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System on a Chip Design
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What is an SoC?
Let me define what I think it is….

“A chip designed for “complete” system 
functionality that incorporates a 
heterogeneous mix of processing and 
computation architectures”



A Wireless System –
Typical SOC Design

Analog Baseband
and RF Circuits

A
D FSM

phone
book

RTOS

ARQ

MAC

Control

Coders

FFT Filters

Hardwired 
Algorithms
(word level)

analog digital

Logic 
(bit level)

Communication
Algorithms

Protocols
Hardwired

Logic

Analog

A wide mix of components –
how do we optimize this??? µP CoreDSP Core



An SOC  Design Flow with Prototyping
Initial System Description 

(Floating point Matlab/Simulink) 
Determine Flexibility Requirements

Algorithm/flexibility
evaluation

Common test vectors,
and hardware description of 

net list and modules

Digital delay,
area and

energy estimates
& effect of analog

impairments

Architecture/algorithm Description 
with Hardware Constraints (Fixed point Simulink, 

FSM Control in Stateflow)

Real-time Emulation
(BEE FPGA Array)

Automated AISC Generation
(Chip-in-a-Day flow)



The Issues I am Going to Address

How much flexibility is needed and how 
best to include it…
A single system description including 
interaction between the analog and digital 
domains 
“Realtime” SOC prototyping
Automated ASIC design flow



Flexibility
Determining how much to include and how 
to do it in the most efficient way possible
Claims (to be shown)

» There are good reasons for flexibility 
» The “cost” of flexibility is orders of magnitude 

of inefficiency over an optimized solution 
» There are many different ways to provide 

flexibility



Good reasons for flexibility
One design for a number of SoC customers –
more sales volume
Customers able to provide added value and 
uniqueness
Unsure of specification or can’t make a decision
Backwards compatibility with debugged software
Risk, cost and time of implementing hardwired 
solutions

Important to note: these are business, not technical 
reasons 



So, what is the cost of flexibility?
We need technical metrics that we can look to 

compare flexible and non-flexible 
implementations
A power metric because of thermal limitations
An energy metric for portable operation
A cost metric related to the area of the chip
Performance (computational throughput)

Lets use metrics normalized to the amount of 
computation being performed – so now lets 
define computation



Definitions…
Computation

• Operation = OP=algorithmically interesting 
computation (i.e. multiply, add, delay)• MOPS = Millions of OP’s per Second• Nop=Number of parallel OP’s in each clock cycle

Power
• Pchip=  Total power of chip = Achip*Csw*(Vdd)2 * fclk• Csw =  Switched Capacitance/mm2 

= Pchip /(Achip *Vdd
2 * fclk)

Area
• Achip = Total area of chip
• Aop = Average area of each operation = Achip/Nop



Energy Efficiency Metric: MOPS/mW
How much computing (number of operations) 
can we can do with a finite energy source (e.g. 
battery)?
Energy Efficiency = Number of useful operations

Energy required
=  # of Operations =  OP/nJ

NanoJoule
=  OP/Sec     =   MOPS 

NanoJoule/Sec          mW
=  Power Efficiency



Energy and Power Efficiency

OP/nJ = MOPS/mW
Interestingly the energy efficiency metric for 
energy constrained applications (OP/nJ) for 
a fixed number of operations is the same as 
that for thermal (power) considerations 
when maximizing throughput (MOPS/mW).

So lets look at a number of chips to see how 
these efficiency numbers compare 



ISSCC Chips (.18µ-.25µ)
Chip 

# 
Year Paper Description Chip  

# 
Year Paper Description

1 1997 10.3 µP - S/390 11 1998 18.1 DSP -Graphics

2 2000 5.2 µP – PPC  
(SOI)

12 1998 18.2 DSP -
Multimedia

3 1999 5.2 µP - G5 13 2000 14.6 DSP –
Multimedia

4 2000 5.6 µP - G6 14 2002 22.1 DSP –
Mpeg Decoder

5 2000 5.1 µP - Alpha 15 1998 18.3 DSP -
Multimedia

6 1998 15.4 µP - P6 16 2001 21.2 Encryption 
Processor

7 1998 18.4 µP - Alpha 17 2000 14.5 Hearing Aid 
Processor

8 1999 5.6 µP – PPC 18 2000 4.7 FIR for Disk 
Read Head

9 1998 18.6 DSP -
StrongArm

19 1998 2.1 MPEG 
Encoder

10 2000 4.2 DSP – Comm 20 2002 7.2 802.11a 
Baseband

Microprocessors

DSP’s

Dedicated

DSP’s



Energy Efficiency (MOPS/mW or OP/nJ)
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What does the low efficiency really mean?
The basic processor architecture puts our 

circuits at the very limit of failure…



Why such a big difference?
Lets look at the components of MOPS/mW.
The operations per second:

MOPS = fclk * Nop

The power:
Pchip =  Achip*Csw*(Vdd)2 * fclk

The ratio (MOPS/Pchip) gives the MOPS/mW 
= (fclk*Nop )/ Achip*Csw*(Vdd)2 * fclk

Simplifying,
MOPS/mW =1/(Aop*Csw *Vdd

2)

So lets look at the 3 components – Vdd, Csw and Aop



Supply Voltage, Vdd
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Supply voltage isn’t the cause of the difference, 
actually a bit higher for the dedicated chips 



Switched Capacitance, Csw (pF/mm2)
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Csw is lower for dedicated, but only by a factor of 2 to 3



Aop = Area per operation (Achip/Nop)
MOPS/mW =1/(Aop*Csw *Vdd

2) ;     Aop = Achip/Nop
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Here is the one that explains the difference, lower due to more 
parallelism (higher Nop) in a smaller chip area (less overhead)
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Lets look at some chips to actually see the 
different architectures

Microprocessors General 
Purpose DSP Dedicated

;;

PPC

NEC
DSP

MUD

We’ll look at one from each category…



Microprocessor: MOPS/mW=.13
The only circuitry which

supports “useful operations”
All the rest is overhead 
to support the time multiplexing 

Nop = 2
fclock = 450 MHz (2 way)
= 900 MIPS

Two operations 
each clock cycle, so 
Aop = Achip/2= 42mm2

Power = 7 Watts



DSP: MOPS/mW=7
Same granularity (a 
datapath), more parallelism

4 Parallel processors 
(4 ops each)
Nop = 16

50 MHz clock 
=> 800 MOPS

Sixteen operations 
each clock cycle, so 
Aop = Achip/16= 5.3mm2

Power = 110 mW.



Dedicated Design: MOPS/mW=200

Fully parallel mapping of 
adaptive correlator
algorithm. No time 
multiplexing.

Nop = 96
Clock rate = 25 MHz =>  
2400 MOPS

Aop = 5.4 mm2/96 =.15 mm2

Power = 12 mW 

Complex
mult/add
(8 ops)



The Basic Problem is Time Multiplexing

Processor architectures obtain performance 
by increasing the clock rate, because the 
parallelism is low
Results in ever increasing memory on the 
chip, high control overhead and fast area 
consuming logic

But doesn’t time multiplexing give better area 
efficiency???



Area Efficiency

SOC based devices are often very cost sensitive
So we need a $ cost metric => for SOC’s it is 
equivalent to the efficiency of area utilization
Area Efficiency Metric:
Computation per unit area = MOPS/mm2

How much of a $ cost  (area) penalty will we have if 
we put down many parallel hardware units and have 
limited time multiplexing?



Surprisingly the area efficiency roughly tracks the 
energy efficiency…
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About 2 orders of magnitude

The overhead of flexibility in processor architectures  is 
so high that there is even an area penalty 



Hardware/software

Conclusion: 
There is no software/hardware tradeoff.

The difference between hardware and software in 
performance, power and area is so large that 
there is no “tradeoff”. 
It is reasons other than power, energy, 
performance or cost that drives a software 
solution (e.g. business, legacy, …). 
The “Cost of Flexibility” is extremely high, so 
the other reasons better be good!



Are there better ways to provide flexibility?

Lets say the reasons for flexibility are good 
enough, then are there alternatives to 
processor based software programmability??

Yes… 
» The key is to provide flexibility along with the 

parallelism we get from the technology..
» Lots of choices…



Granularity and Parallelism
Degree of Parallelism, Nop
(operations per clock cycle)

Granularity 
(gates)10000

Clusters of data-paths
100

Bit-level operations

DSP with 
application specific

Extensions

Time-Multiplexing
Dedicated Hardware or 

Function-Specific
Reconfigurable 

1000
Data-path operations

Fully Parallel
Direct Mapped

Hardware

Hardware
Reconfigurable

Processors

Digital Signal
Processors

Data-Path
Reconfigurable

Processors

10
Gates

1000

100

1

10

Microprocessors

Fully Parallel
Implementation on

Field Programmable
Gate Array

Higher e
ffic

iency

Incre
ased fle

xib
ility
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e m

ultiplexing

Increased granularity and higher parallelism yields higher efficiency
Smaller granularity and reduced parallelism yields more flexibility
Time multiplexing is needed for performance with low parallelism



We will look at three cases…
Degree of Parallelism, Nop

(operations per clock cycle)

Granularity 
(gates)10000

Clusters of data-paths
100
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DSP with 
application specific
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Case (1): Reconfigurable Logic: FPGA

CLB CLB

CLBCLB

Very low granularity 
(CLB’s) – improves
flexibility
High parallelism –
improves efficiency

But….



