
Test Compiler TutorialV3.3b

 HOME CONTENTS FIGURES TABLES EXAMPLES INDEX

For further assistance, email solvit@synopsys.com or call your local support center

Methodology

When you use Test Compiler at the module level, use the following
methodology:

1. Define the appropriate scan style.

If the design is purely combinational, define combinational as your
scan style.

If the design contains sequential logic, select the scan style from
one of the scan styles supported by Test Compiler. The scan styles
that Test Compiler supports are

� Multiplexed flip–flop (multiplexed_flip_flop)

� Clocked scan (clocked_scan)

� LSSD (lssd)

� Auxiliary clock LSSD (aux_clock_lssd)

Note
Test Compiler requires you to use the same scan style on the entire
chip. Select the appropriate scan style for the chip and identify it
before optimizing each subdesign of the chip.

2. Optimize the subdesign by using Design Compiler.

For sequential subdesigns, defining the scan style before
performing logic optimization invokes the Test–Smart Compile
feature. Test–smart compile limits the set of sequential cells used
during logic optimization. The restriction prevents the use of
complex sequential cells, which do not have scan equivalents, for
functional logic. For example, Test–Smart Compile would not use a
multiplexed flip–flop cell for functional logic because this cell must
be reserved for use as a scannable equivalent for a D flip–flop.

Test Compiler TutorialV3.3b

 HOME CONTENTS FIGURES TABLES EXAMPLES INDEX

For further assistance, email solvit@synopsys.com or call your local support center

3. Check the test design rules.

For combinational designs, the check_test command checks for
combinational feedback loops. For sequential designs, the
check_test command also analyzes the design for compliance with
the scan design rules associated with the selected scan style, and
reports any violations. Test Compiler links all violations reported by
the check_test command to the schematics in the Design Analyzer
so you can easily locate testability problems.

4. Estimate fault coverage results.

Test Compiler does not require you to eliminate test design rule
warnings to run ATPG, but many design rule violations cause
significantly lower fault coverage results. Statistical ATPG
(create_test_patterns –sample n) quickly estimates the fault
coverage for a subdesign.

Note
Because of differences in input port controllability and output port
observability after the subdesign is embedded within the hierarchy
of the complete design, you need to consider the fault coverage
numbers on an individual block as best–case fault coverage
numbers. High fault coverage on each subdesign does not
guarantee high fault on the complete chip, but low fault coverage on
a subdesign results in lowered fault coverage of the entire chip.

5. Fix any testability problems.

If the fault coverage estimate reports unacceptable fault coverage
results, you need to fix the testability problems identified by
check_test . Test Compiler identifies the source of the test design
rule violation.

Select the best method to correct the problem and manually modify
the design to reflect the change—modify the RTL description,
modify the gate–level netlist, or use the Design Compiler design
editing commands.

After modifying the design to fix testability problems, repeat steps 1
through 5 until you reach an acceptable fault coverage result.

Note
If you modify the design with design editing commands, you do not
need to repeat steps 1 and 2; no read command is executed to
input changes.

Test Compiler TutorialV3.3b

 HOME CONTENTS FIGURES TABLES EXAMPLES INDEX

For further assistance, email solvit@synopsys.com or call your local support center

Figure 2-12 shows that INT_CLK, the clock signal for some of the
flip–flops in COMPUTE_BLOCK, is uncontrollable because it is driven by
sequential logic. To improve COMPUTE_BLOCK testability, you need to
provide a test mode that uses top–level clock port CLK as the clock signal
for the affected flip–flops during scan testing, but continues to use
internally generated clock signal as the clock signal for the flip–flops
during functional operation. The test mode logic is added to the
CLOCK_GEN block, which generates the uncontrollable clock signal,
INT_CLK. To provide the test mode, you must add a new input port,
TEST_MODE, to CLOCK_GEN (and to COMPUTE_BLOCK). TEST_MODE controls the
test mode configuration. For this example, the test mode logic consists
of a multiplexer with TEST_MODE as the select line and CLK and internally
generated clock signal (renamed to DIV_CLK) as the data inputs.

Figure 2–12 CLOCK_GEN Test Mode Logic

DIV_CLK

CLK

TEST_MODE
(external)

INT_CLK (to logic)

A 2:1 multiplexor can be modeled by using an if statement in both
Verilog and VHDL. The Verilog process to add a test mode to CLOCK_GEN

is shown in Example 2-1. The VHDL process to add a test mode to
CLOCK_GEN is shown in Example 2-2.

