
VERIFICATION OF PORTABLE INTELLECTUAL PROPERTY BLOCKS FOR FPGAS
Mark E. Kelly, and Donald W. Bouldin

Department of Electrical and Computer Engineering
University of Tennessee

Knoxville, TN 37996-2100
mekelly@utk.edu and dbouldin@utk.edu

ABSTRACT

In the world of digital electronics, the use of Intellectual Property
(IP) is becoming increasingly more popular in the design of Field-
Programmable Gate Arrays (FPGAs). Reuse of IP cuts down on
the time-to-market for a product and the overall cost for producing
that product. Verified IP blocks can also serve as examples, which
speed up the learning curve for a beginning engineer because a
learn-by-example format is generally easier to comprehend. It is
the point of this paper to present several methods for synthesizing
a design, and then place and route the design with several
commercially available tool suites and in the process to present
scripting methods for automating the process.

1. INTRODUCTION

The goal of the work described here was to establish an
environment for the verification of IP blocks using multiple logic
synthesis and physical place/route tools. Any IP block that can be
verified via multiple paths can then be considered portable. This
approach increases the probability that the IP block can be reused
in a subsequent design with minimal effort. Furthermore,
implementing an IP block via multiple paths provides a means to
compare the results. This allows the paths to be compared for such
features as logic and routing resources used, their maximum speed,
and the time required for execution of the path.

 The computer-aided design tools available for this effort
included the following:

 Logic Synthesis Tools Physical Place/Route Tools

 Viewlogic HDL Synthesis Xilinx Alliance Series
Synopsys FPGA Compiler Xilinx Xact Series

 Synopsys FPGA Express Altera Max+Plus II Place/Route
 Xilinx Synthesis Tools
 Altera Max+Plus II Synthesis

 The principal task involved in establishing this environment
consisted of the development of scripts corresponding to the
desired tool paths as shown in Figure 1.

IP Block

Viewlogic
Synopsys

FPGA
Compiler

Synopsys
FPGA Express

Xilinx
Altera

MAX+PLUS II

Xilinx Alliance
Series

Xilinx Xact
Series

Altera
MAX+PLUS II

Figure 1. IP Block Flow Diagram
 Each script consists of a list of executable commands to the
various computer-aided design tools. Instead of invoking the
graphical user interfaces of each individual tool and requiring
manual selection of the desired functions, all of the options desired
are specified in the scripts, which can then be executed in a
command line format. For example, to produce a Xilinx FPGA
configuration bit file from a Viewlogic net-list in wir format using
the Xilinx Alliance tools, a script called wir2bit was written. Its
contents include:

#!/bin/csh –f
wir2xnf –p 4010EPC84-3 $1
ngdbuild $1.xnf
map $1.ngd
par $1.ncd –w $1_r.ncd
trce $1_r.ncd
bitgen $1_r.ncd –w $1.bit

 The file was made executable and is invoked by typing
wir2bit ipblock, where ipblock is the name of the net-list file in the
wir subdirectory. The script then produces routed files with the
name ipblock_r and the appropriate extension. In this case, the
wir2xnf command converts from the net-list into the Xilinx Net-list
Format (xnf) and targets a particular Xilinx part. The remaining
steps build the NeoCAD Database (ngd), perform a mapping (map)
into combinational logic, place and route (par) the design, trace
(trce) the delay paths and generate (bitgen) the configuration bit
file to be downloaded to the part.

2. VIEWLOGIC SYNTHESIS

In this section, an IP block is synthesized and simulated for Xilinx
and Altera technologies using the Viewlogic suite of tools. The
circuit to be simulated is the classic traffic light signal problem
commonly presented in digital design courses.

 The following description of a traffic light controller
represents a relatively complex control function: "A busy highway
is intersected by a little used farmroad, as shown in Figure 2.

