
E225C – Lecture 3
System on a Chip Design

Bob BrodersenBob Brodersen

What is an SoC?
Let me define what I think it is….

“A chip designed for “complete” system
functionality that incorporates a
heterogeneous mix of processing and
computation architectures”

A Wireless System –
Typical SOC Design

Analog Baseband
and RF Circuits

A
D FSM

phone
book

RTOS

ARQ

MAC

Control

Coders

FFT Filters

Hardwired
Algorithms
(word level)

analog digital

Logic
(bit level)

Communication
Algorithms

Protocols
Hardwired

Logic

Analog

A wide mix of components –
how do we optimize this??? µP CoreDSP Core

An SOC Design Flow with Prototyping
Initial System Description

(Floating point Matlab/Simulink)
Determine Flexibility Requirements

Algorithm/flexibility
evaluation

Common test vectors,
and hardware description of

net list and modules

Digital delay,
area and

energy estimates
& effect of analog

impairments

Architecture/algorithm Description
with Hardware Constraints (Fixed point Simulink,

FSM Control in Stateflow)

Real-time Emulation
(BEE FPGA Array)

Automated AISC Generation
(Chip-in-a-Day flow)

The Issues I am Going to Address

How much flexibility is needed and how
best to include it…
A single system description including
interaction between the analog and digital
domains
“Realtime” SOC prototyping
Automated ASIC design flow

Flexibility
Determining how much to include and how
to do it in the most efficient way possible
Claims (to be shown)

» There are good reasons for flexibility
» The “cost” of flexibility is orders of magnitude

of inefficiency over an optimized solution
» There are many different ways to provide

flexibility

Good reasons for flexibility
One design for a number of SoC customers –
more sales volume
Customers able to provide added value and
uniqueness
Unsure of specification or can’t make a decision
Backwards compatibility with debugged software
Risk, cost and time of implementing hardwired
solutions

Important to note: these are business, not technical
reasons

So, what is the cost of flexibility?
We need technical metrics that we can look to

compare flexible and non-flexible
implementations
A power metric because of thermal limitations
An energy metric for portable operation
A cost metric related to the area of the chip
Performance (computational throughput)

Lets use metrics normalized to the amount of
computation being performed – so now lets
define computation

Definitions…
Computation

• Operation = OP=algorithmically interesting
computation (i.e. multiply, add, delay)• MOPS = Millions of OP’s per Second• Nop=Number of parallel OP’s in each clock cycle

Power
• Pchip= Total power of chip = Achip*Csw*(Vdd)2 * fclk• Csw = Switched Capacitance/mm2

= Pchip /(Achip *Vdd
2 * fclk)

Area
• Achip = Total area of chip
• Aop = Average area of each operation = Achip/Nop

Energy Efficiency Metric: MOPS/mW
How much computing (number of operations)
can we can do with a finite energy source (e.g.
battery)?
Energy Efficiency = Number of useful operations

Energy required
= # of Operations = OP/nJ

NanoJoule
= OP/Sec = MOPS

NanoJoule/Sec mW
= Power Efficiency

Energy and Power Efficiency

OP/nJ = MOPS/mW
Interestingly the energy efficiency metric for
energy constrained applications (OP/nJ) for
a fixed number of operations is the same as
that for thermal (power) considerations
when maximizing throughput (MOPS/mW).

So lets look at a number of chips to see how
these efficiency numbers compare

ISSCC Chips (.18µ-.25µ)
Chip

Year Paper Description Chip

Year Paper Description

1 1997 10.3 µP - S/390 11 1998 18.1 DSP -Graphics

2 2000 5.2 µP – PPC
(SOI)

12 1998 18.2 DSP -
Multimedia

3 1999 5.2 µP - G5 13 2000 14.6 DSP –
Multimedia

4 2000 5.6 µP - G6 14 2002 22.1 DSP –
Mpeg Decoder

5 2000 5.1 µP - Alpha 15 1998 18.3 DSP -
Multimedia

6 1998 15.4 µP - P6 16 2001 21.2 Encryption
Processor

7 1998 18.4 µP - Alpha 17 2000 14.5 Hearing Aid
Processor

8 1999 5.6 µP – PPC 18 2000 4.7 FIR for Disk
Read Head

9 1998 18.6 DSP -
StrongArm

19 1998 2.1 MPEG
Encoder

10 2000 4.2 DSP – Comm 20 2002 7.2 802.11a
Baseband

Microprocessors

DSP’s

Dedicated

DSP’s

Energy Efficiency (MOPS/mW or OP/nJ)

0.01

0.1

1

10

100

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Chip Number

En
er

gy
 (P

ow
er

) E
ffi

ci
en

cy
 M

O
PS

/m
W

Microprocessors General
Purpose DSP

3 orders of
Magnitude!