Example 2–1 Verilog Test Process

always @(TEST_MODE or CLK or DIV_CLK)
begin
 if (TEST_MODE)
 INT_CLK <= CLK;
 else
 INT_CLK <= DIV_CLK;
end

Test Compiler TutorialV3.3b

 HOME CONTENTS FIGURES TABLES EXAMPLES INDEX

For further assistance, email solvit@synopsys.com or call your local support center

Methodology

When you use Test Compiler at the chip level, use the following
methodology (steps 1 through 4).

1. Perform the analysis steps outlined in “Methodology” in
Chapter 2, “Testability at the Module Level.”

Performing the testability analysis steps on each module of your
design minimizes the possibility of testability problems at the top
level, but it is possible for testability problems to be introduced as
you move up the hierarchy. Before you perform scan insertion,
verify that all test violations have been identified and resolved.

2. Insert scan–test structures.

Scan insertion works hierarchically. You insert scan logic at the top
level of the design; Test Compiler automatically works through the
entire design hierarchy.

The exercises in this tutorial use the full–scan test methodology, in
which all sequential cells are replaced with scannable equivalents.
Test Compiler Plus also supports constraint–driven partial scan,
which selects a subset of the sequential cells to scan, according to
your performance, area, and testability constraints.

3. Perform timing analysis and incremental optimization, if necessary.

The integration between Design Compiler and Test Compiler makes
it easy to optimize your design with the scan–test structures in
place, thus minimizing the performance and area effect of the scan
technique.

Use timing analysis to verify that no setup or hold violations are on
the scan path. Test Compiler uses zero–delay models during
ATPG; therefore, timing violations on the scan path may cause
simulation mismatches or failing vectors on the ATE (automatic test
equipment).

Test Compiler TutorialV3.3b

 HOME CONTENTS FIGURES TABLES EXAMPLES INDEX

For further assistance, email solvit@synopsys.com or call your local support center

4. Generate and format manufacturing test patterns.

Now that the design is complete, you are ready to use ATPG to
generate the final set of manufacturing test patterns. The final
destination of the manufacturing test patterns that Test Compiler
generates is, in most cases, a semiconductor vendor. It is important
that you define any vendor–specific requirements with the
appropriate environment variables before you run ATPG. After the
patterns are generated, they are formatted in the vector format you
designate.

Note
The best source for vendor–specific requirements is your
semiconductor vendor. Each vendor–specific vector format has
accompanying documentation that gives examples of vendor
requirements and describes how to define those requirements to
Test Compiler.

Alarm Clock Design

You optimized the two subdesigns instantiated at the top level of the
alarm clock design in the Chapter 2 exercises. Now, optimize the top
level of the design. Remember that you added a port to COMPUTE_BLOCK

to configure the design for test mode. Before you optimize the top–level
design, update the source code to reflect the additional port.

� To modify the source code for TOP:

1. Copy the source file into your working directory and add write
permission to the read–only file.

For Verilog, use the following UNIX commands:

% cp verilog/TOP.v .

% chmod u+w TOP.v

For VHDL, use the following UNIX commands:

% cp vhdl/TOP.vhd .

% chmod u+w TOP.vhd

Test Compiler TutorialV3.3b

 HOME CONTENTS FIGURES TABLES EXAMPLES INDEX

For further assistance, email solvit@synopsys.com or call your local support center

Resolving ATPG Conflicts
The typical causes of an ATPG conflict are

� Three–state logic that always causes bus contention or bus float.

Test Compiler requires that one and only one driver be active on a
three–state net at any time. If the bus decode logic always activates
multiple drivers (bus contention) or no drivers (bus float), the single
active driver condition cannot be met and an ATPG conflict results.

Test Compiler considers pullup and pulldown resistors on a
three–state net to be the active drivers on the bus when the decode
logic selects no driver on the bus.

Note
If the bus decode logic generates at least one state with a single
driver active on the bus, but also generates states in which Test
Compiler sees bus float or bus contention on a three–state bus,
reduced fault coverage occurs. However, Test Compiler does not
flag an ATPG conflict.

� Asynchronous set or reset signals that cannot be simultaneously
disabled.

To perform scan shift, you must disable the asynchronous resets on
all scannable sequential cells. If the circuit does not meet the
disabling requirement, an ATPG conflict occurs.