Figure 2. Traffic Light Controller Diagram.
Detectors are placed along the farmroad to raise the signal as long
as a vehicle is waiting to cross the highway. The traffic light
controller should operate as follows. As long as no vehicle is
detected on the farmroad, the lights should remain green in the
highway direction. If a vehicle is detected on the farmroad, the
highway lights should change from green to yellow to red,
allowing the farmroad lights to become green. The farmroad lights
stay green only as long as a vehicle is detected on the farmroad and
never longer than a set interval to allow the traffic to flow along
the highway. If these conditions are met, the farmroad lights
change from green to yellow to red, allowing the highway lights to
return to green. Even if vehicles are waiting to cross the highway,
the highway should remain green for a set interval.

 In order to simulate this controller, the VHDL file was
synthesized. A csh script was designed to automate the entire
process. In this script, the following steps are performed:

• All necessary files are copied to a new directory
• The VHDL file is synthesized using Viewlogic vhdldes
• Symbol is generated for the circuit using viewgen
• Simulation file is created using vsm
• Command file is created by the script
• File is simulated in viewsim with the command file

More exactly the contents of the script include:

mkdir hw3
cd hw3
cp /usr/cad/course/viewdraw.ini .
mkdir behv
cp /usr/cad/course/decoder551.vhd behv
view_tools
vhdldes -tech=xc4000 tlc_enc1
viewgen tlc_enc1 -makesym
viewdraw tlc_enc11 &
vsm decoder551 &
viewsim -vsm tlc_enc1.vsm -cmd tlc_enc1.cmd &

 The Viewlogic software produces the following output:

 Gate Usage Summary

--
--
Cell Name Cell Count FMAPS HMAPS
REGISTERS
--
--
XC4000:AND2 11 2.75 0.00
0.00
XC4000:FDCE 3 0.00 0.00
3.00
XC4000:INV 11 0.00 0.00
0.00
XC4000:NAND2 12 3.00 0.00
0.00
XC4000:NOR3 2 1.00 0.00
0.00
XC4000:OR2 3 0.75 0.00
0.00
XC4000:OR3 8 4.00 0.00
0.00
XC4000:OR4 3 2.25 0.00
0.00
--
--

Total : 53 13.75 0.00
3.00

 Netlist Statistics

Maximum level of gates = 8 Total number of nets = 60
Maximum pins per net = 11 Average pins per net =
3.17

 The last step of the script produces a timing diagram which is
used to determine if the appropriate results are obtained. Figure 3
shows a typical output timing diagram for a given IP block.
Complete results of this process can be seen on
http://microsys6.engr.utk.edu/~mekelly/ee501/ee501.htm. [4]

Figure 3. Viewlogic Viewsim Timing Diagram.

3. ALTERA SYNTHESIS

The Max+Plus II development software is a fully integrated
programmable logic design environment. This easy-to-use tool
supports the Altera® FLEX® and MAX programmable device
families and works in both PC and UNIX environments. The
Max+Plus II software offers flexibility and performance and
allows for seamless integration with industry-standard design
entry, synthesis, and verification tools. [2]

Figure 4. Altera MAX+PLUS II GUI Environment.

 The default usage for the MAX+PLUS II environment is
graphical user interface shown in Figure 4, but the Compiler,
Timing Analyzer, and Simulator can be operated from the
command prompt. To run MAX+PLUS II from a command
prompt, type:

maxplus2 -h | -v | { <batch option(s)> [<I/O option(s)>] <project name> }

 Multiple batch and I/O options can be used for a single
project; multiple projects can be processed with the same command
line. The <project name> indicates the end of the options for that
project. In order to automate the synthesis of the IP blocks, a script
was developed based on the command line operation of
MAX+PLUS II. Its contents include:

mkdir hw6
cd hw6
cp ~cad/course/fa.tdf .
cp ~mekelly/ee501/fa.acf .
maxplus2 -c fa.tdf
maxplus2 -s -vec "fa.vec" -tbl "fa" fa.tdf
 Using the above script format, the traffic light controller
was synthesized with MAX+PLUS II giving the following
results for estimated device usage:

Device: EPF10K20RC240-4

Total dedicated input pins used: 1/6 (16%)
Total I/O pins used: 13/183 (7%)
Total logic cells used: 20/1152 (1%)
Total embedded cells used: 0/48 (0%)
Total EABs used: 0/6 (0%)
Average fan-in: 3.35/4 (83%)
Total fan-in: 67/4608 (1%)

4. XILINX PLACE AND ROUTE

This section uses the traffic light controller example to perform
placement and routing using Xilinx's PPR software. The design is
placed and routed with both xmake and m1make. M1make is the
newer tool, but xmake is also used to see if any performance is
gained with the newer toolset. One net is tagged as a critical net
and differences (if any) in the delay times in the post-layout
simulation are examined.

