E225C — Lecture 3
System on a Chip Design

Bob Brodersen



What is an SoC?

Let me define what | think itis....

“A chip designed for “complete” system
functionality that incorporates a
heterogeneous mix of processing and
computation architectures”



A Wireless System —
Typical SOC Design
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A wide mix of components — |
how do we optimize this??? @ @
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An SOC Design Flow with Prototyping

Algorithm/flexibility Initial System Description

evaluation (Floating point Matlab/Simulink)
Determine Flexibility Requirements

Digital delay,

v

area and Architecture/algorithm Description

energy estimates
& effect of analog

with Hardware Constraints (Fixed point Simulink,

impairments FSM Control in Stateflow)

Common test vectors,
and hardware description of
net list and modules

Real-time Emulation
(BEE FPGA Array)

Automated AISC Generation
(Chip-in-a-Day flow)




The Issues | am Going to Address

e How much flexibility is needed and how
best to include it...

e A single system description including
interaction between the analog and digital
domains

e "Realtime™ SOC prototyping
e Automated ASIC design flow



Flexibility

e Determining how much to include and how
to do it in the most efficient way possible

e Claims (to be shown)
» There are good reasons for flexibility

» The “cost” of flexibility is orders of magnitude
of inefficiency over an optimized solution

» There are many different ways to provide
flexibility



Good reasons for flexibility

e One design for a number of SoC customers —
more sales volume

e Customers able to provide added value and
unigueness

e Unsure of specification or can't make a decision
e Backwards compatibility with debugged software

e Risk, cost and time of implementing hardwired
solutions

Important to note: these are business, not technical
reasons



S0, what is the cost of flexibility?

We need technical metrics that we can look to
compare flexible and non-flexible
Implementations

A power metric because of thermal limitations
An energy metric for portable operation

A cost metric related to the area of the chip
Performance (computational throughput)

Lets use metrics normalized to the amount of
computation being performed — so now lets
define computation



Definitions...

Computation
Operation = OP=algorithmically interesting
computation (i.e. multiply, add, delay)
MOPS = Millions of OP’s per Second

No,,=Number of parallel OP’s in each clock cycle

Power
P.nip= Total power of chip = A,;,*C s (Vaa)? ™ o
C., = Switched Capacitance/mm?
= Pehip /(Achip "Vadg® " Tei)
Area
Aqnip = Total area of chip

A,, = Average area of each operation = A, /N,



Energy Efficiency Metric: MOPS/mW

How much computing (number of operations)

can we can do with a finite energy source (e.qg.
battery)?

Energy Efficiency = Number of useful operations

Energy required
= # of Operations = OP/nJ
NanodJoule
= OP/Sec = MOPS
NanodJoule/Sec mW

Power Efficiency



Energy and Power Efficiency

OP/nd = MOPS/mW

Interestingly the energy efficiency metric for
energy constrained applications (OP/nJ) for
a fixed number of operations is the same as
that for thermal (power) considerations
when maximizing throughput (MOPS/mW).

So lets look at a number of chips to see how
these efficiency numbers compare



ISSCC Chips (.18u-.25n)

Chip Year Paper Description Chip Year Paper Description
# #
1 1997 10.3 uP - S/390 11 1998 18.1 DSP -Graphics
2 2000 5.2 uP — PPC 12 1998 18.2 DSP -
(SOI) DSP’s Multimedia
3 1999 5.2 uP - G5 13 2000 14.6 DSP —
Multimedia
4 . 2000 5.6 uP - G6 14 2002 221 DSP —
Microprocessors Mpeg Decoder
5 2000 5.1 uP - Alpha 15 1998 18.3 DSP -
Multimedia
6 1998 154 uP - P6 16 2001 21.2 Encryption
Processor
7 1998 18.4 P - Alpha 7 .. 2000 14.5 Hearing Aid
g P ﬁedlca ed Procegsor
8 1999 5.6 uP — PPC 18 2000 4.7 FIR for Disk
Read Head
9 1998 18.6 DSP - 19 1998 2.1 MPEG
DSP’s StrongArm Encoder
10 2000 4.2 DSP — Comn| 20 2002 7.2 802.11a
Baseband




Energy Efficiency (MOPS/mW or OP/nJ)
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What does the low efficiency really mean?

