the user resolvable property. The following
replacement for the “diagsEnabled” uiProp, lays out the entry as it appeared in the
default form layout. Note that it includes a right inset on the label to separate it
from the check box. It also includes an anchor on the row to left-align the entry.

 <uiColumn>
 <uiIcon>images/MGlogo_rg_sm.gif</uiIcon>

<uiRow anchor="west">
 <uiPropText insetRight="5" propId="diagsEnabled"/>
 <uiPropEntry propId="diagsEnabled"/>
 </uiRow>
 </uiColumn>

Since in this case we built the “Enable Diagnostics” entry to look like the default
layout preferred by Platform Express, you can achieve the same result by placing
the uiProp entry inside a uiGrid as we did with the base address and memory size.
Platform Express Component Integrator’s Guide, V1.1 2-19

The Default Configurator User-Input Parameters and Configurators
 <uiColumn>
 <uiIcon>images/MGlogo_rg_sm.gif</uiIcon>

<uiGrid anchor="west">
 <uiProp propId="diagsEnabled"/>
 </uiGrid>
 </uiColumn>

This has been a simple example with only three user inputs. More complex
components may require more elaborate form layouts. You may want to group
information into enclosing boxes and you may need to add explanatory text. You
may also want to exploit the grid feature for more than just aligning labels and
entries. The following form illustrates these features by adding unnecessary icons
and text to the same three-input example.

The first element inside this uiForm contributes the bottom most visible feature.
The black line just above the “OK” “Cancel” buttons is actually the visible part of
a border that surrounds the body of the form. The uiBorder element supports most
of the features of the Swing package’s Border Factory. See
http://java.sun.com/docs/books/tutorial/uiswing/misc/border.html. The resulting
border encloses every component represented by uiBorder’s child elements. By
making uiBorder the parent of the entire uiForm content, the border encloses
everything in the form except “OK” and “Cancel”.
Platform Express Component Integrator’s Guide, V1.12-20

http://java.sun.com/docs/books/tutorial/uiswing/misc/border.html

User-Input Parameters and Configurators The Default Configurator
 <uiForm configGroup="requiredConfig">
<uiBorder type="line" bottom="1">

 <uiColumn>
...
 </uiColumn>
 </uiBorder>
 </uiForm>

The type attribute indicates that a line border is to be used. Line borders consist of
a solid line of a specified width. The width of each side of the border is specified
separately. The default width is zero, so the border is invisible by default. By
setting the bottom attribute to “1”, we draw a one-pixel high line across the bottom
of the form content.

To illustrate some of the additional capabilities of the uiGrid, a checkerboard of
icons has been drawn. The icon is the same one used for the Platform Express file
browser. Its image file is installed in the images subdirectory of PXHOME.

The grid contains rows which each contain alternating icons and empty cells. The
empty cells are designated by uiEmpty elements.

 <uiForm configGroup="requiredConfig">
 <uiBorder type="line" bottom="1">
 <uiColumn>
 <uiGrid>
 <uiRow insetBottom="2">
 <uiIcon>images/pxicon.gif</uiIcon>
 <uiEmpty/>
 <uiIcon>images/pxicon.gif</uiIcon>
 <uiEmpty/>
 <uiIcon>images/pxicon.gif</uiIcon>
 <uiEmpty/>
 <uiIcon>images/pxicon.gif</uiIcon>
 <uiEmpty/>
 <uiIcon>images/pxicon.gif</uiIcon>
 <uiEmpty/>
 <uiIcon>images/pxicon.gif</uiIcon>
 </uiRow>
Platform Express Component Integrator’s Guide, V1.1 2-21

The Default Configurator User-Input Parameters and Configurators
 <uiRow insetBottom="2">
 <uiText gridwidth="9"
 gridheight="2"

anchor="west"><![CDATA[<html><font size=+1
color="black"><I>Extremely Busy</I> Form
Layout]]></uiText>
 <uiIcon>images/pxicon.gif</uiIcon>
 <uiEmpty/>
 </uiRow>
 <uiRow insetBottom="2">
 <uiEmpty/>
 <uiIcon>images/pxicon.gif</uiIcon>
 </uiRow>
 <uiRow insetBottom="24">
 <uiEmpty/>
 <uiIcon>images/pxicon.gif</uiIcon>
 <uiEmpty/>
 <uiIcon>images/pxicon.gif</uiIcon>
 <uiEmpty/>
 <uiIcon>images/pxicon.gif</uiIcon>
 <uiEmpty/>
 <uiIcon>images/pxicon.gif</uiIcon>
 <uiEmpty/>
 <uiIcon>images/pxicon.gif</uiIcon>
 <uiEmpty/>
 </uiRow>
 </uiGrid>

The checkerboard pattern is broken up with text which spans multiple rows and
columns. The uiText element inserts the text label. Its GridBag constraints of
gridwidth and gridheight allow it to span multiple grid cells.

The text element is created from a Swing label. Swing labels accept simple text
strings, but they can also accept HTML. HTML text is designated by a leading
<html> tag in the text string. In this example, an XML CDATA section is used so
that the XML parser will not try to interpret HTML markup as XML markup.
Instead, everything between <![CDATA[and]]> is passed to the Swing label
which then interprets the HTML tags.

Below the checkerboard are the base address and memory size entries, grouped
into a box labeled “Memory Position”. The box is created by two nested borders.
The outer border is the one you see. It is an etched border with the “Memory
Position” title. The inner border is an empty border used to insert space around its
contents. Like the line border, the thickness of the empty border is individually
specified for each side.
Platform Express Component Integrator’s Guide, V1.12-22

User-Input Parameters and Configurators Writing a Configurator Java Class
 <uiBorder type="etched" title="Memory Position"
 titleColor="black">
 <uiBorder type="empty"
 left="16" right="16" bottom="10">
 <uiGrid fill="horizontal">
 <uiProp propId="baseAddress"/>
 <uiProp propId="addrWidth"/>
 </uiGrid>
 </uiBorder>
 </uiBorder>

Note that the uiGrid that contains the two uiProps has a GridBag fill constraint set
to horizontal. This allows the width of the two entries to expand to fill the space
below the checkerboard.

The final part of the layout places the “Enable Diagnostics” check box.

<uiProp anchor="west" propId="diagsEnabled"/>
 </uiColumn>
 </uiBorder>
 </uiForm>

It intentionally displays the prompt as the check box text rather than as an adjacent
label. However, the trailing colon was removed. This required a change in the
prompt attribute of the enable element.

 <enabled id="diagsEnabled" resolve="user" configGroups="requiredConfig"
prompt="Enable Diagnostics">true</enabled>

Writing a Configurator Java Class
As we have seen previously, many configuration tasks can be performed without
writing a single line of code. However, there are times when the need for a more
customized configurator arises, such as when the configuration task is too
complex for the default configurator to handle. The configurator might contain
multiple panels (as, for example, in a required driver configurator for the buses),
or the configurator may be a legacy Java class, or even an external program.

All configurators must have a Java class that implements the PxConfigurator
interface, or extend a class that does. Platform Express searches the following
paths in sequence to locate the configurator class: The class directory under the
Platform Express Component Integrator’s Guide, V1.1 2-23

Writing a Configurator Java Class User-Input Parameters and Configurators
component location, the class directory under the component library, and finally
the paths used by the Platform Express application.

The PxConfigurator interface is initialized passing in a Configurator object. This
object allows access to some of the following data.

1. Owner.
The Owner has the following characteristics:

• It is the configurable object that has properties that need user
configuration.

• It has a Document Object Model (DOM) XML structure wrapped in a
PxProperty tree.

• It provides getter methods to retreive important information for the
configurator, such as the root of the PxProperty tree.

2. Validators.
A validator validates the result of a configuration. (See “Validators,” later
in this chapter.) It is ancillary to any validation performed implicitly by the
configurator, and it is not essential that the configurator run the validation.
If it never accesses the validators, the Configurator object will perform the
validation after the configuration is complete. However, if the configurator
chooses to execute the validators, it can assist the user in correcting
configuration errors detected by the validators while it is still active.

3. Configuration Activity.
Configuration Activity is an action that needs to run after the the initial
configuration (such as connecting a new component to the design). This is
passed in by the Platform Express application. The activity runs before any
validation so that the result of the activity can be validated. It is not
essential that the configurator perform this activity. If it never accesses the
activity, the Configurator object will perform it after the configuration is
complete. However, if the configurator performs the activity followed by
the validation, it can assist the user in correcting configuration errors
detected by the validators while it is still active.
Platform Express Component Integrator’s Guide, V1.12-24

User-Input Parameters and Configurators Single Panel Configurators
Platform Express provides convenience classes to support three different ways of
implementing the PxConfigurator interface and addressing the three needs
mentioned at the begining of this section:

1. Single Panel Configurators.

2. Legacy Configurators.

3. MultiPanel Configurators.

Single Panel Configurators
Single Panel Configurators are the most common configurators. They provide an
easy minimum-coding-required way to perform both simple and complex
configuration tasks that require only one GUI panel.

Minimum Implementation for Single Panel
Configurators

The minimum implementation of the PxSingleConfigurator is as follow:

 import com.mentor.px.api.*;

 public class MinimumImplementationConfigurator extends PxSingleConfigurator
 {

 /** Creates new MinimumImplementationConfigurator */
 public MinimumImplementationConfigurator() {
 }

 /**
 * Creates the content of the panel. This method gets called when
 * the panel is first created, so any initialization code should
 * go here.
 *
 * @throws PxConfiguratorException if any initialization errors
 * occurr.
 */
 protected void initializeComponents() throws PxConfiguratorException {
 }

 /**
 * Saves the values entered in this panel by the user to
Platform Express Component Integrator’s Guide, V1.1 2-25

Single Panel Configurators User-Input Parameters and Configurators
 * the owner’s properties.
 */
 public void savePanel() {
 }

 /**
 * Fills the value fields of the panel from the owner properties.
 */
 public void fillPanel() {
 }
 }

The constructor is an empty one and shouldn’t contain any code. (It can contain
some initialization code, but the initialization code should go in
initializeComponents() along with the GUI creation code.) This method is called
only once, when the configurator is first created.

The fillPanel() method is called whenever the the configurator is invoked; it
should contain the code to fill the GUI elements from the owner’s DOM.

The savePanel() method is called whenever the user presses Ok in the
configuration dialog, and before any action or validator is invoked. It should
contain the code to update the owner’s DOM with the values entered by the user
in the configuration dialog.