Dedicated

What does the low efficiency really mean?
The basic processor architecture puts our

circuits at the very limit of failure…

Why such a big difference?
Lets look at the components of MOPS/mW.
The operations per second:

MOPS = fclk * Nop

The power:
Pchip = Achip*Csw*(Vdd)2 * fclk

The ratio (MOPS/Pchip) gives the MOPS/mW
= (fclk*Nop)/ Achip*Csw*(Vdd)2 * fclk

Simplifying,
MOPS/mW =1/(Aop*Csw *Vdd

2)

So lets look at the 3 components – Vdd, Csw and Aop

Supply Voltage, Vdd

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Chip Number

Vd
d

(V
ol

ts
)

Microprocessors
General

Purpose DSP Dedicated

Supply voltage isn’t the cause of the difference,
actually a bit higher for the dedicated chips

Switched Capacitance, Csw (pF/mm2)

10

30

50

70

90

110

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Chip Number

C
sw

 (p
f/m

m
2)

Microprocessors

General
Purpose DSP Dedicated

Csw is lower for dedicated, but only by a factor of 2 to 3

Aop = Area per operation (Achip/Nop)
MOPS/mW =1/(Aop*Csw *Vdd

2) ; Aop = Achip/Nop

0.01

0.1

1

10

100

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Chip Number

A o
p (

m
m

2 p
er

 o
pe

ra
tio

n)

Microprocessors
General

Purpose DSP

Dedicated

Here is the one that explains the difference, lower due to more
parallelism (higher Nop) in a smaller chip area (less overhead)

0.01

0.1

1

10

100

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Chip Number

En
er

gy
 (P

ow
er

) E
ffi

ci
en

cy
 (

M
O

PS
/m

W
)

Lets look at some chips to actually see the
different architectures

Microprocessors General
Purpose DSP Dedicated

;;

PPC

NEC
DSP

MUD

We’ll look at one from each category…

Microprocessor: MOPS/mW=.13
The only circuitry which

supports “useful operations”
All the rest is overhead
to support the time multiplexing

Nop = 2
fclock = 450 MHz (2 way)
= 900 MIPS

Two operations
each clock cycle, so
Aop = Achip/2= 42mm2

Power = 7 Watts

DSP: MOPS/mW=7
Same granularity (a
datapath), more parallelism

4 Parallel processors
(4 ops each)
Nop = 16

50 MHz clock
=> 800 MOPS

Sixteen operations
each clock cycle, so
Aop = Achip/16= 5.3mm2

Power = 110 mW.

Dedicated Design: MOPS/mW=200

Fully parallel mapping of
adaptive correlator
algorithm. No time
multiplexing.

Nop = 96
Clock rate = 25 MHz =>
2400 MOPS

Aop = 5.4 mm2/96 =.15 mm2

Power = 12 mW

Complex
mult/add
(8 ops)

The Basic Problem is Time Multiplexing

Processor architectures obtain performance
by increasing the clock rate, because the
parallelism is low
Results in ever increasing memory on the
chip, high control overhead and fast area
consuming logic

But doesn’t time multiplexing give better area
efficiency???

Area Efficiency

SOC based devices are often very cost sensitive
So we need a $ cost metric => for SOC’s it is
equivalent to the efficiency of area utilization
Area Efficiency Metric:
Computation per unit area = MOPS/mm2

How much of a $ cost (area) penalty will we have if
we put down many parallel hardware units and have
limited time multiplexing?

Surprisingly the area efficiency roughly tracks the
energy efficiency…

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Chip Number

M
OP

S/
m

m
2 Microprocessors

General
Purpose DSP Dedicated

About 2 orders of magnitude

The overhead of flexibility in processor architectures is
so high that there is even an area penalty

Hardware/software

Conclusion:
There is no software/hardware tradeoff.

The difference between hardware and software in
performance, power and area is so large that
there is no “tradeoff”.
It is reasons other than power, energy,
performance or cost that drives a software
solution (e.g. business, legacy, …).
The “Cost of Flexibility” is extremely high, so
the other reasons better be good!

Are there better ways to provide flexibility?