The basic processor architecture puts our
circuits at the very limit of failure...

What happens
when the
CPU cooler is

removed?

www.tomshardware.de
www.tomshardware.com

HG_CPU_Cooling. avi




Why such a big difference?

Lets look at the components of MOPS/mW.
The operations per second:

MOPS = f,. N,
The power:
IDchlp Achlp C (Vdd)2 : fclk

The ratio (MOPS/P,;,) gives the MOPS/mW
= (Fa™Nop ) Achip Cen™ (Vaa)* ™ foik
Simplifying,
MOPS/mW =1/(A,,*Cqy *Vg?)

ch|p

So lets look at the 3 components — V4, Cy, and A,




Supply Voltage, V
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Supply voltage isn’t the cause of the difference,
actually a bit higher for the dedicated chips



Switched Capacitance, C, (pF/mm?)
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C., Is lower for dedicated, but only by a factor of 2 to 3



Ao, = Area per operation (Ag;/Ngp)

MOPS/MW =1/(As.*Cow *Vai®) i Aop = Aci/Nop
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Here is the one that explains the difference, lower due to more

parallelism (higher N,) in a smaller chip area (less overhead)
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Lets Iook at some chips to actually see the
different architectures

We'll look at one from each category...
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MUD
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Chip Number

Energy (Power) Efficiency ( MOPS/mW )




Microprocessor: MOPS/mW=.13

The only circuitry which
supports “useful operations”

All the rest is overhead

to support the time multiplexing

Nop = 2
fioek = 450 MHz (2 way)

clock

=900 MIPS

Two operations
each clock cycle, so
Aop = Agnip/2= 42mm?

Power = 7 Watts




DSP: MOPS/mW=7

Same granularity (a
datapath), more parallelism

4 Parallel processors
(4 ops each)
Ny, = 16

50 MHz clock
=> 800 MOPS

Sixteen operations
each clock cycle, so
Aop = Agnip/ 16=5.3mm?

Power = 110 mW.




Dedicated Design: MOPS/mW=200

Complex .
mult/add  Fully parallel mapping of

(8ops)  adaptive correlator
algorithm. No time
multiplexing.

Nop =96
Clock rate = 25 MHz =>
2400 MOPS

Aop = 5.4 mm?/96 =.15 mm?

Power = 12 m\W



The Basic Problem is Time Multiplexing

e Processor architectures obtain performance
by increasing the clock rate, because the
parallelism is low

e Results in ever increasing memory on the
chip, high control overhead and fast area
consuming logic

But doesn’t time multiplexing give better area
efficiency???



Area Efficiency

e SOC based devices are often very cost sensitive

e So we need a $ cost metric => for SOC’s it is
equivalent to the efficiency of area utilization

e Area Efficiency Metric:
Computation per unit area = MOPS/mm?2

How much of a $ cost (area) penalty will we have if
we put down many parallel hardware units and have
limited time multiplexing?



Surprisingly the area efficiency roughly tracks the
energy efficiency...
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The overhead of flexibility in processor architectures is
so high that there is even an area penalty



Hardware/software

Conclusion:

There is no software/hardware tradeoff.

e The difference between hardware and software in
performance, power and area is so large that
there is no “tradeoff”.

e |t is reasons other than power, energy,
performance or cost that drives a software
solution (e.g. business, legacy, ...).

e The “Cost of Flexibility” is extremely high, so
the other reasons better be good!



Are there better ways to provide flexibility?

e Lets say the reasons for flexibility are good
enough, then are there alternatives to
processor based software programmability??

e Yes...

» The key is to provide flexibility along with the
parallelism we get from the technology..

» Lots of choices...