The following example demonstrates how to display a configurator dialog using
PxSingleConfigurator. The example shows how to display a value from the
owner’s DOM in a text field:

 /* Import needed classes */
 import com.mentor.px.api.*;
 import com.mentor.px.design.PxProperty;
 import javax.swing.*;

 /* extends PxSingleConfigurator */
 public class MyMinimumImplementationConfigurator extends PxSingleConfigurator
 {
 /* Declare Variables */
 JTextField text;
 .
 .
 .

 /** Creates new MyMinimumImplementationConfigurator */
 public MyMinimumImplementationConfigurator() {
 }
Platform Express Component Integrator’s Guide, V1.12-26

User-Input Parameters and Configurators Single Panel Configurators
 /**
 * Creates the content of the panel. This method gets called when
 * the panel is first created, so any initialization code should
 * go here.
 *
 * @throws PxConfiguratorException if any initialization errors
 * occurr.
 */
 protected void initializeComponents() throws PxConfiguratorException {
 /* Set the dialog label */
 this.setPanelLabel(“ My Minimum Implementation “);

 /* Initialize variables */
 this.text = new JTextField();
 .
 .
 .

 /* Add GUI elements to the configurator
 * Note: PxSingleConfigurator extends JPanel so we use all the
 * Swing code to add GUI components to the configurator.
 */
 this.add(text);
 .
 .
 .

 }

 /**
 * Saves the values entered in this panel by the user to
 * the owner’s properties.
 */
 public void savePanel() {
 PxProperty root = this.getOwner().getConfigurableRoot();

 /* Saves the user entered values in the owner’s DOM */
 String value = this.text.getText();
 root.getChildProperty("myProp").setValue(value);
 .
 .
 .

 }

 /**
 * Fills the value fields of the panel from the owner properties.
 */
 public void fillPanel() {
 PxProperty root = this.getOwner().getConfigurableRoot();
Platform Express Component Integrator’s Guide, V1.1 2-27

Legacy Configurators User-Input Parameters and Configurators
 /* Fill the GUI components with values from the owner’s DOM */
 String value = root.getChildValue("myProp");
 this.text.setText(value);
 .
 .
 .

 }
 }

Optional Methods for Single Panel Configurators

Other methods can be implemented to further control the behavior of the
configurator, such as:

• public boolean isConfigurable()

Determines whether the configurator has any data to configure. It is used to
gray out the unconfigurable configurators. The default implementation to
this method returns true.

• public boolean requiresConfig()

Determines whether this configurator is required for proper building of the
design (or the proper operation of any generator in general). This method
must return true if the configurator misses some data important for the
build, or requires user confirmation during building. The default
implementation ensures that the configurator is shown to the user at build
time for the first design build, or when the configurator has missing data.
(Note: Optional configurators must override this method to return false.)

Legacy Configurators
Legacy configurators, which do not follow the PxConfigurator GUI scheme, can
be easily incorporated using PxAbstractConfigurator. This class provides a
wrapper around the legacy configurator.

PxAbstractConfigurator provides default implementations for all the methods of
the PxConfigurator interface except configure(). It also provides utility methods
the derived configurator may call.
Platform Express Component Integrator’s Guide, V1.12-28

User-Input Parameters and Configurators Legacy Configurators
To implement a class that extends PxAbstractConfigurator, only one method,
configure(), needs to be implemented, although other methods such as
initialize(Configurator), and requiresConfig() will be overriden in most typical
implementations.

Here is a sample implementation of a legacy configurator that extends
PxAbstractConfigurator:

 import com.mentor.px.api.*;

 public class MyLegacyConfigurator extends PxAbstractConfigurator {

 /** Creates new MyLegacyConfigurator */
 public MyLegacyConfigurator() {
 }

 /**
 * Initializes the configurator.
 *
 * @param config The <code>Configurator</code> reference to
 * this configurator.
 *
 * @throws PxConfiguratorException if errors are encountered in
 * any of the configurator’s initial data.
 */
 public void initialize(com.mentor.px.configurator.Configurator config) {
 /* Must call super for proper initialization */
 super.initialize(config);

 /* Put Legacy Initialization Code here */
 .
 .
 .

 }

 /**
 * This method configures the <code>Configurable</code>. It
 * should perform any necessary user interaction, set the
 * configurable properties as directed by the user, and return
 * <code>true</code>. If the user cancels the configuration it
 * should return <code>false</code>.
 * <p>
 * In the event of a cancellation or exception, Px will
 * automatically restore any properties set by the confiugrator to
 * their value before this method was called. The only exception
 * is if the configurator sets properties between calls to
 * <code>DesignModel.editor.startConfigure()</code> and
Platform Express Component Integrator’s Guide, V1.1 2-29

MultiPanel Configurators User-Input Parameters and Configurators
 * <code>DesignModel.editor.endConfigure()</code>.
 *
 * @return <code>true</code> if the configuration was completed,
 * <code>false</code> if it was cancelled.
 *
 * @throws PxConfiguratorException if any error was encountered
 * during the configuration.
 *
 * @see com.mentor.px.gmodel.ModelEditor#startConfigure
 * @see com.mentor.px.gmodel.ModelEditor#endConfigure
 * @see com.mentor.px.gmodel.DesignModel#editor
 */
 public boolean configure() throws PxConfiguratorException {
 /* Put Legacy Configuration code here */
 .
 .
 .
 }

 /**
 * Indicates whether or not elements managed by this
 * configurator require configuration. This method may be called
 * by generators to determine if they need to run a configurator
 * before they can proceed.
 * <p>
 * The default implementation always returns <code>false</code>.
 *
 * @return <code>false</code> if all elements have been
 * configured and validated to the satisfaction of this
 * configurator or if the default values are known to be
 * sufficient. <code>true</code> if user interaction is
 * required.
 */
 public boolean requiresConfig() {
 /* Note : The default implementation of this method in
 * PxAbstractConfigurator returns false, so If this configurator is
 * required for proper execution of generators, this method should
 * be overriden to implement its required function.
 */
 }
}

MultiPanel Configurators
A MultiPanel Configurator is a general scheme for writing configurators in Px.
You could perform the configuration tasks described in the preceding sections
with the MultiPanelConfigurator API, but that requires nearly double the effort.
Platform Express Component Integrator’s Guide, V1.12-30

User-Input Parameters and Configurators MultiPanel Configurators
Obviously, the MultiPanel API is suited to creating configurators that require
multiple panels. Consider, for example, the task of configuring special pins in a
component for which the user is allowed to specify special code to be used with
those pins (such as HDL code), where each pin needs a separate panel. If you are
sure that all components to which the configurator applies contain only one
special pin, then the PxSingleConfigurator API is more appropriate. However, if
some components might contain multiple pins, then a MultiPanel configurator is
needed.

The task of writing a MultiPanel configurator involves three classes:

1. The Configurator (PxMultiConfigurator).

2. The Panel (PxConfigurationPanel).

3. The Validator (PxConfigurationValidator)

The Configurator

The Configurator class is responsible for:

• Calculating and setting the number of panels required.

• Collecting the properties for configuration from the owner’s DOM.

• Creating the panels and validators required.

Accordingly, the PxMultiConfigurator has four methods that all the derived
classes must implement; this will be illustrated in the following example:

 import com.mentor.px.api.*;

 public class MyMultiPanelConfigurator extends PxMultiConfigurator {

Note

The validator class is not required, as the panel implements the
validator interface, but it is used to share a single validator
implementation among multiple panels. This validator class
which applys only to multi-panel configurators is not to be
confused with the general PxValidator interface described later in
this chapter, in “Validators.”
Platform Express Component Integrator’s Guide, V1.1 2-31

MultiPanel Configurators User-Input Parameters and Configurators
 /** Creates new MyMultiPanelConfigurator */
 public MyMultiPanelConfigurator() {
 }

 /**
 * Returns the number of panels that this configurator uses.

* For most cases this will return 1, as most configurators will not use
 * more than one panel.
 *
 * @return
 * an integer representing the number of panels that this
 * configurator uses. This number Can’t be 0.
 */
 protected int getNumberOfPanels() {
 /* Return a fixed number, or calculate the required number according
 * to the owner’s status.
 */
 .
 .
 .
 return number;
 }

 /**
 * Returns the configurable properties specific to the passed panel
 * index.
 * <P>

* A possible implementation for this method, is a switch-case statement
 * that switches on the panelIndex to select elements specific for each
 * panel from the owner’s DOM Tree.
 *
 * @param panelIndex
 * The panel index that we want to get properties for.
 * This must be >= 0 and < number of panels of this configurator.
 *
 * @return
 * The properties specific to the passed panel index.
 *
 * @throws PxConfiguratorException
 * If any error occurs while getting the data from the owner.
 */
 protected PxProperty[] getConfigurableProperties(int panelIndex) throws
 PxConfiguratorException {
 /* collect/return the properties required for each panel.
 * Properties might be collected and stored internally in the
 * getNumberOfPanels() method, and all is needed here is to return
 * the properties specific for each panel.
 */
 .
Platform Express Component Integrator’s Guide, V1.12-32

User-Input Parameters and Configurators MultiPanel Configurators
 .
 .
 }

 /**
 * Returns the configuration panel object specific to the passed panel
 * index.
 * <P>

* A possible implementation for this method, is a switch-case statement
 * that switches on the panelIndex to create the specific panel of that
 * index.
 *
 * @param panelIndex
 * The panel index that we want to create a panel for.
 * This must be >= 0 and < number of panels of this configurator.
 *
 * @return
 * The PxConfigurationPanel specific for the passed panel index
 *
 * @throws ClassNotFoundException
 * If the panel class was not found at runtime.
 * The configurator author shouldn’t worry himself with handling
 * the exception unless he wants to override the default handling
 * mechanism, or he wants to specify a special message.
 */
 protected PxConfigurationPanel getConfigurationPanel(int panelIndex)
 throws ClassNotFoundException {
 /* creates classes for configuration panels, the below implementation
 * is for the case when all the panels have the same class, if this is
 * not the case then this method can be implemented as a switch-case
 * statement as stated in the method description.
 */
 return new MyMultiPanel();

 }

 /**
 * Returns the configuration validator specific to the passed panel
 * index.
 * <P>

* A possible implementation for this method, is a switch-case statement
 * that
 * switches on the panelIndex to create the validator specific for each
 * panel.
 *
 * @param panelIndex
 * The panel index that we want to create a validator for.
 * This must be >= 0 and < number of panels of this configurator.
 *
 * @return
 * The PxConfigurationValidator specific for the passed panel index
 *
Platform Express Component Integrator’s Guide, V1.1 2-33

MultiPanel Configurators User-Input Parameters and Configurators
 * @throws ClassNotFoundException
 * If the validator class was not found at runtime.
 * The configurator author shouldn’t worry himself with handling
 * the exception unless he wants to override the default handling
 * mechanism, or he wants to specify a special message.
 */
 protected PxConfigurationValidator getValidator(int panelIndex) throws
 ClassNotFoundException {
 /* creates classes for configuration validators, the below
 * implementation
 * is for the case when all the validators have the same class, if
 * this is
 * not the case then this method can be implemented as a switch-case
 * statement as stated in the method description.
 */
 return new MyMultiPanelValidator();

 }
 }

The Panel

The Panel is responsible for:

• Displaying the configurable properties to the user.