Lets say the reasons for flexibility are good
enough, then are there alternatives to
processor based software programmability??

Yes…
» The key is to provide flexibility along with the

parallelism we get from the technology..
» Lots of choices…

Granularity and Parallelism
Degree of Parallelism, Nop
(operations per clock cycle)

Granularity
(gates)10000

Clusters of data-paths
100

Bit-level operations

DSP with
application specific

Extensions

Time-Multiplexing
Dedicated Hardware or

Function-Specific
Reconfigurable

1000
Data-path operations

Fully Parallel
Direct Mapped

Hardware

Hardware
Reconfigurable

Processors

Digital Signal
Processors

Data-Path
Reconfigurable

Processors

10
Gates

1000

100

1

10

Microprocessors

Fully Parallel
Implementation on

Field Programmable
Gate Array

Higher e
ffic

iency

Incre
ased fle

xib
ility

Tim
e m

ultiplexing

Increased granularity and higher parallelism yields higher efficiency
Smaller granularity and reduced parallelism yields more flexibility
Time multiplexing is needed for performance with low parallelism

We will look at three cases…
Degree of Parallelism, Nop

(operations per clock cycle)

Granularity
(gates)10000

Clusters of data-paths
100

Bit-level operations

DSP with
application specific

Extensions

Time- Multiplexing
Dedicated Hardware or

Function- Specific
Reconfigurable

1000
Data-path operations

Fully Parallel
Direct Mapped

Hardware

Hardware
Reconfigurable

Processors

Digital Signal
Pr ocessors

Data-Path
Reconfigurable

Processors

10
Gates

1000

100

1

10

Microprocessors

Fully Parallel
Implementation on

Field Programmable
Gate Array

Higher e
ffic

iency

Incre
ased fle

xib
ility

Tim
e m

ultiplexing

(1)

(2)

(3)

Case (1): Reconfigurable Logic: FPGA

CLB CLB

CLBCLB

Very low granularity
(CLB’s) – improves
flexibility
High parallelism –
improves efficiency

But….

Case (1): Reconfigurable Logic: FPGA

CLB CLB

CLBCLB

Very low granularity (high amount of
interconnect) – decreases efficiency

Case (2): Reconfiguration at a higher level
of granularity

Higher granularity – datapath units
Higher efficiency, but lower flexibility

adder

buffer

reg0

reg1

mux

Chameleon
Systems S2000

Case (3): Even higher granularity -
“Flexible” dedicated hardware

Use a hardware
architecture that has the
flexibility to cover a
range of parameter
values
Not much flexibility, but
very high efficiency
Example here is an FFT
which can range from
N=16 to 512
Uses time multiplexing

64128 256

64128

N=16

16 8 4 2 1

N=32

16 8 4 2 1 32

N=64
16 8 4 2 1

32 64

N=128

N=256

16 8 4 2 1 32

16 8 4 2 1 32

N=512

N FIFO of length N

CM: Multiplica tion with)j1(
2
2

−

BF1: Additive radix-2 butte rfly

BF2: Additive radix-2 butte rfly plus
multiplica tion with -j

Complex multiplie r (one input coming from ROM)

8 4 2 1

Efficiencies for a variety of architectures for a
flexible FFT

MOPS/mW
vs. FFT size

(3)

(2)(1)

(3)

(2)

(1)

(1) FPGA
(2) Reconfig. DP
(3) Dedicated

MOPS per mm2

vs. FFT size

* All results are scaled to 0.18µm

The Issues

How much flexibility is needed and how
best to include it…
A single system description including
interaction between the analog and digital
domains
“Realtime” SOC prototyping
Automated ASIC design flow

An SOC Design Flow with Prototyping

Common test vectors,
and hardware description of

net list and modules

Digital delay,
area and

energy estimates
& effect of analog

impairments

Description with Hardware Constraints
(Fixed point Simulink,

FSM Control in Stateflow)

Real-time Emulation
(BEE FPGA Array)

Automated AISC Generation
(Chip-in-a-Day flow)

Initial System Description
(Floating point Matlab/Simulink)

Determine Flexibility Requirements

Algorithm/flexibility
evaluation

Simulation Framework using
Simulink/Stateflow (from Mathworks, Inc.)