Case (1): Reconfigurable Logic: FPGA

CLB CLB

CLBCLB

Very low granularity (high amount of 
interconnect) – decreases efficiency



Case (2): Reconfiguration at a higher level 
of granularity

Higher granularity – datapath units 
Higher efficiency, but lower flexibility

adder

buffer

reg0

reg1

mux

Chameleon
Systems S2000



Case (3): Even higher granularity -
“Flexible” dedicated hardware

Use a hardware 
architecture that has the 
flexibility to cover a 
range of parameter 
values
Not much flexibility, but 
very high efficiency
Example here is an FFT 
which can range from 
N=16 to 512
Uses time multiplexing

64128 256 

64128 

N=16

16 8 4 2 1 

N=32

16 8 4 2 1 32

N=64
16 8 4 2 1 

32 64

N=128

N=256

16 8 4 2 1 32 

16 8 4 2 1 32 

N=512

N FIFO of length N 

CM: Multiplica tion with )j1(
2
2

−  

BF1: Additive  radix-2 butte rfly 

BF2: Additive  radix-2 butte rfly plus  
multiplica tion with -j 

Complex multiplie r (one  input coming from ROM) 

8 4 2 1 



Efficiencies for  a variety of architectures for a 
flexible FFT

MOPS/mW 
vs. FFT size

(3)

(2)(1)

(3)

(2)

(1)

(1) FPGA
(2) Reconfig. DP
(3) Dedicated

MOPS per mm2

vs. FFT size

* All results are scaled to 0.18µm



The Issues

How much flexibility is needed and how 
best to include it…
A single system description including 
interaction between the analog and digital 
domains 
“Realtime” SOC prototyping
Automated ASIC design flow



An SOC  Design Flow with Prototyping

Common test vectors,
and hardware description of 

net list and modules

Digital delay,
area and

energy estimates
& effect of analog

impairments

Description with Hardware Constraints 
(Fixed point Simulink, 

FSM Control in Stateflow)

Real-time Emulation
(BEE FPGA Array)

Automated AISC Generation
(Chip-in-a-Day flow)

Initial System Description 
(Floating point Matlab/Simulink) 

Determine Flexibility Requirements

Algorithm/flexibility
evaluation



Simulation Framework using 
Simulink/Stateflow (from Mathworks, Inc.)

Transmitter Channel Analog
Receiver

Digital
Baseband

• Techniques used to decrease simulation time:
Baseband-equivalent modeling of RF blocks
Compile design using MATLAB Real-Time 

Workshop



Blocks map to implementation libraries

Time-Multiplexed FIR Filter

D
A
WEN

SRAM

Q
2

TAP_COEF

addr

wen

reset_acc

CONTROL

1 1
X Y

A

B

RESET

MAC

Z

Stateflow-
VHDL

translator

Black Box

RTL Code
or

Synopsys
Module

Compiler
or

Custom
Module

Implementation choices embedded in description
Libraries of blocks are pre-verified and re-used



Timed Dataflow Graph Specification

Simulink (from 
Mathworks)
Discrete-Time
(cycle accurate)
Fixed-Point Types
(bit true)
No need for RTL 
simulation
Embedded 
implementation choices

Multiply / Accumulate

+
+
ADD

1
A

S18

MULT
S12 REG

Z
1

CONST
S18

0

MUX

3
RESET

2
B

1
Z



Control 

Stateflow
» Extended Finite 

State Machine
» Subset of Syntax
» Converted to VHDL
» Synthesized

VHDL
» Synthesized directly

VHDL & Stateflow Macros map to a netlist of Standard Cells using
standard synthesis



Simulink Model of Direct-Conversion Receiver



Bit true, cycle accurate digital baseband 
algorithms…



Basic Blocks based on Xilinx System 
Generator libraries



Higher level DSP Blocks



Directly map diagram into hardware since there is 
a one for one relationship for each of the blocks