Granularity and Parallelism

Degree of Parallelism, Ny,
(operations per clock cycle)
A
Fully Parallel
1000 Direct Mapped :l
Hardware 3
D
Time-Multiplexing 3
Dedicated Hardware qr c
100 Function-Specific —
Data-Path Reconfigurable ol
Reconfigurable D
Processors Hardware X.
@9 Reconfigurable >
1.(6 Processors Q@
10 \(\"
Digital Signal DSP with
Processors application specific v
q Extensions
1 - Granularity
10 100 1000 10000 (gates)
Gates Bitlevel operations Datapath operations Clusters of datapaths

e Increased granularity and higher parallelism yields higher efficiency
e Smaller granularity and reduced parallelism yields more flexibility
e Time multiplexing is needed for performance with low parallelism



We will look at three cases...

Degree of Parallelism, N, (3)
(operations per clock cycle)

I Fully Parallel
1000 Direct Mapped 4
Hardware §
Timo=Multinlexine N ®
Dedicated Hardware o é
100 Function- Specific —
Data-Path Reconfigurable O]
Reconfigurable » C>|2
Processors Tiardware 5
o ¥ econfigurable Q
\C\Q‘ Processors
10
Digital Signal DSP with
Pr ocessors application specifi v
Extensions
1 - Granularity
10 100 1000 10000 (gates)

Gates Bit-level operations Data-path operations  Clusters of data-paths



Case (1): Reconfigurable Logic: FPGA

I I
—|CLB[] MCLBT
I

|

e Very low granularity
(CLB’s) — improves
flexibility

e High parallelism —
iImproves efficiency




Case (1): Reconfigurable Logic: FPGA

I I
—|CLB[] MCLBT

|

e Very low granularity (high amount of
interconnect) — decreases efficiency



Case (2): Reconfiguration at a higher level

of granularitx

l G ore 32-bit Datapath Unit (DPU)
buffer cal Store -
1 % 12

32-bit Datapath Unit (DPU)

32-bit Datapath Unit (DPU) C h a m e I eo n
32-bit Datapath Unit (DPU) ‘,'(“"1 SySte ms S 2 O O O

32-bit Datapath Unit (DPU)

32-bit Datapath Unit (DPU)

32-bit Datapath Unit (DPU)

e Higher granularity — datapath units

e Higher efficiency, but lower flexibility



Case (3): Even higher granularity -
“Flexible” dedicated hardware

e Use a hardware @ﬁ»@@@ N=16

architecture that has the
flexibility to cover a
range of parameter
values

e Not much flexibility, but
very high efficiency
e Example hereisan FFT

which can range from
N=16 to 512

|:| BF1: Additive radix-2 butterfly
I I I BF2: Additi ix-2 butterfly pl
e Uses time multiplexing dditive radix-2 butterfly plus

multiplication with -

. CM: Multiplication with g(l—j)
FIFO oflength N

® Complex multiplier (one input coming from ROM)



Efficiencies for a variety of architectures for a
flexible FFT

Energy Efficiency (MOP3/mi)
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(2) Reconfig. DP;
- —+--—--- —--—m— - - - + (3) Dedicated _

e (e B e
10°} 0y e © ;
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The Issues

e How much flexibility is needed and how
best to include it...

e A single system description including
interaction between the analog and digital
domains

e "Realtime™ SOC prototyping
e Automated ASIC design flow



An SOC Design Flow with Prototyping

Algorithm/flexibility Initial System Description
evaluation (Floating point Matlab/Simulink)

Determine Flexibility Requirements

Digital delay,

v

area and Description with Hardware Constraints

energy estimates
& effect of analog

(Fixed point Simulink,

impairments FSM Control in Stateflow)

\ 4

Common test vectors,
and hardware description of
net list and modules

A 4

Real-time Emulation
(BEE FPGA Array)

Automated AISC Generation
(Chip-in-a-Day flow)




Simulation Framework using

Simulink/Stateflow (from Mathworks, Inc.)

| | 1 o .
. | i Analo i Digital
Transmitter 1 Channel . g | &
! ' Receiver ' Baseband
! ! !
i i ! >
1 1 I H-! lin lout
BB TX ! RE TX 1 1 RoVR | SPee L DSP postcor.mat

Q —’ Q al _:_’ Channel _:_b Al Q :_> Cln Gout To File Tolie(l?hGaanirrﬁ:;IB)

| | Q Spec P — NF (dB)
BB Transmitter RF Transmitter - Channel . Analog From-End . Digital Baseband ::Eg Eggm;