 There are many small programs that must be run to
accomplish this task, but Xilinx has automated most of the process
with a program called xmake which calls all of these programs in
the proper sequence and with the correct options. The general
format for placing and routing a design is as follows:

xmake -g -p 4005PC84-5 tlc_pad

 This will generate a make file to the design, but since the
default settings for the Xilinx software cause it to ignore the net
weighting command some changes have to be made to the file.

ppr tlc_pad.xtf Path_timing=false parttype=4005PC84-5
xdelay -w -x -o xdelay.out tlc_pad.lca

 In order to verifiy that the design works correctly, end result
was back annotated in viewlogic and resimulated for the actual
timing delays.

lca2xnf -g tlc_pad.lca tlc_back.xnf
xnfba tlc_pad.xff tlc_back.xnf
xnf2wir xnfba.xnf wir/tlc_back
vsm tlc_back
cp tlc_back.cmd tlc_pad.cmd
viewsim -vsm tlc_back -cmd tlc_pad.cmd &

 From the back annotation, the longest delay achieved in the
design according to the xmake report was 37.3 ns. [5] In order to
gauge this process, the newer M1make toolset is used to place and
route the design. The M1make toolset consists of using the
previously described wir2bit script to automate the process.

xilinx_tools
wir2bit tlc_pad

 This produces the layout shown in Figure 5.

Figure 5. Xilinx M1make layout

 Using the results of both tools allow the following timing
comparison to be made.

Output M1make Delay Xmake Delay
PAD-STATEOUT 37 ns 26 ns

PAD-LTIME 42 ns 40 ns
PAD-STIME 47 ns 45 ns

PAD-FL 37 ns 38 ns
PAD-HL 37 ns 34 ns

5. ALTERA PLACE AND ROUTE

This section is a continuation of the placement and routing from
the previous Xilinx section. It also uses the traffic light controller
example to perform placement and routing using Altera's
Max+Plus II software.

 The goal of this section is to automate the place and route
process for the Altera Max+Plus II software. In order to get an idea
of the required steps for automation, a step by step process will be
presented. The following steps are executed from the command
line to achieve the desired results.

altera_tools
mkdir hw8
cd hw8
cp /usr/cad/course/viewdraw_flex10k.ini viewdraw.ini
mkdir behv
cp /usr/cad/course/tlc_enc1.vhd behv
vhdldes -tech=flex10k tlc_enc1
viewgen tlc_enc1 -makesym
viewdraw tlc_enc1 &

6. SYNOPSYS SYNTHESIS FOR A XILINX FPGA

 This section is intend to present the synthesis process using
the Synopsys Design Analyzer and place and route the synthesized
design using Xilinx tools.

 This section of the project is slightly different from the
previous sections. Developing a shell script for this is not
applicable because all commands executed are performed inside
the Design Analyzer environment, but fortunately, there is a
scripting language available in Design Analyzer that will allow us
to automate the process. The following is an excerpt from the
script shows the format of the macro language:

analyze -format vhdl TOP + ".vhd"
elaborate TOP
current_design TOP
set_port_is_pad "*"
set_pad_type -slewrate HIGH all_outputs()
.
.
.
replace_fpga
set_attribute TOP "part" -type string PART
set_attribute find(design,"*") "xnfout_use_blknames" -type boolean FALSE
write -format xnf -hierarchy -output TOP + ".sxnf"
exit

 Executing the script, produces the following output:

 Partitioned Design Utilization Using Part 4005PC84-5

--
 No. Used Max Available %Used
--
 Occupied CLBs 4 196 2%
 Bonded I/O Pins 11 61 18%
 F and G Function Generators (*) 8 392 2%
 H Function Generators 0 196 0%
 CLB Flip Flops 8 392 2%
 IOB Input Flip Flops 0 112 0%
 IOB Output Flip Flops 0 112 0%
 3-State Buffers 0 448 0%
 3-State Half Longlines 0 56 0%
 Edge Decode Inputs 0 168 0%
 Edge Decode Half Longlines 0 32 0%
 CLB Fast Carry Logic 4 196 2%

7. SYNOPSYS FPGA EXPRESS AND M1MAKE

This section is intended to present the synthesis process using the
Synopsys FPGA Express package and place and route the
synthesized design using Xilinx tools.