Mult2

Mac2Mult1 Mac1

S reg X reg Add,
Sub,
Shift

Results: A fully parallel architecture that can be 
implemented rapidly



Then do a simulation: Zero-IF Receiver

10 users (equal power)
13.5dB receiver NF
PLL: -80dBc/Hz @ 100kHz
2.5° I/Q phase mismatch
82dB gain
4% gain mismatch
IIP2 = -11dBm
IIP3 = -18dBm
500kHz DC notch filter
20MHz Butterworth LPF
10-bit, 200MHz Σ-∆ ADC

• pre-MUD

• post-MUD

Output SNR ≈ 15dB



With Analog Impairments

10 users (equal power)
20MHz Butterworth LPF
500kHz DC notch filter
13.5dB receiver NF
82dB gain
4% gain mismatch
2.5° I/Q phase mismatch
IIP2 = -11dBm
IIP3 = -18dBm
PLL: -80dBc/Hz @ 100kHz
10-bit, 200MHz S-D ADC

• ideal receiver

• real receiver



Now to implement that description

Common test vectors,
and hardware description of 

net list and modules

Digital delay,
area and

energy estimates
& effect of analog

impairments

Description with Hardware Constraints 
(Fixed point Simulink, 

FSM Control in Stateflow)

Real-time Emulation
(BEE FPGA Array)

Automated AISC Generation
(Chip-in-a-Day flow)

Initial System Description 
(Floating point Matlab/Simulink) 

Determine Flexibility Requirements

Algorithm/flexibility
evaluation



Single description – Two targets

Simulink/Stateflow 
Description

ASIC Implementation
“Chip in a day”

BEE
FPGA Array



BEE Target for Real-time emulation

Simulink/Stateflow 
Description

BEE
FPGA Array



BEE Design flow Goals

Fully automatic generation of FPGA and 
ASIC implementations from Simulink 
system level design
Cycle accurate bit-true functional level 
equivalency between ASIC & BEE 
implementation
Real-time emulation controlled from 
workstation



Processing Board PCB

Board-level Main Clock 
Rate: 160MHz+
On Board connection 
speed:
» FPGA to FPGA: 100MHz
» XBAR to XBAR: 70MHz

Off board connection 
speed: (3 ft SCSI cable loop back 
through riser card)

» LVTTL: 40MHz
» LVDS: 160MHz ~ 220MHz Board Dimension: 53 X 58 cm

Layout Area: 427 sq. in.
No. of Layers: 26



The BEE with RF transceiver I/O



Run-time Data I/O Interface

Matlab Control GUI
Infrastructure for 
transferring data to and 
from the BEE
» The entire hardware 

interface is in one fully 
parameterized block

» Simply drop block into the 
Simulink diagram

» Accepts standard Simulink 
data structures for reuse of 
existing test vectors 

Linux/StrongARM
Daemon

User Design

Embedded
ControllerR

AM

R
AM

BEE

User Design
Simulink/Stateflow

Ethernet



Benchmark: 10240 Tap Fir Design



10240 Tap Fir Design (cont.)



BEE Performance
Reference Design: 
» 10240 tap FIR filter
» 512 taps per FPGA

Slice utilization: 99% of 19200 slices
Max Clock Rate: 30 Hz
MOPS: 580,000 MOPS total (16bit add & 12bit cmult)
Power: 2.5W per FPGA, 50W total

Comparison with an ASIC version using .13 micron
chip metrics of 5000 MOPS/mm2, 1000 MOPS/mW => 
The BEE is equivalent to a single chip of 50 mm2 with power 

= 500 mW.
50 Watts/500 mW => 100 times more power
(20 ∗2 cm2)/.5 => 100 times more area



Implementation of a Narrow-Band 
Radio System (Hans Bluethgen)

Transmitter

Complete System

2.45 GHzCarrier Freq.

1 Mbit/s, 500 
Kbit/s

Data Rate

1 MHzBandwidth
DPSKModulation
PN SequenceFrame 

Synch.

Receiver



BEE Implementation of a Narrow-Band 
Radio

BEE

TransmitterReceiver

Frame O.K.

Data Match

Data Out

Receiver
Output
on SCSI
Connector

Transmitter
Output

Spectrum



3G Turbo Decoder (Bora Nikolic)

Complete description of ECC with variable noise levels to evaluate 
performance
10 MHz system clock
SNR 14db → -1db
109 Samples in two minutes
Parameterized to support variable binary point precision, SNR, 
number of samples for architectural evaluation



BCJR Simulink simulation

E2PR4 Channel Encoder -
Decoder
Fully enclosed design
» Uniform RNG input vector
» Channel encoder
» AWGN filter
» Channel decoder
» BER collection mechanism

Part of: Full 3G Turbo 
Decoder



BCJR Waterfall Curve

BER-SNR Waterfall Curve (BCJR)
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0.0001

0.001

0.01

0.1

1
-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
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B
E

R

10MHz, 109 Samples, 1 bit binary point precision

Total simulation: approx. 10 minutes



ASIC Target

Simulink/Stateflow 
Description

ASIC Implementation
“Chip in a day”



Complete Design Flow
Design Specs
& Test Vectors

Simulink
Xilinx

Blockset
Library

System
Design
MDL

BEE
Partition?