 Techniques used to decrease simulation time:
Baseband-equivalent modeling of RF blocks

Compile design using MATLAB Real-Time
Workshop



Blocks map to implementation libraries

Black Box
TAP_COEF RTL Code
Statefl or
atetiow- addr) Synopsys
VHDL: “ yNopsy

Module
Compiler
or

Custom
Time-Multiplexed FIR Filter Module

reset_acc

translato

CONTROL

e Implementation choices embedded in description
e Libraries of blocks are pre-verified and re-used



Timed Dataflow Graph Specification

Simulink (from
Mathworks)

Discrete-Time Cl\)@—_: X N
(cycle accurate) = U Lo 2
Fixed-Point Types Sé} L=
(bit true) RESET -

No need for RTL 0

simulation —ONST

Embedded i
implementation choices

]

+
N|[=

MUX

Multiply / Accumulate




Control

o Stateflow

» Extended Finite
State Machine

» Subset of Syntax
» Converted to VHDL
» Synthesized

e VHDL

» Synthesized directly

File Edit Simulstion Toolz Add Help

€p Filr|e|@)|E

[Filot_mode's= 0]

[Pilot_rmode == 1]

Pilot_Reset1
entry: Data_mode = 0;
PLL Loop = Pilot_reset1;

Pilot_Load = 1;

Pilot_Reset2
entry; Data_mode = 00,
PLL_Loop = Pilot_resetl;
Pilot_Load =0;
PM_rst =1;
Pilot_Resetd
entry: Data_rnode =0,
PLL_Loop = Pilot_reset1;

Pilot_Load = 0;
M rst=0;

]

[(Pilot_reset== 1) && (Pilot_mode == 1)]

Move Transition End

VHDL & Stateflow Macros map to a netlist of Standard Cells using
standard synthesis



Simulink Model of Direct-Conversion Receiver

82
13.53
-10.99

| lin lout -17.74
I—p
| Spec DSP postcor.mat
BB TX RF TXRr—»| Channel P RF RCVR Qin Qout | Channel:
a—wp|Q To File Total Gain (dB)
Q Spec — NF (dB)
BB Transmitter RF Transmitter c Digital Baseband IIP2 (dBm
hannel Analog Front-End
nalog Front-en 1IP3 (dBm)
|
AGC (1)
Contral Dout @ Fn e
Anal @ M Fn
P sig gt —p»  LPF Z ﬂ
X outf— LPF | G >— HPF B LPF Int4
Clk I Variable Gain
_|'> T ariable Gain TLPF3 Amplifiar! I Deterministic nan-ideal
I Mixer ILPF1 | Galn IHPF ILPF2 Amplifier 2-1-1 converter
n | PLL (BB Equivalent)
AF In
Low Noise RF Phase-Locked| | ¢,
Amplifier Amplifier Logp ‘E‘”') X o LPF G HPE e LPE
(BB Equivalent) (BB Equivalent, (58 Equivalent) Jf —» > S bout @ Fn
Q Mixer QLPF Q Gant Q HPF QLPF2

(BB Equivalent)
QLPF3

Q Variable Gain
Amplifier

Q-Phase
Anal @ M Fn [>
iritsh
Q Variable Gain

1
Amplifier Q Deterministic non-ideal
AGC 2-1-1 converter

Control




Bit true, cycle accurate digital baseband

algorithms. ..

data_in

v-) address 1 read 1 P a
read 1 a‘b
@—-} address 2 read 2 b vsp
reads 2 —|.> a e
reg sp flxed—point mult m
Pb <ab> data_out
P reset
fixed—point mac a
a+b
— ;
mac reset[ T .
xed-point pdd ultd
b <ab> Zp
._|.4
P reset avg clock clock
fixed—point mac1 reset c
update C .
resetinterval fiked—point qub1
reset interval average
read address 1 J
read x 2 read address 2 read 1

write address
new xp
write enable

write x

read 2

write enable reg xp




Basic Blocks based on Xilinx System
Generator libraries

Xilinx Blocksetva.2
{c) 2002 Xilinx, Inc.