• Saving the user configured values in the owner’s DOM.

• Validating the user configuration. *

* The validation method in the panel can suffice for the need of a validator, or the
opposite may occur, as Px calls the two, so any of them can do the job, or both can
be used for separate checks.

The Panel methods were introduced before in the PxSingleConfigurator.
(Remember that PxSingleConfigurator extends PxConfigurationPanel—see
“Single Panel Configurators.”) The following example shows how the panel code
will look:

 import com.mentor.px.api.*;

 public class MyMultiPanel extends PxConfigurationPanel {

 /** Creates new MyMultiPanel */
Platform Express Component Integrator’s Guide, V1.12-34

User-Input Parameters and Configurators MultiPanel Configurators
 public MyMultiPanel() {
 }

 /**
 * Creates the content of the panel. This method gets called when
 * the panel is first created, so any initialization code should
 * go here.
 *
 * @throws PxConfiguratorException if any initialization errors
 * occur.
 */
 protected void initializeComponents() throws PxConfiguratorException {
 /* Insert GUI creation code here */
 .
 .
 .
 }

 /**
 * Fills the value fields of the panel from the owner properties.
 */
 public void fillPanel() {
 }

 /**
 * Saves the values entered in this panel by the user to
 * the owner’s properties.
 */
 public void savePanel() {
 }
 }

The panel might include also a validateSettings() method, to check that the user
configuration is correct, as well as a highlightProperty(PxProperty) to highlight
the faulty property in case the error can be traced back to a single property:

 /**
 * Called while the panel is still visible but after the
 * properties have been set to validate this panel’s settings.
 * <p>
 * The default implementation performs no validation.
 *
 * @throws PxConfiguratorException if an invalid setting is
 * found.
 */
 public void validateSettings() throws PxConfiguratorException {
 }

 /**
Platform Express Component Integrator’s Guide, V1.1 2-35

MultiPanel Configurators User-Input Parameters and Configurators
 * Highlights a property in the dialog to indicate the source of
 * an error. Configurator panels may override this method, but in
 * general it is better to override
 * <code>getPropertyInputField</code>.
 * <p>
 * The default implementation calls
 * <code>getPropertyInputField</code> to obtain the input field to
 * be highlighted. It then directs focus to the field. If it is
 * a text input field, the text contents are selected so they will
 * be overwritten when the user types.
 *
 * @param property The property to highlight.
 *
 * @return <code>true</code> if something was highlighted.
 * <code>false</code> means the dialog box may be closed
 * because there’s no additional information to display.
 */
 public boolean highlightProperty(PxProperty property) {
 }

Tip:

The Default Configuration can be used as one of the panels in a
MultiPanelConfigurator by putting the following code in the
initializeComponents() method:

 /* defaultPanel is declared before as PxConfigurationPanel or DefaultPanel
 */
 defaultPanel = new DefaultPanel();
 defaultPanel.setConfigGroup(“myGroup”);
 defaultPanel.setConfigurableRoot(this.getOwner().getConfigurableRoot());
 try {
 defaultPanel.initialize(this.configuration);
 } catch (PxConfiguratorException pce) {
 /* Handle initialization errors */
 }

 this.add(defaultPanel, java.awt.BorderLayout.CENTER);

Add the following line to the fillPanel() method:

 defaultPanel.fillPanel();
Platform Express Component Integrator’s Guide, V1.12-36

User-Input Parameters and Configurators MultiPanel Configurators
The Validator:

The Validator is responsible for checking the correctness of the user configuration
and reporting back any errors. As seen in the Panel, the validation task can be
performed totally inside the Panel. However, in some cases the task needs to be
isolated (to share the validator for example).

The PxConfigurationValidator class contains only one method to override,
isValid(), which does the same thing as the Panel’s validateSettings() method. A
sample validator will look like the following:

 import com.mentor.px.api.*;

 public class MyConfigurationValidator extends PxConfigurationValidator {

 /** Creates new MyConfigurationValidator */
 public MyConfigurationValidator() {
 }

 /**
 * Checks that the properties of this ConfigurationValidator are valid.
 *
 * This method returns true if the properties are valid, If any property
 * is invalid this Method should throw an exception indicating which
 * property
 * has the error and describing the error for the caller.
 *
 * @return
 * <CODE>true</CODE> if the properties of this validator are valid.
 * This method shouldn’t return <CODE>false</CODE> if there is an
 * invalid property, instead it should throw an exception.
 *
 * @throws PxConfiguratorException
 * If any property holds an invalid information, The exception should
 * indicate which property was errored, and describe the error.
 *
 */
 public boolean isValid() throws PxConfiguratorException {
 /* Do some checking */
 .
 .
 .
Platform Express Component Integrator’s Guide, V1.1 2-37

MultiPanel Configurators User-Input Parameters and Configurators
 if (error) {
 throw new PxConfiguratorException("Error in ... due to ...",
 erroredProperty);
 }

 return true;
 }

 }

Summary: Selecting a Base Class

The following table describes how to select the base class from which to derive a
configurator:

Case Examples from Px

Default Configuration Most Common Simple
configuration tasks

Prompts the user to enter
values, select from
values, ...

Basic Configuration.

Project Settings.

PxSingleConfigurator A more complex
configuration task,
possibly requires
complex GUI or pre-
calculations.

Needs only one GUI
panel

Scatter Loader
Configurator.

PxAbstractConfigurator Legacy GUI; doesn’t
conform to Platform
Express APIs

None

PxMultiConfigurator Simple or complex
configuration tasks that
require more than one
panel.

Required Drivers
Configurator.
Platform Express Component Integrator’s Guide, V1.12-38

User-Input Parameters and Configurators Validators
Validators
Validators are designated with a validator element under the configurators
element of a component file, bus definition file, or in the default configurators file.
Validators are associated with specific configurators by matching the type name
of the validator to the type name of the configurator. They validate the result of
the configuration after the user has accepted the input.

If a validator detects an error, it should throw a PxConfiguratorException that
includes a descriptive message. If the user can remedy the error by reconfiguring
one of the properties, the Exception should be constructed with a reference to the
property. Depending on the capabilities of the configurator, this may cause focus
to be given to the erroneous user input on the configuration form.

The following validator example uses a hypothetical case of a memory with user
settable data and address widths. The component XML file can be used to place
many constraints on user input. However we want to place an additional constraint
of maximum memory capacity. This means that as the user-selected data width
doubles, the maximum allowable address width decreases by 1 bit. This cannot be
expressed in the component XML so we write a validator to programmatically
impose this constraint.

The following is a partial listing of the XML file showing the two width
parameters and their XML-imposed constraints. It also shows the validator
declaration.

 <component xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="schema/1.0/pxComponents.xsd">
 <name>ram</name>
 <version>1.0</version>
 <busInterfaces>
 <busInterface interfaceId="ambaAHBLite">
 <busType>ambaAHBLite</busType>
 <slave>
 <memoryMap>
Platform Express Component Integrator’s Guide, V1.1 2-39

Validators User-Input Parameters and Configurators
 <addressBlock>
 <baseAddress resolve="user"
 configGroups="requiredConfig"
 id="baseAddress" order="1"/>
 <bitOffset>0</bitOffset>
 <range resolve="dependent"
 dependency="pow(2,id(’addrWidth’))"
 id="addressRange"/>
 <width resolve="user" id="dataWidth"
 prompt="Data Width:"
 format="choice" choiceRef="dataWidthOptions"
 configGroups="requiredConfig"
 order="3">8</width>
...
 <hwModel>
...
 <hwParameters>

<hwParameter name="addressSize" dataType="integer" id="addrWidth"
 resolve="user" configGroups="requiredConfig"
 prompt="Address Width:" format="long" minimum="14"
 order="2">18</hwParameter>
 </hwParameters>
 </hwModel>
 <configurators owner="component">

<validator>
 <type>Basic</type>
 <javaClass>ExampleValidator</javaClass>
 </validator>
 </configurators>
 <ui>

<uiChoice id="dataWidthOptions">
 <uiChoiceElement>8</uiChoiceElement>
 <uiChoiceElement>16</uiChoiceElement>
 <uiChoiceElement>32</uiChoiceElement>
 <uiChoiceElement>64</uiChoiceElement>
 </uiChoice>
 </ui>
 ...

The validator defined by this component is of type Basic associated with object
type component. When the Basic configurator for components as defined in the
default configurators file is run on this component, the ExampleValidator class
will be loaded and its validateSettings method will be called.

The classes declared by a component are searched for in the following locations:

• Component directory
Platform Express Component Integrator’s Guide, V1.12-40

User-Input Parameters and Configurators Validators
• Class directory of the library the component belongs to

• Class directory under PXHOME.

Valdators derive from the abstract class com.mentor.api.PxAbstractValidator and
must implement the validateSettings method.

The full implementation for our hypothetical example is as follows.

 import com.mentor.px.api.*;
 import com.mentor.px.design.PxProperty;

 public class ExampleValidator extends PxAbstractValidator {

 public void validateSettings() throws PxConfiguratorException {
 PxProperty prop = getOwner().getConfigurableRoot();
 PxProperty addrWidthProp = prop.resolveId("addrWidth");
 long dataWidth = prop.resolveId("dataWidth").getLongValue();
 long byteWidth = dataWidth / 8;
 long maxAddrWidth = 27;

 // Decrement maximum allowable address width for every
 // doubling of the byte width
 while (byteWidth > 1) {
 maxAddrWidth--;
 byteWidth /= 2;
 }

 // Compare requested address width to maximum allowed.
 if (addrWidthProp.getLongValue() > maxAddrWidth) {
 throw new PxConfiguratorException(
 "Number must be less than or equal to " +
 maxAddrWidth + " for " +
 dataWidth + " bit wide memories",
 addrWidthProp);
 }
 }
 }

When the component is added and configured, the validator is executed. If too
large a number is entered for the address width, the error message from the
exception appears in a pop-up box, as shown in the following example.
Platform Express Component Integrator’s Guide, V1.1 2-41

Validators User-Input Parameters and Configurators
Since the exception was constructed with the address width property, when the
user clicks OK, the erroneous entry is selected and highlighted.
Platform Express Component Integrator’s Guide, V1.12-42

Chapter 3
Generators

Introduction
This chapter discusses topics related to creating generators. Generators are Java
classes that create HDL code, software, simulation environment scripts,
simulation stimulus or anything else that contributes to building and verifying a
design in Platform Express. When you integrate a component into a Platform
Express component library, you may have to supply generators to support that
component. You extend the PxGenerator class built into Platform Express to
create generators.