Transmitter Channel Analog
Receiver

Digital
Baseband

• Techniques used to decrease simulation time:
Baseband-equivalent modeling of RF blocks
Compile design using MATLAB Real-Time

Workshop

Blocks map to implementation libraries

Time-Multiplexed FIR Filter

D
A
WEN

SRAM

Q
2

TAP_COEF

addr

wen

reset_acc

CONTROL

1 1
X Y

A

B

RESET

MAC

Z

Stateflow-
VHDL

translator

Black Box

RTL Code
or

Synopsys
Module

Compiler
or

Custom
Module

Implementation choices embedded in description
Libraries of blocks are pre-verified and re-used

Timed Dataflow Graph Specification

Simulink (from
Mathworks)
Discrete-Time
(cycle accurate)
Fixed-Point Types
(bit true)
No need for RTL
simulation
Embedded
implementation choices

Multiply / Accumulate

+
+
ADD

1
A

S18

MULT
S12 REG

Z
1

CONST
S18

0

MUX

3
RESET

2
B

1
Z

Control

Stateflow
» Extended Finite

State Machine
» Subset of Syntax
» Converted to VHDL
» Synthesized

VHDL
» Synthesized directly

VHDL & Stateflow Macros map to a netlist of Standard Cells using
standard synthesis

Simulink Model of Direct-Conversion Receiver

Bit true, cycle accurate digital baseband
algorithms…

Basic Blocks based on Xilinx System
Generator libraries

Higher level DSP Blocks

Directly map diagram into hardware since there is
a one for one relationship for each of the blocks

Mult2

Mac2Mult1 Mac1

S reg X reg Add,
Sub,
Shift

Results: A fully parallel architecture that can be
implemented rapidly

Then do a simulation: Zero-IF Receiver

10 users (equal power)
13.5dB receiver NF
PLL: -80dBc/Hz @ 100kHz
2.5° I/Q phase mismatch
82dB gain
4% gain mismatch
IIP2 = -11dBm
IIP3 = -18dBm
500kHz DC notch filter
20MHz Butterworth LPF
10-bit, 200MHz Σ-∆ ADC

• pre-MUD

• post-MUD

Output SNR ≈ 15dB

With Analog Impairments

10 users (equal power)
20MHz Butterworth LPF
500kHz DC notch filter
13.5dB receiver NF
82dB gain
4% gain mismatch
2.5° I/Q phase mismatch
IIP2 = -11dBm
IIP3 = -18dBm
PLL: -80dBc/Hz @ 100kHz
10-bit, 200MHz S-D ADC

• ideal receiver

• real receiver

Now to implement that description

Common test vectors,
and hardware description of

net list and modules

Digital delay,
area and

energy estimates
& effect of analog

impairments

Description with Hardware Constraints
(Fixed point Simulink,

FSM Control in Stateflow)

Real-time Emulation
(BEE FPGA Array)

Automated AISC Generation
(Chip-in-a-Day flow)

Initial System Description
(Floating point Matlab/Simulink)

Determine Flexibility Requirements

Algorithm/flexibility
evaluation

Single description – Two targets

Simulink/Stateflow
Description

ASIC Implementation
“Chip in a day”

BEE
FPGA Array

BEE Target for Real-time emulation

Simulink/Stateflow
Description

BEE
FPGA Array

BEE Design flow Goals

Fully automatic generation of FPGA and
ASIC implementations from Simulink
system level design
Cycle accurate bit-true functional level
equivalency between ASIC & BEE
implementation
Real-time emulation controlled from
workstation

Processing Board PCB

Board-level Main Clock
Rate: 160MHz+
On Board connection
speed:
» FPGA to FPGA: 100MHz
» XBAR to XBAR: 70MHz

Off board connection
speed: (3 ft SCSI cable loop back
through riser card)

» LVTTL: 40MHz
» LVDS: 160MHz ~ 220MHz Board Dimension: 53 X 58 cm

Layout Area: 427 sq. in.
No. of Layers: 26

The BEE with RF transceiver I/O

Run-time Data I/O Interface

Matlab Control GUI
Infrastructure for
transferring data to and
from the BEE
» The entire hardware

interface is in one fully
parameterized block

» Simply drop block into the
Simulink diagram

» Accepts standard Simulink
data structures for reuse of
existing test vectors

Linux/StrongARM
Daemon

User Design

Embedded
ControllerR

AM

R
AM

BEE

User Design
Simulink/Stateflow

Ethernet

Benchmark: 10240 Tap Fir Design

10240 Tap Fir Design (cont.)

BEE Performance
Reference Design:
» 10240 tap FIR filter
» 512 taps per FPGA

Slice utilization: 99% of 19200 slices
Max Clock Rate: 30 Hz
MOPS: 580,000 MOPS total (16bit add & 12bit cmult)
Power: 2.5W per FPGA, 50W total