- Memory Libra
¥ilink Blocksetv2.2 nemonHbran
() 2002 Xilinx, Inc.
. o addr_A
Basic Library dsta_A A
empty we_A
o u
v %full e £
E hi data_B ]
e
. CE B cat[> k=1[ full we B
addr Iz Constant FIFD Dual Paort RAM
SYSIEM  addreceab|e Shift Register ESGk Bax ClodeEnsble Frobe  Conest -
Generator
addr
=]l addr dats
castf- out [ ' b Jz I 40 B P sp =
z'1 ROM Single Port RAL
d1 .
Convert Counter Delay Down Sample Parallel to Serial
Mux
Kilinx Blocksetv2.2
(c) 2002 Xilinx, Inc.
b Math Library
d z'1q [ force = 3 gl =5 TE [
+ -1k
-
Register Reinterpret Serial to Parallel Slice Sync Up Sample 4
3
ql> a+h > not
st b
I
Accumulator AddSub ChMult nvene
3 E -
o 5 » ==
an 4 Z_EE ) ]
Logical Mult Megate Relaticnal

4
x 2 * theta sin sgn

Shift SineCosine Threshold




Higher level DSP Blocks

Kilinx Blockset v2.2 Xilinx Blockset v2.2
(c) 2002 Xilinx, Inc. (c) 2002 Xilinx, Inc.
DSP Library Communication Library
_ din doutfs din doutf: P
sin = xn ynp- Encoder Rate Puncturs
2-5tage CIC 1/3
. i win vout [ win wvout[>
cos > 8:1 Decimator Depuncture >
R . g Convoluti | Encad Interlzaver Deinterlzaver
DDS. Convolutiona n BT DEPIJI'IIIIJFE
CIC
xn_r *_r dout - .
dout): din1
B din dout[>
®n_i - xn ynf (oga  veutl din vouth din2
veutp 2tap I'.1E=E='I (204 _
I ; L= ; din3
vin . 8 FIR A infa > 1gg). ‘miep \ voutfs
£ - win
. win vout[s ddb vin fail [» S
inv rfd [» 25 Encoder en_cnth Viterbi Decoder

FFT FIR RS Decoder



Directly map diagram into hardware since there is
a one for one relationship for each of the blocks

¥

g
A
\_

{080 5040
|

olp o

HLR 5

o E fE"’E E fE"’E’

== = S T
= == == =

e Results: A fully parallel arohltecture that can be
iImplemented rapidly



Then do a simulation: Zero-IF Receiver

10 users (equal power) * pre-MUD

13.5dB receiver NF . | | | * post-MUD

PLL: -80dBc/Hz @ 100kHz
2.5° 1/Q phase mismatch
82dB gain

4% gain mismatch

lIP2 = -11dBm

lIP3 = -18dBm

500kHz DC notch filter
20MHz Butterworth LPF
10-bit, 200MHz =-A ADC

Output SNR =~ 15dB



With Analog Impairments

0.25

10 users (equal power)
20MHz Butterworth LPF
500kHz DC notch filter
13.5dB receiver NF
82dB gain

4% gain mismatch

2.5° 1/Q phase mismatch
lIP2 = -11dBm

IIP3 = -18dBm

PLL: -80dBc/Hz @ 100kHz
10-bit, 200MHz S-D ADC

0.2¢

0151

011

0.05

005

L1k

015

2

.25

-0.2 -0.1 0 0.1 0.2



Now to implement that description

Algorithm/flexibility Initial System Description
evaluation (Floating point Matlab/Simulink)

Determine Flexibility Requirements

Digital delay,

v

area and Description with Hardware Constraints

energy estimates
& effect of analog

(Fixed point Simulink,

impairments FSM Control in Stateflow)

v

Common test vectors,
and hardware description of
net list and modules

\ 4

Real-time Emulation
(BEE FPGA Array)

Automated AISC Generation
(Chip-in-a-Day flow)




Single description — Two targets

Simulink/Statetflow
Description

N ASIC Implementati
FPGA Array mplementation

“Chip 1n a day”