You specify all the generators for a component in the component’s
component.xml file. As shown in the following example, you use the generator
element to do this.

<generator>
<name>CodeAddressVldGenerator</name>
<generatorPhase>0</generatorPhase>

 </generator>

Design Database
Platform Express constructs a design database (see Figure 3-1) for each design.
This database includes detailed information on the properties of each component
in the design, as well as global project settings and compiled object code and
supporting files used for verification. Platform Express reads the component
properties to determine which generators it needs to run. Generators themselves
interact with the design database both to obtain component and project
information and to create supporting files for verification. Generators access the
Platform Express Component Integrator’s Guide, V1.1 3-1

The Platform Express API Generators
design database through the Platform Express API, which is discussed in the
following section.

Figure 3-1. Design Database

The Platform Express API
Creating a generator amounts to creating an extension to the Platform Express
application. You do this by means of the Platform Express API, which makes
available several Java classes for this purpose:

• PxGenerator class
is the abstract base class for Platform Express generators. To create a
generator, you extend this class by implementing the generate() method.
The PxGenerator class has access to the design database, allowing the
generator to retrieve any information necessary to perform its generation
function.
Platform Express Component Integrator’s Guide, V1.13-2

Generators The Platform Express API
You declare Platform Express generators in component definition files
(component.xml file). Platform Express loads the PxGenerator class at
runtime and executes the generate() method when a user generates a design.

• PlatformDesign class
represents the complete encapsulation of the user’s design. There is one
active instance at any given time. As the user builds up the design (from the
GUI or batch input), objects are added to or removed from the data
members contained in this class

• PxBus class
acts as a wrapper for the Platform Express bus information and object
methods.

• PxComponent class
is the base class for all components in a hierarchical design.

• PxConfigurationPanel class
is an extension of JPanel and is the base class for a single configuration
panel. It can be used inside a single configuration dialog box, or as part of a
multi-panel configurator.

• PxConfigurationValidator class
handles the validation task for the configurator panels. There should be a
validator for each configuration panel. The Configurator author should
extend this class and provide the implementation for the isValid() method
to check for thevalidity of the data.

• PxConfigurator class
is the base class for configurators, which enable component parameters to
be configured at instantiation in a design.

• PxDef class
provides static definitions for Platform Express.

• PxLog class
issues log messages to System.err and optionally to a file.
Platform Express Component Integrator’s Guide, V1.1 3-3

Creating a Generator Class Generators
• PxProperty class
A Px property is a hierarchical piece of information about a Px design
component. A property may have a string value, or it may contain
additional ordered child properties. All properties have a name. Some may
have attributes to indicate such things as how to obtain their value if it has
not been pre-assigned.

• PxGeneratorException class
provides exception handling.

• PxConfiguratorException class
provides exception handling.

Detailed Javadoc information for the Platform Express API classes, constructors,
and methods, can be found in the Platform Express installation directory, under
the api directory. You can read this documentation using any HTML browser.
Invoke the browser on index.html.

Creating a Generator Class
To create a generator you write a Java class that extends the PxGenerator class
and provide an implementation of the generate method. You can download java
development tools from http://java.sun.com/j2se/1.3. You should compile the
class into the component directory that references the generator. When you
compile, use a class path that includes the class directory under the Platform
Express installation. Here is a compilation example.

javac -classpath $PXHOME/class MyGenerator.java

In the XML file, the element

generators/componentGenerator/javaClass/className

should contain the name of the class you just created. When Platform Express
loads generator classes, it searches for them in the following locations, in the
specified order:

1. <component_directory>/class
Platform Express Component Integrator’s Guide, V1.13-4

http://java.sun.com/j2se/1.3

Generators Generator Chains
2. componentLibrary/class

3. $PXHOME/class

Generator Chains
Since some generators need to run before others, the component definition file
provides a generatorPhase element to control their sequence of operation. The
range of generator phases runs from 0 to 15. Multiple generators may run in the
same phase. Although the order in which generators run within a given phase
cannot be controlled, all generators assigned that phase run before generators in
the next phase.

Generators are scheduled and invoked through generator chain files. The Platform
Express generator chain that is activated by the Tools > Build menu selection runs
all component generators that have an element
generators/componentGenerator/group equal to value "build".

Component generators are compiled java classes. These classes are loaded at
runtime and are searched for, in the order given, at these locations:

1. <path_to_component_directory>/class

2. <path_to_component_library>/class

Soft Paths and Generators
Px often will need to generate text that refers to file pathnames. All file pathnames
should appear as either relative paths or as soft paths. No absolute paths should be
used. Px will generate a file that assigns absolute paths to the "soft path" variables.
This file will be executed before Px executes any local command. The filename
"pxenv" is reserved for this purpose.
Platform Express Component Integrator’s Guide, V1.1 3-5

Generator Author Responsibility Generators
Generator Author Responsibility
Generator authors are responsible for resolving variables, converting them to the
appropriate syntax, and generating soft paths for all file locations. The Px API
contains utilities to assist with this. Here is a sampling of generation utilities.
Refer to the Px API for details.

• com.mentor.px.api.PxDef
contains many static definitions that can be used by generator authors.
PxDef.PXVAR_COMPONENT_LIBRARY and
PxDef.PXVAR_COMPONENT_LOCATION are strings defining the
reserved variable names.

• com.mentor.px.design.PlatformDesign.getSoftPath()
gets the soft path data base for the design.

• String SoftPath.get(String directoryName, String prefix);
A generator can get a soft path name with this method.

• com.mentor.px.common.PlatformDependent
contains methods to handle platform dependencies.

Some methods are:

o writeShellScript(...) writes command text to a file.

o execShellScript(...) executes a shell script, first assigning the soft path
variables

o resolveVariables(...) filters text to resolve and format variables. This
will also handle the Px reserved variables by resolving the pathnames
and creating soft paths for them.

• com.mentor.px.design.PlatformDesign.getVenvLocation()
gets the top-level directory of the current verification environment. Most
generated files will be written to this directory or one of its subdirectories.
Platform Express Component Integrator’s Guide, V1.13-6

Chapter 4
Decoder Templates

Introduction
Platform Express connects components (core platforms, peripherals, memories
and bus bridges) that share the same bus interface. A designer should be able to
connect any peripheral that implements a certain bus interface to a core platform
that implements the same bus interface. In practice, however, some additional
logic usually has to be created to allow the peripheral to function properly on that
bus. For instance, many components have a select signal that has to be asserted
whenever the value of the address bus is within a certain range. This requires
some logic in the bus interface.

A bus decoder template file specifies all the logic and connections that will be
created for a particular bus within Platform Express. A Platform Express
generator uses the decoder template and the current design database to create an
HDL module/entity which connects and interfaces all of the components that
belong to that bus.

Pins: Logical and Physical, Master and
Slave

In Platform Express, bus descriptions in the busdef directories that reside in the
component libraries contain a list of logical signals for particular buses. These
signals, and their functions, are described in the specification for each bus. This
specification is usually available from the designer of the bus.

The component descriptions within Platform Express identify the physical pins on
each component. These are identified in the <signal> element of the component
description file. The physical names of the pins on the components do not always
Platform Express Component Integrator’s Guide, V1.1 4-1

Some Basic Concepts and Syntax Decoder Templates
match the logical name of the signal in the bus specification. The component
descriptions within Platform Express identify bus interfaces implemented on each
component, and they map the physical pins of the component onto the logical
signals of the bus specification. Most components will not implement all of the
logical signals specified in a bus definition.

In addition to the logical and physical pin mapping, each bus interface on a
component is identified as a master or a slave. A slave is a component that is
capable of responding to requests for bus transactions, but is not capable of
initiating them. A master is a component that is capable of initiating a bus
transaction. Typically, a memory or peripheral is a slave device, while a DMA
controller or core platform is often a bus master.

Within the bus decoder template files, all definitions are made in terms of the
logical signals, and master and slave connections. When the bus decoder
generator is run, it creates an HDL source file where the physical names of the
component signals are substituted in the text for the logical pin description. Bus
decoder template files are located in <library_name>/componentLibrary/decoder.

Some Basic Concepts and Syntax
Bus decoder template files are written in XML. The whole definition must be
contained within a <decoderTemplate> tag, which defines the name of the bus.

The decoder definition also contains HDL code, so the language being used must
be declared. Legal choices are "vhdl" and "verilog". The <language> tag is used
by Platform Express to select the correct way of compiling the generated decoder.

<!DOCTYPE decoderTemplate SYSTEM
"px:/dtd/decoderTemplate.dtd" >
 <decoderTemplate name="pVCI">
 <language name="vhdl"/>

 ... bus decoder definition
</decoderTemplate>
Platform Express Component Integrator’s Guide, V1.14-2

Decoder Templates Some Basic Concepts and Syntax
Code Sections

Within the decoder defintion, <code> tags can be included. The decoder generator
is responsible for creating the entity(architecture) and module skeleton. The text
within a <code> tag is a snippet of HDL code that will be included within the
generated decoder. A bus decoder template can have any number of code sections.

The following code would always be included in a generated decoder.

 <code>
 assert false
 report "Bus Decoder Active"
 severity note;
 </code>

It's also worthwhile noting that some symbols used in HDLs are reserved XML
characters. In the above example, the double quote character that delimits the
"Bus Decoder Active" string cannot be used directly. Instead, the character has to
be replaced with ". Other special characters are:

Creating connections within a decoder is quite straightforward. However, at the
time of creating a decoder template, the writer has no idea of how many master or
slave devices might be connected to the bus. So, we can create a <code> section,
setting the loop attribute to be “slave”. Instead of creating a single block of code
(like the first example), this next example will iterate for each slave device
connected to the bus, customising the generated code for each slave.

The decoder template uses the <lPin> tag (logical pin) to specify the signals used
in the bus decoder. By setting the 'master' parameter to be 'true' or 'false', the

HDL Text XML required

< <

> >

& &

' &pos;

" "
Platform Express Component Integrator’s Guide, V1.1 4-3

Some Basic Concepts and Syntax Decoder Templates
decoder generator will insert the physical signal name of the version of the bus
signal attached to the bus master or current bus slave.

The 'nopin' parameter is a method of controlling how the decoder generator works
when a component does not have a physical pin mapped to the logical pin
specified in the <lpin> element. If an <lPin> is marked as "required", then the
decoder writer has decided that a correct design cannot created without the
presence of that pin.