 As with the FPGA Compiler, FPGA Express uses its own
macro language to automate the design process. FPGA Scripting
Tool (FST) implements a Tcl-based command-line interface for
FPGA Express. The data models defined by the FPGA Express
GUI are preserved in command line form by FST.

The script designed for this stage includes:

set proj hw3
set top tutor
set target XC4000E
set chip tutor
set export_dir export_dir
set device 4013EPQ208
set speed –1

.

.

.
analyze_file –progress
create_chip -progress -target $target -device $device -speed $speed -frequency 50 -
name

The script produced the following results:

Design Summary

 Number of errors: 0
 Number of warnings: 1
 Number of CLBs: 8 out of 400 2%
 CLB Flip Flops: 3
 4 input LUTs: 15
 3 input LUTs: 4
 Number of bonded IOBs: 14 out of 61 22%
 Number of clock IOB pads: 1 out of 8 12%
 Number of primary CLKs: 1 out of 4 25%
Total equivalent gate count for design: 126
Additional JTAG gate count for IOBs: 672

8. XILINX WEBFITTER

The WebFITTER is a free web-based, CPLD design fitting
software tool that allows system designers to test their designs
using the XC9500 series of CPLDs, on the latest version of Xilinx
software and get fitting results in minutes. In order to get a baseline
for how webfitter works, the tlc_enc1.vhd file used in previous
sections will again be used for webfitter. The performance of the
design was very impressive which can be seen in the following
excerpt from the design report file.

Pad to Pad (tPD): 4.0ns (1 macrocell levels)
Pad 'reset_b' to Pad 'start'
Minimum Clock Period: 5.0ns
Maximum Internal Clock Speed: 200.0Mhz (Limited by Clock
Pulse Width)

8. CONCLUSIONS

The traffic light example was used on to test all the paths shown in
Figure 1. This was a relatively small IP block and using it in all of
these paths allows us to truly call this block portable and also
allows us to make a comparison between the toolsets.

For the synthesis, we were able to take several different routes and
make some comparisons. For generating FPGAs, the Altera
MAX+PLUS II and Synopsys FPGA Express are by far the easiest
to use of the toolsets and achieve the best and fastest results. The
other tools are not specifically designed for FPGAs which makes
their use a little more cumbersome, but they are all very useable.

For the place and route we needed to output to the same chip to
make fair comparisons and the two Xilinx place utilities are the
only ones use that will output to the same chip. The table
presented earlier shows that the achieved speeds are relatively the
same, and the area used by this example is also very close for both
tools.

Output M1make Delay Xmake Delay
PAD-STATEOUT 37 ns 26 ns

PAD-LTIME 42 ns 40 ns
PAD-STIME 47 ns 45 ns

PAD-FL 37 ns 38 ns
PAD-HL 37 ns 34 ns

REFERENCES

[1] Electrical and Computer Engineering Program, University of
Tennessee, http://www.ece.utk.edu.

[2] "MAX+PLUS II - Programmable Logic Development
System, Getting Started", 1999, Altera Corporation, pp
277-280

[3] EE 551 Course Web Site, University of Tennessee,
http://microsys6.engr.utk.edu/ece/bouldin_courses/551/overvi
ew.html.

[4] EE 552 Course Web Site, University of Tennessee,
http://microsys6.engr.utk.edu/ece/bouldin_courses/552/overvi
ew.html.

[5] Mark Kelly, Verification of Intellectual Property Blocks for
FPGAs and ASICs, EE501 Project, University of Tennessee,
http://microsys6.engr.utk.edu/~mekelly/ee501/ee501.htm