Manual
Partition

Annotation

Xilinx System
Generator

BEE_ROUTER

BEE_ISE INSECTA

BEE Post XSG
Processes

MC
Script
Library

Chip-level
BitStream

ASIC Structural
Netlist

BEECONFIG

MAP/Timing
Report

VHDL
Simulation Files

ModelSim

Performance
Estimation

Design Area,
Power, Speed

First Encounter
& Nano-Route

ASIC LayoutNano-Sim

ASIC part of flow



Chip-in-a-Day ASIC flow
Tcl/Tk code drives the flow
» Used to drive multiple 

EDA tools: First 
Encounter, Nanoroute, 
Module Compiler

GUI controls technology 
selection, parameter selection, 
flow sequencing

» A real “Push Button” flow…
» Users can refine flow-
generated scripts



Automated ASIC flow tools
High-level 

Design

Identify files and 
paths [Insecta]

Resolve design 
hierarchy [Insecta]

Check hierarchy 
consistency [Insecta]

Identify bad VHDL 
structures [Insecta]

Correct bad VHDL 
structures [Insecta]

Generate synthesis 
scripts [Insecta]

Virtual component 
generation [MC]

Generate backend 
scripts [Insecta]

Run physical 
synthesis [DC/PSYN]

Run signal integrity 
[First Encounter]

Run floorplanning 
[First Encounter]

Re-run physical 
synthesis [DC/PSYN]

Run route 
[NanoRoute]

Run extraction & 
checks  [Calibre]

GDSII

Backannotate netlist
[DC]

Run (first)
logic synthesis [DC]

PC Software
1. Matlab R13 (6.5)
2. Xilinx ISE
3. Xilinx System

Generator 2.2
4. BEE ISE
5. Xilinx ChipScope
6. Xilinx Parallel Cable

UNIX SW Versions
1. TCL/TK 8.3
2. Synopsys 2002.05
3. Cadence SoC

Encounter 2.2
(Nanoroute)

4. Modelsim 5.6

Post process DFII
[icfb]

View hierarchy 
[Insecta]

Optional design steps

View logic 
schematic [DA]

View floorplan 
[First Encounter]

Gate-level simulation 
[Modelsim]

View routed design 
[NanoRoute]

View log files 
[Insecta]

View GDSII [pipo]

Generate GDSII
[pipo]



ASIC Flow: Back-end
Using Unicad (ST 
Microelectronics) 
backend directly for 
DRC, LVS, Antenna 
rule checking
» Easier to track 

technology updates 
from foundry.

» Critical for evaluating 
internally developed 
technology files for FE, 
Nanoroute



ASIC Tool Flow: Placement
Cadence based flow
» First Encounter (FE)
» Nanoroute

Timing Driven!
» FE provides accurate 

wire parasitic estimates
» Placement by FE



ASIC Flow: Routing in 130nm
Nanoroute: Ready for 
130nm, 90nm designs
» Stepped metal pitches
» Minimum area rules
» Complex VIA rules
» Avoids antenna rule 

violations
» Cross-talk avoidance: to 

be evaluated
Silicon Ensemble: 
Fallback position
Apollo tools: Possible 
alternative



ASIC directly from Simulink – Narrowband 
Transmitter

CPU time: 57 min
Core Utilization: 0.344418 (Pad 
limited)
Size (From SoC Enconter): 

Core Height 565.8u
Core Width  489.54u

Die Height  1322.66u
Die Width   1242.3u

Synopsys estimates:
Total Dynamic Power = 610.5163 
uW  (100%)
Cell Leakage Power  =  15.9364 uW
Critical path: 9.21ns



The Issues I Addressed
How much flexibility is needed and how best to 
include it…
» As little as possible consistent with business constraints

A single system description including interaction 
between the analog and digital domains 
» Timed dataflow plus state machines

“Realtime” SOC prototyping
» FPGA configurability makes real-time prototyping 

possible in a fully parallel architecture.
Automated ASIC design flow
» Certainly possible - the “chip in a day” flow
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