In this example, if the bus master did not implement the "WRITE_EN" logical
pin, then the decoder generator (and the whole design build) would be aborted.
However, if the slave did not implement the "WRITE_EN" pin, only that iteration
of the code would not be created. So this <code> section would still connect up
the master "WRITE_EN" pin to all of the "WRITE_EN" pins on the slave devices
that supported that pin.

 <code loop="slave">
 <lPin name="WRITE_EN" master="false"
nopin="continue"/> <= <lPin name="WRITE_EN" master="true"
nopin="required"/>;
 </code>

 WRITE_EN_Slave_1 <= WRITE_EN;
 WRITE_EN_Slave_2 <= WRITE_EN;

Sometimes, these control signals need to be qualified by other signals such as
clocks (perhaps this bus is synchronous) and addresses. It is possible to add other
signals to create more complex code structures. Usefully, the
<addressDecodeExpression/> tag will return a complex expression checking that
the value on the address bus is within the range of addresses supported by each
slave device. The bus decoder knows which logical signal is the address bus
because this signal is tagged with the <address/> attribute in the bus definition
file.

 <code loop="slave">
 process (<lPin name="CLOCK" master="true"
nopin="required"/>)
 begin
Platform Express Component Integrator’s Guide, V1.14-4

Decoder Templates Some Basic Concepts and Syntax
 if (<lPin name="RESET" master="true"
nopin="required"/> = '0' then
 <lPin name="WRITE_EN" master="false"
nopin="continue"/> <= '0'
 else
 if (<lPin name="CLOCK" master="true"
nopin="required"/> <= '1' and
 <addressDecodeExpression/>) THEN

<lPin name="WRITE_EN" master="false"
nopin="continue"/> <= '1' else

<lPin name="WRITE_EN" master="false"
nopin="continue"/> <= '0';
 end if;
 end if;
 end process;
 </code>

 process (CLOCK_master_1)
 begin
 if (RESET_master_1 ='0') then
 WRITE_EN_slave_1 <= '0'
 else
 if (CLOCK_master_1 ='1' AND
 ADDRESS_master_1 >= 16#fff00000# AND
ADDRESS_master_1 < 16#fff00010#) then
 WRITE_EN_slave_1 <= '1';
 else
 WRITE_EN_slave_1 <= '0';
 end if;
 end if;
 end process;

 process (CLOCK_master_1)
 begin
 if (RESET_master_1 ='0') then
 WRITE_EN_slave_2 <= '0'
 else
 if (CLOCK_master_1 ='1' AND
 ADDRESS_master_2 >= 16#fff00100# AND
ADDRESS_master_1 < 16#fff001ff#) then
 WRITE_EN_slave_2 <= '1';
 else
 WRITE_EN_slave_2 <= '0';
Platform Express Component Integrator’s Guide, V1.1 4-5

Some Basic Concepts and Syntax Decoder Templates
 end if;
 end if;
 end process;

One common requirement is to merge together signals from different slaves into
one signal that is connected to the master (perhaps using a multiplexer to channel
the correct signal back). One way of doing this is to create an intermediate signal
(this has to be declared before it can be used, so the declaration is put in a <code
decl="true"> section. If the signal requires any libraries or packages to be made
visible, these declarations can be put in a <header> section. As the decoder is
generated, the generator will work out the appropriate places for these code
segments to be inserted.

<header>
library ieee;
use ieee.std_logic_1164.all;
</header>

<code decl="true">
 signal select : std_logic_vector (<noSlaves/>-1
downto 0);
</code>

<code>
 <code loop="slave">

select(<currentSlaveIndex>-1) <= '1&apos when
<addressDecodeExpression/>

else
'0'

 <lPin name="RDATA" master="true" nopin="required"/>
<=
 <code loop="slave" separator=" else ">
 <lPin name="RDATA" master="false"
nopin="continue"/> when select

(<currentSlaveIndex/>-1)='1'
 </code> else (others =;> '0&apos);
 </code>
</code>
Platform Express Component Integrator’s Guide, V1.14-6

Decoder Templates Some Basic Concepts and Syntax
 architecture PlatformExpress of design is
 signal select : std_logic_vector (3-1 downto 0);
 begin

 select(1-1) <= '1' when ADDRESS_master_1 >=
16#fff00000# AND ADDRESS_master_1 < 16#fff00010#;
 select(2-1) <= '1' when ADDRESS_master_1 >=
16#fff00000# AND ADDRESS_master_1 < 16#fff00010#;
 select(3-1) <= '1' when ADDRESS_master_1 >=
16#ffe00000# AND ADDRESS_master_1 < 16#ffe00010#;

 RDATA_master_1 <= RDATA_slave_1 when select(1-1) =
'1' else
 RDATA_slave_2 when
select(2-1) = '1' else
 (others => '0');
 end PlatformExpress;

This style is very useful because some slaves (like slave 3 in the above example)
may not implement an RDATA bus (perhaps a slave with write-only registers), so
the "RDATA_slave_2 when select(x-1) = '1' " will be omitted for those slaves.
However, the default "others" clause will ensure that a well-controlled value is
placed on the RDATA_master_1 bus signal when that slave is being accessed.

There are alternative ways to achieve a similar result. One is to specify a default
value for a signal if it does not exist.

 <lPin name="RDATA" master="false" nopin="continue"/>
when select (<currentSlaveIndex/>-1)='1'

could be rewritten as :

 <lPin name="RDATA" master="false" nopin="default"
default="01010101" /> when select (<currentSlaveIndex/>-
1)='1'

generating
 RDATA_master_1 <=
RDATA_slave_1 when select(1-1) = '1' else
Platform Express Component Integrator’s Guide, V1.1 4-7

Some Basic Concepts and Syntax Decoder Templates
RDATA_slave_2 when select(2-1) = '1' else

"01010101" when select(3-1) = '1' else

(others => '0');

Another is to specify an <alternativeCode> section which would substitute
alternative code if the signal did not exist for that slave.

 <code decl="true">
constant RDATA_DEFAULT : std_logic_vector (7

downto 0) := "11110000";
 </code>

 <code>
 <lPin name="RDATA" master="false"
nopin="alternative" /> when select (<currentSlaveIndex/>-
1)='1'
 <alternativeCode>
 <code>
 RDATA_DEFAULT when select
(<currentSlaveIndex/>-1)='1'
 </code>
 </alternativeCode>
 <code>

generating

RDATA_master_1 <= RDATA_slave_1 when select(1-1) = '1' else

RDATA_slave_2 when select(2-1) = '1' else

RDATA_DEFAULT when select(3-1) = '1' else

(others => '0')
Platform Express Component Integrator’s Guide, V1.14-8

Decoder Templates Handling Data Busses Of Differing Widths
Handling Data Busses Of Differing
Widths

The <lPin> element has a “fill” attribute where you may specify a fill character
(usually 0) to resolve busses of different sizes. This attribute should be used on an
<lPin> on the right-hand side of an assignment expression. Additional details can
be found in the decoderTemplate.dtd file.

Some Tips For Bus Decoder Template
Writers

The first and most important tip is to assume the worst. Mark all <lPins> as
"required" unless it is certain that the generated code will handle conditions where
that pin is not implemented in the master and slave devices being connected
together.

It is also important to think about statements where a pin will be implemented for
some instances but not for others.

Examples
The specific syntax and semantics of the decoder template files is given in:

$PXHOME/dtd/decoderTemplate.dtd

This file contains comments and gives a great deal of additional information about
decoder templates.

Decoder template files are located in:

<component_library>/componentLibrary/decoder

where <component_library> is the path to the top of a library. Not all libraries will
contain decoder templates.
Platform Express Component Integrator’s Guide, V1.1 4-9

Examples Decoder Templates
Platform Express Component Integrator’s Guide, V1.14-10

Mentor Graphics Trademarks
The following names are trademarks, registered trademarks, and service marks of Mentor Graphics Corporation:

3D Design , A World of LearningSM, ABIST , Arithmetic BIST , AccuPARTner, AccuParts , AccuSim , ADEPT , ADVance MS, ADVance RFIC,
AMPLE , Analog Analyst , Analog Station , AppNotesSM, ARTgrid , ArtRouter , ARTshape , ASICPlan , ASICVector Interfaces , Aspire Assess2000SM,
AutoActive, AutoCells , AutoDissolve , AutoFilter , AutoFlow , AutoLib , AutoLinear , AutoLink , AutoLogic , AutoLogic BLOCKS , AutoLogic
FPGA , AutoLogic VHDL , AutomotiveLib , AutoPAR , AutoTherm , AutoTherm Duo , AutoThermMCM , AutoView, Autowire Station , AXEL ,
AXEL Symbol Genie , BISTArchitect , BIST CompilerSM, BIST-In-PlaceSM, BIST-ReadySM, Board Architect , Board Designer , Board Layout , Board Link,
Board Process Library , Board Station , Board Station Consumer , BOLD Administrator , BOLD Browser , BOLD Composer , BSDArchitect ,
BSPBuilder , Buy on Demand , Cable Analyzer , Cable Station , CAECO Designer , CAEFORM , Calibre , Calibre CB , Calibre DESIGNrev , Calibre
DRC , Calibre DRC-H , Calibre FRACTUREh , Calibre FRACTUREj , Calibre FRACTUREk , Calibre FRACTUREm , Calibre FRACTUREt , Calibre
Interactive , Calibre LITHOview , Calibre LVS , Calibre LVS-H , Calibre MDPview , Calibre MGC , Calibre OPCpro , Calibre OPCsbar , Calibre ORC ,
Calibre PRINTimage , Calibre PSMgate , Calibre PSMcheck , Calibre RVE , Calibre TDopc , Calibre WORKbench , Calibre xRC , CAM Station , Capture
Station , CAPITAL , CAPITAL Analysis, CAPITAL Bridges , CAPITAL Documents , CAPITAL H, CAPITAL Harness , CAPITAL Harness Systems ,
CAPITAL H the complete desktop engineer, CAPITAL Insight, CAPITAL Integration , CAPITAL Manager , CAPITAL Manufacturer, CAPITAL Support ,
CAPITAL Systems , Cell Builder , Cell Station , CellFloor , CellGraph , CellPlace , CellPower , CellRoute , Centricity , CEOC , ChaseX ,
CheckMate , CHEOS , Chip Station , ChipGraph , CommLib , CommLib BMC , Concurrent Board ProcessSM, Concurrent Design Environment ,
Connectivity Dataport , Continuum , Continuum Power Analyst , CoreAlliance , CoreBIST , Core Builder , Core Factory , Co-Verification Environment ,
CTIntegrator , DataCentric Model , DataFusion , Datapath , Data Solvent , dBUG , Debug Detective , DC Analyzer, Design Architect , Design Architect
Elite , DesignBook , Design Capture , Design Manager , Design Station , DesignView , DesktopASIC , Destination PCB, DFTAdvisor , DFTArchitect ,
DFTInsight , DirectConnectSM, DSV , Direct System Verification , Documentation Station , DSS (Decision Support System) , DSV , E3LCable , ECO
ImmunitySM, EDGE (Engineering Design Guide for Excellence)SM, EDT , Eldo , EldoNet , ePartners , EParts , Empowering Solutions , Engineer’s Desktop ,
EngineerView , ENRead , ENWrite , ESim , Exemplar , Exemplar Logic , Expedition , Expert2000SM, Explorer CAECO Layout , Explorer CheckMate ,
Explorer Datapath , Explorer Lsim , Explorer Lsim-C , Explorer Lsim-S , Explorer Ltime , Explorer Schematic , Explorer VHDLsim , ExpressI/O ,
FabLink , Falcon , Falcon Framework , FastScan, FastStart, FastTrack ConsultingSM, First-Pass Design Success , First-Pass successSM, FlexSim , FlexTest ,
FDL (Flow Definition Language) , FlowTabs , FlowXpert , FORMA , FormalPro , FPGA Advantage , FPGAdvisor , FPGA BoardLink, FPGA Builder ,
FPGASim , FPGA Station , FrameConnect, Galileo, Gate Station , GateGraph , GatePlace , GateRoute , GDT , GDT Core , GDT Designer , GDT
Developer , GENIE , GenWare , Geom Genie , HDL2Graphics , HDL Architect , HDL Architect Station , HDL Author , HDL Designer , HDL Designer
Series , HDL Detective , HDL Inventor , HDL Pilot , HDL Processor , HDL Sim , HDLWrite ,Hardware Modeling Library , HIC rules , Hierarchical
Injection , Hierarchy Injection , HotPlot , Hybrid Designer , Hybrid Station , IBD , IC Design Station , IC Designer , IC Layout Station , IC Station ,
ICbasic , ICblocks , ICcheck , ICcompact , ICdevice , ICextract , ICGen , ICgraph , ICLink , IClister , ICplan , ICRT Controller Lcompiler , ICrules ,
ICtrace , ICverify , ICview , ICX , ICX Active , ICX Custom Model , ICX Custom Modeling , ICX Plan , ICX Pro , ICX Project Modeling , ICX
Sentry , ICX Standard Library , ICX Verify , ICX Vision , IDEA Series , Idea Station , INFORM , IFX , Inexia , Integrated Product Development,
Integra Station , Integration Tool Kit , INTELLITEST , Interactive Layout , Interconnect Table , Interface-Based Design , IntraStepSM, Inventra ,
InventraIPX , Inventra Soft Cores , IP Engine  , IP Evaluation Kit , IP Factory , IP -PCB , IP QuickUse , IPSim , IS_Analyzer, IS_Floorplanner,
IS_MultiBoard, IS_Optimizer, IS_Synthesizer, ISD CreationSM, ITK , It's More than Just ToolsSM, Knowledge CenterSM, Knowledge-SourcingSM, LAYOUT ,
LNL , LBIST , LBISTArchitect , Language Neutral Licensing , Lc , Lcore , Leaf Cell Toolkit , Led , LED LAYOUT , Leonardo , LeonardoInsight ,
LeonardoSpectrum , LIBRARIAN , Library Builder , Logic Analyzer on a ChipSM, Logic Builder , Logical Cable , LogicLib , logio , Lsim , Lsim DSM ,
Lsim-Gate , Lsim Net , Lsim Power Analyst , Lsim-Review, Lsim-Switch, Lsim-XL , Mach PA , Mach TA , Manufacture View , Manufacturing
Advisor , Manufacturing Cable , MaskCompose , MaskPE , MBIST , MBISTArchitect , MBIST Full-Speed , MBIST Flex , MBIST Manager , MCM
Designer , MCM Station , MDV , MegaFunction , Memory Builder , Memory Builder Conductor , Memory Builder Mozart , Memory Designer , Memory
Model Builder , Mentor , Mentor Graphics , Mentor Graphics Support CDSM, Mentor Graphics SupportBulletinSM, Mentor Graphics SupportCenterSM, Mentor
Graphics SupportFaxSM, Mentor Graphics SupportNet-EmailSM, Mentor Graphics SupportNet-FTPSM, Mentor Graphics SupportNet-TelnetSM, Mentor Graphics We
Mean Business , MicroPlan , MicroRoute , Microtec , Mixed-Signal Pro , ModelEditor , ModelSim , ModelSim LNL , ModelSim VHDL , ModelSim
VLOG , ModelSim SE , ModelStation , Model Technology , ModelViewer , ModelViewerPlus , MODGEN , Monet , Mslab , Msview , MS Analyzer ,
MS Architect , MS-Express , MSIMON , MTPISM, Nanokernel , NetCheck , NETED , Nucleus , Online Knowledge CenterSM, OpenDoorSM, Opsim ,
OutNet , P&RIntegrator , PACKAGE , PARADE , ParallelRoute-Autocells , ParallelRoute-MicroRoute , PathLink , Parts SpeciaList , PCB-Gen , PCB-
Generator , PCB IGES , PCB Mechanical Interface , PDLSim , Personal Learning Program , Physical Cable , Physical Test Manager:SITE , PLA
Lcompiler , Platform Express , PLDSynthesis , PLDSynthesis II , Power Analyst , PowerAnalyst Station , Power To Create , Precision , Precision
Synthesis, Precision HLS , Precision PNR , Precision PTC , Pre-Silicon , ProjectXpert , ProtoBoard , ProtoView , QNet , QualityIBIS , QuickCheck ,
QuickConnect , QuickFault , QuickGrade , QuickHDL , QuickHDL Express , QuickHDL Pro , QuickPart Builder , QuickPart Tables , QuickParts ,
QuickPath , QuickSim , QuickSimII , QuickStart , QuickUse , QuickVHDL , RAM Lcompiler , RC-Delay , RC-Reduction , RapidExpert , REAL Time
Solutions! , Registrar , Reinstatement 2000SM, Reliability Advisor , Reliability Manager , REMEDI , Renoir , RF Architect , RF Gateway , RISE , ROM
Lcompiler , RTL X-Press , Satellite PCB Station , ScalableModels , Scaleable Verification , SCAP , Scan-Sequential , Scepter , Scepter DFF , Schematic
View Compiler, SVC , Schemgen , SDF (Software Data Formatter), SDL2000 Lcompiler , Seamless , Seamless C-Bridge , Seamless Co-Designer ,
Seamless CVE , Seamless Express , Selective Promotion , SignaMask OPC , Signal Spy , Signal Vision , Signature Synthesis , Simulation Manager ,
SimExpress , SimPilot , SimView , SiteLine2000SM, SmartMask , SmartParts , SmartRouter , SmartScripts , Smartshape , SNX , SneakPath Analyzer ,
SOS Initiative , Source Explorer , SpeedGate , SpeedGate DSV , SpiceNet , SST Velocity , Standard Power Model Format (SPMF) , Structure Recovery ,
Super C , Super IC Station , Support Services BaseLineSM, Support Services ClassLineSM, Support Services LatitudesSM, Support Services OpenLineSM, Support
Services PrivateLineSM, Support Services SiteLineSM, Support Services TechLineSM, Support Services RemoteLineSM, Symbol Genie , Symbolscript , SYMED ,
SynthesisWizard , System Architect , System Design Station , System Modeling Blocks , Systems on Board Initiative , System Vision , Target Manager ,
Tau , TeraCell , TeraPlace , TeraPlace-GF , TechNotes , The Ultimate Tool for HDL Simulation , TestKompress , Test Station , Test Structure Builder ,
The Ultimate Site For HDL Simulation , TimeCloser , Timing Builder , TNX , ToolBuilder , TrueTiming , Vlog , V-Express , V-Net , VHDLnet ,
VHDLwrite , Verinex , ViewCreator , ViewWare , Virtual Library , Virtual Target , Virtual Test Manager:TOP , VR-ProcessSM, VRTX , VRTXmc ,
VRTXoc , VRTXsa , VRTX32 , Waveform DataPort , We Make TMN Easy , Wiz-o-matic , WorkXpert , xCalibre , xCalibrate , Xconfig , XlibCreator ,
Xpert , Xpert API , XpertBuilder , Xpert Dialogs , Xpert Profiler , XRAY , XRAY MasterWorks , XSH , Xtrace , Xtrace Daemon , Xtrace Protocol ,
Zeelan, Zero Tolerance Verification , Zlibs
Platform Express Component Integrator’s Guide, V1.1 1

Third-Party Trademarks
The following names are trademarks, registered trademarks, and service marks of other companies that appear in Mentor
Graphics product publications:

Adobe, the Adobe logo, Acrobat, the Acrobat logo, Exchange, FrameMaker, FrameViewer, PostScript,and Reader are registered trademarks of Adobe Systems
Incorporated in the United States and/or other countries.

Altera, ByteBlaster, Excalibur, and Quartus are trademarks or registered trademarks of Altera Corporation in the United States and other countries.

AM188, AMD, AMD-K6, and AMD Athlon Processor are trademarks of Advanced Micro Devices, Inc.

Apple and Laserwriter are registered trademarks of Apple Computer, Inc.

ARIES is a registered trademark of Aries Technology.

AMBA, ARM, ARMulator, ARM7TDMI, ARM7TDMI-S, ARM9TDMI, ARM9E-S, ARM946E-S, ARM966E-S, EmbeddedICE, StrongARM, TDMI, and
Thumb are trademarks or registered trademarks of ARM Limited.

ASAP, Aspire, C-FAS, CMPI, Eldo-FAS, EldoHDL, Eldo-Opt, Eldo-UDM, EldoVHDL, Eldo-XL, Elga, Elib, Elib-Plus, ESim, Fidel, Fideldo, GENIE,
GENLIB, HDL-A, MDT, MGS-MEMT, MixVHDL, Model Generator Series (MGS), Opsim, SimLink, SimPilot, SpecEditor, Success, SystemEldo,
VHDeLDO and Xelga are registered trademarks of ANACAD Electrical Engineering Software, a unit of Mentor Graphics Corporation.

Avant! and Star-Hspice are trademarks of Avant! Corporation.

AVR is a registered trademark of Atmel Corporation.

Cadence, Affirma signalscan, Allegro, Analog Artist, Composer, Concept, Design Planner, Dracula, GDSII, GED, HLD Systems, Leapfrog, Logic DP, NC-
Verilog, OCEAN, Physical DP, Pillar, Silicon Ensemble, Spectre, Verilog, Verilog XL, Veritime, and Virtuoso are trademarks or registered trademarks of
Cadence Design Systems, Inc.