Comparison with an ASIC version using .13 micron
chip metrics of 5000 MOPS/mm2, 1000 MOPS/mW =>
The BEE is equivalent to a single chip of 50 mm2 with power

= 500 mW.
50 Watts/500 mW => 100 times more power
(20 ∗2 cm2)/.5 => 100 times more area

Implementation of a Narrow-Band
Radio System (Hans Bluethgen)

Transmitter

Complete System

2.45 GHzCarrier Freq.

1 Mbit/s, 500
Kbit/s

Data Rate

1 MHzBandwidth
DPSKModulation
PN SequenceFrame

Synch.

Receiver

BEE Implementation of a Narrow-Band
Radio

BEE

TransmitterReceiver

Frame O.K.

Data Match

Data Out

Receiver
Output
on SCSI
Connector

Transmitter
Output

Spectrum

3G Turbo Decoder (Bora Nikolic)

Complete description of ECC with variable noise levels to evaluate
performance
10 MHz system clock
SNR 14db → -1db
109 Samples in two minutes
Parameterized to support variable binary point precision, SNR,
number of samples for architectural evaluation

BCJR Simulink simulation

E2PR4 Channel Encoder -
Decoder
Fully enclosed design
» Uniform RNG input vector
» Channel encoder
» AWGN filter
» Channel decoder
» BER collection mechanism

Part of: Full 3G Turbo
Decoder

BCJR Waterfall Curve

BER-SNR Waterfall Curve (BCJR)

0.00001

0.0001

0.001

0.01

0.1

1
-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

SNR (dB)

B
E

R

10MHz, 109 Samples, 1 bit binary point precision

Total simulation: approx. 10 minutes

ASIC Target

Simulink/Stateflow
Description

ASIC Implementation
“Chip in a day”

Complete Design Flow
Design Specs
& Test Vectors

Simulink
Xilinx

Blockset
Library

System
Design
MDL

BEE
Partition?

Manual
Partition

Annotation

Xilinx System
Generator

BEE_ROUTER

BEE_ISE INSECTA

BEE Post XSG
Processes

MC
Script
Library

Chip-level
BitStream

ASIC Structural
Netlist

BEECONFIG

MAP/Timing
Report

VHDL
Simulation Files

ModelSim

Performance
Estimation

Design Area,
Power, Speed

First Encounter
& Nano-Route

ASIC LayoutNano-Sim

ASIC part of flow

Chip-in-a-Day ASIC flow
Tcl/Tk code drives the flow
» Used to drive multiple

EDA tools: First
Encounter, Nanoroute,
Module Compiler

GUI controls technology
selection, parameter selection,
flow sequencing

» A real “Push Button” flow…
» Users can refine flow-
generated scripts

Automated ASIC flow tools
High-level

Design

Identify files and
paths [Insecta]

Resolve design
hierarchy [Insecta]

Check hierarchy
consistency [Insecta]

Identify bad VHDL
structures [Insecta]

Correct bad VHDL
structures [Insecta]

Generate synthesis
scripts [Insecta]

Virtual component
generation [MC]

Generate backend
scripts [Insecta]

Run physical
synthesis [DC/PSYN]

Run signal integrity
[First Encounter]

Run floorplanning
[First Encounter]

Re-run physical
synthesis [DC/PSYN]

Run route
[NanoRoute]

Run extraction &
checks [Calibre]

GDSII

Backannotate netlist
[DC]

Run (first)
logic synthesis [DC]

PC Software
1. Matlab R13 (6.5)
2. Xilinx ISE
3. Xilinx System

Generator 2.2
4. BEE ISE
5. Xilinx ChipScope
6. Xilinx Parallel Cable

UNIX SW Versions
1. TCL/TK 8.3
2. Synopsys 2002.05
3. Cadence SoC

Encounter 2.2
(Nanoroute)

4. Modelsim 5.6

Post process DFII
[icfb]

View hierarchy
[Insecta]

Optional design steps

View logic
schematic [DA]

View floorplan
[First Encounter]

Gate-level simulation
[Modelsim]

View routed design
[NanoRoute]

View log files
[Insecta]

View GDSII [pipo]

Generate GDSII
[pipo]

ASIC Flow: Back-end
Using Unicad (ST
Microelectronics)
backend directly for
DRC, LVS, Antenna
rule checking
» Easier to track

technology updates
from foundry.