BEE Target for Real-time emulation

Simulink/Statetflow
Description

BEE
FPGA Array



BEE Design flow Goals

e Fully automatic generation of FPGA and
ASIC implementations from Simulink
system level design

e Cycle accurate bit-true functional level
equivalency between ASIC & BEE
implementation

e Real-time emulation controlled from
workstation



Processing Board PCB

e Board-level Main Clock
Rate: 160MHz+

e On Board connection
speed:
» FPGA to FPGA: 100MHz
» XBAR to XBAR: 70MHz

e Off board connection

Speed: (3 ft SCSI cable loop back
through riser card)

» LVTTL: 40MHz

» LVDS: 160MHz ~ 220MHz e Board Dimension: 53 X 58 cm
e Layout Area: 427 sq. in.
e No. of Layers: 26




The BEE with RF transceiver I/O




Run-time Data |I/O Interface

e Infrastructure for
transferring data to and
from the BEE

» The entire hardware
interface is in one fully
parameterized block

» Simply drop block into the = Embedded 2
Simulink diagram | i Controller = |

» Accepts standard Simulink
data structures for reuse of
existing test vectors

5 User Design
|Simulink/Stateflow|




Benchmark: 10240 Tap Fir Design

W tera_op * ok
File Edit Wew Simulation Format Tools Help
=
D|Dﬂ§|é€ E|DQ|H t_y®|} llNormaI vl
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Generator
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Constant
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L {dlin dout ol dout ol dout ol dout ol dout i dout ld dout o d dout ol d dout ol d dout
e . . . . . . q . . Scope
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10240 Tap Fir Design (cont.)

I [
! !
r. ] e e el e ekl el e P e N L P o P L L L N L S YT Y =]
W tera_op/fpgal0 Q@
File Edit Wigw Simulakion Farmat  Tools  Help
T = N
D|EE%|:}E%E|9Q|HE—®|P llN-:nrmaI ;I

1) dbl  fpt

= : g zlgb—— mdin dout [ fpt dbl

guu_din guu_dout e
Register
fpt  dbl
sum_out
dhl fpt 4 2-1':I o a qwi_sum_out =
]Iy guu_sum_in
R icte 1 e ——— e oA L o Bk Bl el =,
egister . b .
Fir512Tap W Library: fir_lib/Fir Tap g@.ﬁ
File Edit Wiew | Help
din
System -1
Genergtor ﬁ
Feady [100%: e

d

-1
a+b|—peld =g
b sum_out

SUM_In agdsub Register




BEE Performance

e Reference Design:
» 10240 tap FIR filter
» 512 taps per FPGA

Slice utilization: 99% of 19200 slices

Max Clock Rate: 30 Hz

MOPS: 580,000 MOPS total (16bit add & 12bit cmult)
Power: 2.5W per FPGA, 50W total

Comparison with an ASIC version using .13 micron
chip metrics of 5000 MOPS/mm?, 1000 MOPS/mW =>

The BEE is equivalent to a single chip of 50 mm? with power
=500 mW.
50 Watts/500 mW => 100 times more power
(20 *2 cm?/.5 => 100 times more area



Implementation of a Narrow-Band
RadiO S Stem Hans Bluethgen

Transmitter

Data Source Up-Sampling and LP Filter Complex Modulatar | Channel

and Symbal a

Mapping .:+b m pt dbl
T &
AddSubi

Constant!

out

Complete System

Slicez Reinterpret

C t
ounter Data Source & Up-Sampling + LPF Modulatar Q Channel
a
ath ot dbl
& Qch 1
Sliced G ateway Outl anne
AddSubz
Constant?
Generation of
Control Signals
DAL ClodePLL
Systemn
- Genarator Gateway Outz DAL Clodk
Transmitter Recaivar PLL Program
Control TaRix Switch
Channel
Data Rat 1 Mbit/s, 500
dala nate VS, )
Kbit/s Receiver
Compute Magnitude. Compare Received
- Align Data with Frame Data with Tx Data,
arrier Freq. 2.45 GHz oot s Fameseeion B S
from 2 MHz Symbol Rate for CRC
| Channel
Bandwidth 1 MHz
@ Channel R
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3G TUFbO DeCOder (Bora Nikolic)

e Complete description of ECC with variable noise levels to evaluate
performance

10 MHz system clock
SNR 14db — -1db
10° Samples in two minutes

Parameterized to support variable binary point precision, SNR,
number of samples for architectural evaluation