CAE+Plus and ArchGen are registered trademarks of Cynergy System Design.

CalComp is a registered trademark of CalComp, Inc.

Canon is a registered trademark of Canon, Inc. BJ-130, BJ-130e, BJ-330, and Bubble Jet are trademarks of Canon, Inc.

Centronics is a registered trademark of Centronics Data Computer Corporation.

ColdFire and M-Core are registered trademarks of Motorola, Inc.

Ethernet is a registered trademark of Xerox Corporation.

Foresight and Foresight Co-Designer are trademarks of Nu Thena Systems, Inc.

FLEXlm is a trademark of Globetrotter Software, Inc.

GenCAD is a trademark of Teradyne Inc.

Hewlett-Packard (HP), LaserJet, MDS, HP-UX, PA-RISC, APOLLO, DOMAIN and HPare registered trademarks of Hewlett-Packard Company.

HCL-eXceed and HCL-eXceed/W are registered trademark of Hummingbird Communications. Ltd.

HyperHelp is a trademark of Bristol Technology Inc.

Installshield is a registered trademark and service mark of InstallShield Corporation.

IBM, PowerPC, and RISC Systems/6000 are trademarks of International Business Machines Corporation.

I-DEAS and UG/Wiring are registered trademarks of Electronic Data Systems Corporation.

IKON is a trademark of Tahoma Technology.

IKOS and Voyager are registered trademarks of IKOS Systems, Inc.

Imagen, QMS, QMS-PS 820, Innovator, and Real Time Rasterization are registered trademarks of MINOLTA-QMS Inc. imPRESS and UltraScript are
trademarks of MINOLTA-QMS Inc.

ImageGear is a registered trademark of AccuSoft Corporation.

Infineon, TriCore, and C165 are trademarks of Infineon Technologies AG.

Intel, i960, i386, and i486 are registered trademarks of Intel Corporation.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc.

Linux is a registered trademark of Linus Torvalds.

MemoryModeler MemMaker are trademarks of Denali Software, Inc.

MIPS is a trademark of MIPS Technologies, Inc.

MS-DOS, Windows 95, Windows 98, Windows 2000, and Windows NT are registered trademarks of Microsoft Corporation.

MULTI is a registered trademark of Green Hills Software, Inc.

NEC and NEC EWS4800 are trademarks of NEC Corp.

Netscape is a trademark of Netscape Communications Corporation.

Novas, Debussy, and nWave are trademarks or registered trademarks of Novas Software, Inc.

OakDSPCore is a registered trademark for DSP Group, Inc.

Oracle, Oracle8i, and SQL*Plus are trademarks or registered trademarks of Oracle Corporation.

OSE is a registered trademark of OSE Systems.

PKZIP is a registered trademark of PKWARE, Inc.

Pro/CABLING and HARNESSDESIGN are trademarks or registered trademarks of Parametric Technology Corporation.

Quantic is a registered trademark of Quantic EMC Inc.

QUASAR is a trademark of ASM Lithography Holding N.V.
Platform Express Component Integrator’s Guide, V1.12

Red Hat is a registered trademark of Red Hat Software, Inc.

SCO and the SCO logo are trademarks or registered trademarks of Caldera International, Inc.

Sneak Circuit Analysis Tool (SCAT) is a registered trademark of SoHaR Incorporated.

SPARC is a registered trademark, and SPARCstation is a trademark, of SPARC International, Inc.

Sun Microsystems, Sun Workstation, and NeWS are registered trademarks of Sun Microsystems, Inc. Sun, Sun-2, Sun-3, Sun-4, OpenWindows, SunOS,
SunView, NFS, and NSE are trademarks of Sun Microsystems, Inc.

SuperH is a trademark of Hitachi, Ltd.

Synopsys, Design Compiler, DesignWare, Library Compiler, LM-family, PrimeTime, SmartModel, Speed-Model, Speed Modeling, SimWave, and Chronologic
VCS are trademarks or registered trademark of Synopsys, Inc.

TASKING is a registered trademark of Altium Limited.

Teamwork is a registered trademark of Computer Associates International, Inc.

Tensilica and Xtensa are registered trademarks of Tensilica, Inc.

Times and Helvetica are registered trademarks of Linotype AG.

TimingDesigner and QuickBench are registered trademarks of Forte Design Systems

Tri-State, Tri-State Logic, tri-state, and tri-state logic are registered trademarks of National Semiconductor Corporation.

UNIX, Motif, and OSF/1 are registered trademarks of The Open Group in the United States and other countries.

Versatec is a trademark of Xerox Engineering Systems, Inc.

ViewDraw, Powerview, Motive, and PADS-Perform are registered trademarks of Innoveda, Inc. Crosstalk Toolkit (XTK), Crosstalk Field Solver (XFX), Pre-
Route Delay Quantifier (PDQ), and Mentor Graphics Board Station Translator (MBX) are trademarks of Innoveda, Inc.

Visula is a registered trademark of Zuken-Redac.

VxSim, VxWorks and Wind River Systems are trademarks or registered trademarks of Wind River Systems, Inc.

XVision is a registered trademark of Tarantella, Inc.

X Window System is a trademark of MIT (Massachusetts Institute of Technology).

Z80 is a registered trademark of Zilog, Inc.

ZSP and ZSP400 are trademarks of LSI Logic Corporation.

Other brand or product names that appear in Mentor Graphics product publications are trademarks or registered trademarks of
their respective holders.

Updated 5/14/02
Platform Express Component Integrator’s Guide, V1.1 3

Platform Express Component Integrator’s Guide, V1.14

IMPORTANT - USE OF THIS SOFTWARE IS SUBJECT TO LICENSE RESTRICTIONS CAREFULLY
READ THIS LICENSE AGREEMENT BEFORE USING THE SOFTWARE

END-USER LICENSE AGREEMENT

1. GRANT OF LICENSE. The software programs you are installing, downloading, or have acquired with
this Agreement, including any updates, modifications, revisions, copies, and documentation ("Software")
are copyrighted, trade secret and confidential information of Mentor Graphics or its licensors who
maintain exclusive title to all Software and retain all rights not expressly granted by this Agreement.
Mentor Graphics or its authorized distributor grants to you, subject to payment of appropriate license fees,
a nontransferable, nonexclusive license to use Software solely: (a) (in machine-readable, object-code
form; (b) for your internal business purposes; and (c) on the computer hardware or at the site for which an
applicable license fee is paid, or as authorized by Mentor Graphics. A site is restricted to a one-half mile
(800 meter) radius. Mentor Graphics' then-current standard policies, which vary depending on Software,
license fees paid or service plan purchased, apply to the following and are subject to change: (a) relocation
of Software; (b) use of Software, which may be limited, for example, to execution of a single session by a
single user on the authorized hardware or for a restricted period of time (such limitations may be
communicated and technically implemented through the use of authorization codes or similar devices); (c)
eligibility to receive updates, modifications, and revisions; and (d) support services provided. Current
standard policies are available upon request.

2. ESD SOFTWARE. If you purchased a license to use embedded software development (ESD) Software,
Mentor Graphics or its authorized distributor grants to you a nontransferable, nonexclusive license to
reproduce and distribute executable files created using ESD compilers, including the ESD run-time
libraries distributed with ESD C and C++ compiler Software that are linked into a composite program as
an integral part of your compiled computer program, provided that you distribute these files only in
conjunction with your compiled computer program. Mentor Graphics does NOT grant you any right to
duplicate or incorporate copies of Mentor Graphics' real-time operating systems or other ESD Software,
except those explicitly granted in this section, into your products without first signing a separate
agreement with Mentor Graphics for such purpose.

3. BETA CODE

3.1.Portions or all of certain Software may contain code for experimental testing and evaluation ("Beta
Code"), which may not be used without Mentor Graphics' explicit authorization. Upon Mentor
Graphics' authorization, Mentor Graphics grants to you a temporary, nontransferable, nonexclusive
license for experimental use to test and evaluate the Beta Code without charge for a limited period of
time specified by Mentor Graphics. This grant and your use of the Beta Code shall not be construed
as marketing or offering to sell a license to the Beta Code, which Mentor Graphics may choose not
to release commercially in any form.

3.2. If Mentor Graphics authorizes you to use the Beta Code, you agree to evaluate and test the Beta
Code under normal conditions as directed by Mentor Graphics. You will contact Mentor Graphics
periodically during your use of the Beta Code to discuss any malfunctions or suggested
improvements. Upon completion of your evaluation and testing, you will send to Mentor Graphics a

This license is a legal "Agreement" concerning the use of Software between you, the end-user, either individually or as
an authorized representative of the company purchasing the license, and Mentor Graphics Corporation, Mentor
Graphics (Ireland) Limited, Mentor Graphics (Singapore) Private Limited, and their majority-owned subsidiaries
("Mentor Graphics"). USE OF SOFTWARE INDICATES YOUR COMPLETE AND UNCONDITIONAL
ACCEPTANCE OF THE TERMS AND CONDITIONS SET FORTH IN THIS AGREEMENT. If you do not agree to
these terms and conditions, promptly return or, if received electronically, certify destruction of Software and all
accompanying items within 10 days after receipt of Software and receive a full refund of any license fee paid
Platform Express Component Integrator’s Guide, V1.1 1

written evaluation of the Beta Code, including its strengths, weaknesses and recommended
improvements.

3.3.You agree that any written evaluations and all inventions, product improvements, modifications or
developments that Mentor Graphics conceives or makes during or subsequent to this Agreement,
including those based partly or wholly on your feedback, will be the exclusive property of Mentor
Graphics. Mentor Graphics will have exclusive rights, title and interest in all such property. The
provisions of this subsection shall survive termination or expiration of this Agreement.

4. RESTRICTIONS ON USE. You may copy Software only as reasonably necessary to support the
authorized use. Each copy must include all notices and legends embedded in Software and affixed to its
medium and container as received from Mentor Graphics. All copies shall remain the property of Mentor
Graphics or its licensors. You shall maintain a record of the number and primary location of all copies of
Software, including copies merged with other software, and shall make those records available to Mentor
Graphics upon request. You shall not make Software available in any form to any person other than your
employer's employees and contractors, excluding Mentor Graphics' competitors, whose job performance
requires access. You shall take appropriate action to protect the confidentiality of Software and ensure that
any person permitted access to Software does not disclose it or use it except as permitted by this
Agreement. Except as otherwise permitted for purposes of interoperability as specified by the European
Union Software Directive or local law, you shall not reverse-assemble, reverse-compile, reverse-engineer
or in any way derive from Software any source code. You may not sublicense, assign or otherwise transfer
Software, this Agreement or the rights under it without Mentor Graphics' prior written consent. The
provisions of this section shall survive the termination or expiration of this Agreement.