» Critical for evaluating
internally developed
technology files for FE,
Nanoroute

ASIC Tool Flow: Placement
Cadence based flow
» First Encounter (FE)
» Nanoroute

Timing Driven!
» FE provides accurate

wire parasitic estimates
» Placement by FE

ASIC Flow: Routing in 130nm
Nanoroute: Ready for
130nm, 90nm designs
» Stepped metal pitches
» Minimum area rules
» Complex VIA rules
» Avoids antenna rule

violations
» Cross-talk avoidance: to

be evaluated
Silicon Ensemble:
Fallback position
Apollo tools: Possible
alternative

ASIC directly from Simulink – Narrowband
Transmitter

CPU time: 57 min
Core Utilization: 0.344418 (Pad
limited)
Size (From SoC Enconter):

Core Height 565.8u
Core Width 489.54u

Die Height 1322.66u
Die Width 1242.3u

Synopsys estimates:
Total Dynamic Power = 610.5163
uW (100%)
Cell Leakage Power = 15.9364 uW
Critical path: 9.21ns

The Issues I Addressed
How much flexibility is needed and how best to
include it…
» As little as possible consistent with business constraints

A single system description including interaction
between the analog and digital domains
» Timed dataflow plus state machines

“Realtime” SOC prototyping
» FPGA configurability makes real-time prototyping

possible in a fully parallel architecture.
Automated ASIC design flow
» Certainly possible - the “chip in a day” flow

	E225C – Lecture 3System on a Chip Design
	What is an SoC?
	A Wireless System – Typical SOC Design
	An SOC Design Flow with Prototyping
	The Issues I am Going to Address
	Flexibility
	Good reasons for flexibility
	So, what is the cost of flexibility?
	Definitions…
	Energy Efficiency Metric: MOPS/mW
	Energy and Power Efficiency
	ISSCC Chips (.18m-.25m)
	Energy Efficiency (MOPS/mW or OP/nJ)
	What does the low efficiency really mean?
	Why such a big difference?
	Supply Voltage, Vdd
	Switched Capacitance, Csw (pF/mm2)
	Aop = Area per operation (Achip/Nop)
	Lets look at some chips to actually see the different architectures
	Microprocessor: MOPS/mW=.13
	DSP: MOPS/mW=7
	Dedicated Design: MOPS/mW=200
	The Basic Problem is Time Multiplexing
	Area Efficiency
	Surprisingly the area efficiency roughly tracks the energy efficiency…
	Hardware/software
	Are there better ways to provide flexibility?
	Granularity and Parallelism
	We will look at three cases…
	Case (1): Reconfigurable Logic: FPGA
	Case (1): Reconfigurable Logic: FPGA
	Case (2): Reconfiguration at a higher level of granularity
	Case (3): Even higher granularity - “Flexible” dedicated hardware
	Efficiencies for a variety of architectures for a flexible FFT
	The Issues
	An SOC Design Flow with Prototyping
	Simulation Framework using Simulink/Stateflow (from Mathworks, Inc.)
	Blocks map to implementation libraries
	Timed Dataflow Graph Specification
	Control
	Simulink Model of Direct-Conversion Receiver
	Bit true, cycle accurate digital baseband algorithms…
	Basic Blocks based on Xilinx System Generator libraries
	Higher level DSP Blocks
	Directly map diagram into hardware since there is a one for one relationship for each of the blocks
	Then do a simulation: Zero-IF Receiver
	With Analog Impairments
	Now to implement that description
	Single description – Two targets
	BEE Target for Real-time emulation
	BEE Design flow Goals
	Processing Board PCB
	The BEE with RF transceiver I/O
	Run-time Data I/O Interface
	Benchmark: 10240 Tap Fir Design
	10240 Tap Fir Design (cont.)
	BEE Performance
	Implementation of a Narrow-Band Radio System (Hans Bluethgen)
	BEE Implementation of a Narrow-Band Radio
	3G Turbo Decoder (Bora Nikolic)
	BCJR Simulink simulation
	BCJR Waterfall Curve
	ASIC Target
	Complete Design Flow
	Chip-in-a-Day ASIC flow
	ASIC Flow: Back-end
	ASIC Tool Flow: Placement
	ASIC Flow: Routing in 130nm
	ASIC directly from Simulink – Narrowband Transmitter
	The Issues I Addressed