BCJR Simulink simulation

E2PR4 Channel Encoder -
Decoder

e Fully enclosed design
» Uniform RNG input vector
» Channel encoder
» AWGN filter
» Channel decoder
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» BER collection mechanism

e Part of: Full 3G Turbo
Decoder




BCJR Waterfall Curve
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10MHz, 10° Samples, 1 bit binary point precision

Total simulation: approx. 10 minutes




ASIC Target

Simulink/Stateflow
Description

ASIC Implementation
“Chip 1n a day”



Complete Design Flow

Xilinx

Manual
Partition
Annotation

Design Specs
& Test Vectors

}

Simulink

A 4

BEE_ROUTER

Xilinx System
Generator

}

BEE Post XSG

Performance
Estimation

Process

MAP/Timing

A 4
Chip-level
BitStream
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VHDL
Simulation Files

BEECONFIG

ModelSim
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ASIC Structural
Netlist

First Encounter
& Nano-Route
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ASIC Layout
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Design Area,
Power, Speed

ASIC part of flow
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Script
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Chip-in-a-Day ASIC flow

e Tcl/Tk code drives the flow  ®GUI controls technology
» Used to drive multiple selection, parameter selection,

EDA tools: First flow sequencing
Encounter, Nanoroute, » A real “Push Button” flow...
Module Compiler » Users can refine flow-

generated scripts

>< Integrated Systems Envi ﬂﬂ
Working directory: wolhitzivol2/designs/sshaft/usersirichards/demo/SYSGEN/
Top-level filename: ftools/sshaft/usersirichards/demo/SYSGEN/demo_subsystem.vhd Browse...
.-.r%'
Effort: Low Optimize for T00MHz clock
Start: run_first_place Tech: 3T0.13u LL Worst
Stop: end Hierarchy: Boundary Qptimize
Advanced Flow... Target: FirstEncounter Help




Automated ASIC flow tools

F Optional design steps

Run floorplanning
__[First Encounter]

Backannotate netlist\
[DC]

View floorplan
[First Encounter]
View routed de5|@
[NanoRoute]
Run route
[NanoRoute]

DDDDDDDDDDDD

[ Virtual component ]
generation [MC]

=

t




ASIC Flow: Back-end

e Using Unicad (ST
Microelectronics)
backend directly for
DRC, LVS, Antenna
rule checking

» Easier to track
technology updates
from foundry.

» Critical for evaluating
internally developed
technology files for FE,
Nanoroute




ASIC Tool Flow: Placement

e Cadence based flow
» First Encounter (FE)
» Nanoroute

e Timing Driven!

» FE provides accurate
wire parasitic estimates |-~

» Placement by FE

405624, 1226.488)




ASIC Flow: Routing in 130nm

e Nanoroute: Ready for
130nm, 90nm designs

» Stepped metal pitches
» Minimum area rules
» Complex VIA rules

» Avoids antenna rule
violations

» Cross-talk avoidance: to
be evaluated

e Silicon Ensemble:
Fallback position

e Apollo tools: Possible
alternative

Instance

REVERE 162558 |

PPN I




ASIC directly from Simulink — Narrowband
Transmitter

CPU time: 57 min
Core Utilization: 0.344418 (Pad
limited)
Size (From SoC Enconter):
Core Height 565.8u
Core Width 489.54u

Die Height 1322.66u
Die Width 1242.3u

Synopsys estimates:

Total Dynamic Power = 610.5163
uW (100%)

Cell Leakage Power = 15.9364 uW
Critical path: 9.21ns




The Issues | Addressed

e How much flexibility is needed and how best to
include it...
» As little as possible consistent with business constraints

e A single system description including interaction
between the analog and digital domains
» Timed dataflow plus state machines

e “Realtime” SOC prototyping

» FPGA configurability makes real-time prototyping
possible in a fully parallel architecture.

e Automated ASIC design flow

» Certainly possible - the “chip in a day” flow
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