5. LIMITED WARRANTY

5.1.Mentor Graphics warrants that during the warranty period Software, when properly installed, will
substantially conform to the functional specifications set forth in the applicable user manual. Mentor
Graphics does not warrant that Software will meet your requirements or that operation of Software
will be uninterrupted or error free. The warranty period is 90 days starting on the 15th day after
delivery or upon installation, whichever first occurs. You must notify Mentor Graphics in writing of
any nonconformity within the warranty period. This warranty shall not be valid if Software has been
subject to misuse, unauthorized modification or installation. MENTOR GRAPHICS' ENTIRE
LIABILITY AND YOUR EXCLUSIVE REMEDY SHALL BE, AT MENTOR GRAPHICS'
OPTION, EITHER (A) REFUND OF THE PRICE PAID UPON RETURN OF SOFTWARE TO
MENTOR GRAPHICS OR (B) MODIFICATION OR REPLACEMENT OF SOFTWARE THAT
DOES NOT MEET THIS LIMITED WARRANTY, PROVIDED YOU HAVE OTHERWISE
COMPLIED WITH THIS AGREEMENT. MENTOR GRAPHICS MAKES NO WARRANTIES
WITH RESPECT TO: (A) SERVICES; (B) SOFTWARE WHICH IS LOANED TO YOU FOR A
LIMITED TERM OR AT NO COST; OR (C) EXPERIMENTAL BETA CODE; ALL OF WHICH
ARE PROVIDED "AS IS."

5.2.THE WARRANTIES SET FORTH IN THIS SECTION 5 ARE EXCLUSIVE. NEITHER
MENTOR GRAPHICS NOR ITS LICENSORS MAKE ANY OTHER WARRANTIES, EXPRESS
OR IMPLIED, WITH RESPECT TO SOFTWARE OR OTHER MATERIAL PROVIDED UNDER
THIS AGREEMENT. MENTOR GRAPHICS AND ITS LICENSORS SPECIFICALLY
DISCLAIM ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE.

6. LIMITATION OF LIABILITY. EXCEPT WHERE THIS EXCLUSION OR RESTRICTION OF
LIABILITY WOULD BE VOID OR INEFFECTIVE UNDER APPLICABLE STATUTE OR
REGULATION, IN NO EVENT SHALL MENTOR GRAPHICS OR ITS LICENSORS BE LIABLE
FOR INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES (INCLUDING
LOST PROFITS OR SAVINGS) WHETHER BASED ON CONTRACT, TORT OR ANY OTHER
LEGAL THEORY, EVEN IF MENTOR GRAPHICS OR ITS LICENSORS HAVE BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES. IN NO EVENT SHALL MENTOR GRAPHICS' OR
Platform Express Component Integrator’s Guide, V1.12

ITS LICENSORS' LIABILITY UNDER THIS AGREEMENT EXCEED THE AMOUNT PAID BY
YOU FOR THE SOFTWARE OR SERVICE GIVING RISE TO THE CLAIM. IN THE CASE WHERE
NO AMOUNT WAS PAID, MENTOR GRAPHICS AND ITS LICENSORS SHALL HAVE NO
LIABILITY FOR ANY DAMAGES WHATSOEVER.

7. LIFE ENDANGERING ACTIVITIES. NEITHER MENTOR GRAPHICS NOR ITS LICENSORS
SHALL BE LIABLE FOR ANY DAMAGES RESULTING FROM OR IN CONNECTION WITH THE
USE OF SOFTWARE IN ANY APPLICATION WHERE THE FAILURE OR INACCURACY OF THE
SOFTWARE MIGHT RESULT IN DEATH OR PERSONAL INJURY. YOU AGREE TO INDEMNIFY
AND HOLD HARMLESS MENTOR GRAPHICS AND ITS LICENSORS FROM ANY CLAIMS,
LOSS, COST, DAMAGE, EXPENSE, OR LIABILITY, INCLUDING ATTORNEYS' FEES, ARISING
OUT OF OR IN CONNECTION WITH SUCH USE.

8. INFRINGEMENT

8.1.Mentor Graphics will defend or settle, at its option and expense, any action brought against you
alleging that Software infringes a patent or copyright in the United States, Canada, Japan,
Switzerland, Norway, Israel, Egypt, or the European Union. Mentor Graphics will pay any costs and
damages finally awarded against you that are attributable to the claim, provided that you: (a) notify
Mentor Graphics promptly in writing of the action; (b) provide Mentor Graphics all reasonable
information and assistance to settle or defend the claim; and (c) grant Mentor Graphics sole authority
and control of the defense or settlement of the claim.

8.2. If an infringement claim is made, Mentor Graphics may, at its option and expense, either (a) replace
or modify Software so that it becomes noninfringing, or (b) procure for you the right to continue
using Software. If Mentor Graphics determines that neither of those alternatives is financially
practical or otherwise reasonably available, Mentor Graphics may require the return of Software and
refund to you any license fee paid, less a reasonable allowance for use.

8.3.Mentor Graphics has no liability to you if the alleged infringement is based upon: (a) the
combination of Software with any product not furnished by Mentor Graphics; (b) the modification of
Software other than by Mentor Graphics; (c) the use of other than a current unaltered release of
Software; (d) the use of Software as part of an infringing process; (e) a product that you design or
market; (f) any Beta Code contained in Software; or (g) any Software provided by Mentor Graphics'
licensors which do not provide such indemnification to Mentor Graphics' customers.

8.4.THIS SECTION 8 STATES THE ENTIRE LIABILITY OF MENTOR GRAPHICS AND ITS
LICENSORS AND YOUR SOLE AND EXCLUSIVE REMEDY WITH RESPECT TO ANY
ALLEGED PATENT OR COPYRIGHT INFRINGEMENT BY ANY SOFTWARE LICENSED
UNDER THIS AGREEMENT.

9. TERM. This Agreement remains effective until expiration or termination. This Agreement will
automatically terminate if you fail to comply with any term or condition of this Agreement or if you fail to
pay for the license when due and such failure to pay continues for a period of 30 days after written notice
from Mentor Graphics. If Software was provided for limited term use, this Agreement will automatically
expire at the end of the authorized term. Upon any termination or expiration, you agree to cease all use of
Software and return it to Mentor Graphics or certify deletion and destruction of Software, including all
copies, to Mentor Graphics' reasonable satisfaction.

10. EXPORT. Software is subject to regulation by local laws and United States government agencies, which
prohibit export or diversion of certain products, information about the products, and direct products of the
products to certain countries and certain persons. You agree that you will not export in any manner any
Software or direct product of Software, without first obtaining all necessary approval from appropriate
local and United States government agencies.
Platform Express Component Integrator’s Guide, V1.1 3

11. RESTRICTED RIGHTS NOTICE. Software has been developed entirely at private expense and is
commercial computer software provided with RESTRICTED RIGHTS. Use, duplication or disclosure by
the U.S. Government or a U.S. Government subcontractor is subject to the restrictions set forth in the
license agreement under which Software was obtained pursuant to DFARS 227.7202-3(a) or as set forth in
subparagraphs (c)(1) and (2) of the Commercial Computer Software - Restricted Rights clause at FAR
52.227-19, as applicable. Contractor/manufacturer is Mentor Graphics Corporation, 8005 Boeckman
Road, Wilsonville, Oregon 97070-7777 USA.

12. THIRD PARTY BENEFICIARY. For any Software under this Agreement licensed by Mentor Graphics
from Microsoft or other licensors, Microsoft or the applicable licensor is a third party beneficiary of this
Agreement with the right to enforce the obligations set forth in this Agreement.

13. CONTROLLING LAW. This Agreement shall be governed by and construed under the laws of Ireland
if the Software is licensed for use in Israel, Egypt, Switzerland, Norway, South Africa, or the European
Union, the laws of Japan if the Software is licensed for use in Japan, the laws of Singapore if the Software
is licensed for use in Singapore, People's Republic of China, Republic of China, India, or Korea, and the
laws of the state of Oregon if the Software is licensed for use in the United States of America, Canada,
Mexico, South America or anywhere else worldwide not provided for in this section

14. SEVERABILITY. If any provision of this Agreement is held by a court of competent jurisdiction to be
void, invalid, unenforceable or illegal, such provision shall be severed from this Agreement and the
remaining provisions will remain in full force and effect.

15. MISCELLANEOUS. This Agreement contains the entire understanding between the parties relating to
its subject matter and supersedes all prior or contemporaneous agreements, including but not limited to
any purchase order terms and conditions, except valid license agreements related to the subject matter of
this Agreement which are physically signed by you and an authorized agent of Mentor Graphics. This
Agreement may only be modified by a physically signed writing between you and an authorized agent of
Mentor Graphics. Waiver of terms or excuse of breach must be in writing and shall not constitute
subsequent consent, waiver or excuse. The prevailing party in any legal action regarding the subject
matter of this Agreement shall be entitled to recover, in addition to other relief, reasonable attorneys' fees
and expenses.

 (10/99 rev B)
Platform Express Component Integrator’s Guide, V1.14

	Table of Contents
	List of Figures
	About This Manual
	Chapter 1 Components
	Defining a Component
	General Procedure for Creating a Component

	Understanding XML and XML Schemas
	Understanding XPath and Platform Express Extensions
	containsToken
	decode
	pow
	log

	Creating the Component Definition File
	Top-Level Elements
	Bus Interfaces
	Numeric Values
	Variables in Platform Express XML Documents

	Using the pxedit Application
	Invoking the Editor
	Creating a New Component Definition File
	Editing an Existing Component Definition File

	Packaging Components
	Running the mkIndex Utility
	Licensing a Library
	Setting Up a Default Design

	Chapter 2 User-Input Parameters and Configurators
	Configurators
	The Default Configurator
	Writing a Configurator Java Class
	Single Panel Configurators
	Minimum Implementation for Single Panel Configurators
	Optional Methods for Single Panel Configurators

	Legacy Configurators
	MultiPanel Configurators
	Summary: Selecting a Base Class

	Validators

	Chapter 3 Generators
	Introduction
	Design Database
	The Platform Express API
	Creating a Generator Class
	Generator Chains
	Soft Paths and Generators
	Generator Author Responsibility

	Chapter 4 Decoder Templates
	Introduction
	Pins: Logical and Physical, Master and Slave
	Some Basic Concepts and Syntax
	Code Sections

	Handling Data Busses Of Differing Widths
	Some Tips For Bus Decoder Template Writers
	Examples