� Conflicting requirements defined by test mode configurations.

You may stipulate conflicting requirements when using the
set_test_hold or set_test_require commands. If you do stipulate
conflicting requirements, ATPG determines that the requested
configuration cannot be achieved and generates an ATPG conflict.

� To generate the ATPG conflict report:

1. Click Display Reports... in the Test Synthesis dialog box.

The Test Reports dialog box is displayed.

2. Click ATPG Conflict to select the ATPG conflict report.
3. Click Apply to display the Test Report window with the ATPG conflict

report.

� To get the schematic representation of the conflict report:

1. Select the underlined line with the left mouse button.
In the Test Report window, the text is highlighted and the Show
button is enabled (displayed black, not grayed–out), as shown in
Figure 3-1.

Test Compiler TutorialV3.3b

 HOME CONTENTS FIGURES TABLES EXAMPLES INDEX

For further assistance, email solvit@synopsys.com or call your local support center

� To close the Test Report window lick Cancel.

� To close the Test Reports dialog box click Cancel.

� To close the Test Synthesis dialog box click Cancel.

The CLK_DISPLAY three–state bus is driven by the ALM_DISPLAY bus and
the TIM_DISPLAY bus. Both the ALM_DISPLAY bus and the TIM_DISPLAY bus
are outputs from COMPUTE_BLOCK.

� To push into Schematic View for COMPUTE_BLOCK double–click on the
COMPUTE_BLOCK instance in the Schematic View of TOP.

The signals on the ENABLE input ports on the ALARM_BLOCK and
TIME_BLOCK designs are the three–state enable signals. In the
COMPUTE_BLOCK design (Figure 3-3), you can see that the three–state
enables for both the ALM_DISPLAY bus and the TIM_DISPLAY bus are
controlled by the ALARM input port. You always have bus float (ALARM=0) or
bus contention (ALARM=1). The three–state enable signals are actually a
design error; the behavior recommended by Test Compiler is to drive the
bus with ALM_DISPLAY when ALARM=1 and drive the bus with TIM_DISPLAY

when ALARM=0.

Figure 3–3 COMPUTE_BLOCK Design

Test Compiler TutorialV3.3b

 HOME CONTENTS FIGURES TABLES EXAMPLES INDEX

For further assistance, email solvit@synopsys.com or call your local support center

4 Testability at the Board Level
Previous exercises dealt with test techniques applicable at the module
and chip level. Although Test Compiler does not directly support
board–level test, in this chapter you add logic to the alarm clock design
to provide an interface between chip–level and board–level testing.

Boundary Scan is a test technique defined by the IEEE 1149.1 standard
that can be applied at the printed circuit board level. Test Compiler
automatically synthesizes 1149.1– compliant (or –compatible) boundary
scan logic around your core logic design. Refer to Chapter 8, “Adding
Boundary Scan Test Circuitry,” of the Test Compiler Reference Manual
for a full discussion of Test Compiler’s programmable boundary scan
synthesis capability.

Working with the alarm clock core design, you learn how to

 Prepare the chip–core for boundary scan insertion.

 Insert boundary scan circuitry into a design.

 Generate reports on the boundary scan implementation.

 Analyze boundary scan testability.

 Generate boundary scan test patterns.

Test Compiler TutorialV3.3b

 HOME CONTENTS FIGURES TABLES EXAMPLES INDEX

For further assistance, email solvit@synopsys.com or call your local support center

Insert Boundary Scan Logic

The default boundary scan implementation synthesized by Test Compiler
includes a two–bit IR (Instruction Register) to support the mandatory
BYPASS, EXTEST, and SAMPLE/PRELOAD instructions, a bypass register, and
the BSR (Boundary Scan Register) with all ports included. The default
TAP controller is implemented with an asynchronous reset.

When you work in the Design Analyzer environment, the default
behavior is to group the core logic. Grouping the core logic allows you to
maintain its identity in the final design for schematic generation and
simulation. Figure 4-1 shows the Insert Boundary Scan Circuitry dialog
box. Note that the Group Core Logic toggle button is selected.

Figure 4–1 Insert Boundary Scan Circuitry Dialog Box

Test Compiler TutorialV3.3b

 HOME CONTENTS FIGURES TABLES EXAMPLES INDEX

For further assistance, email solvit@synopsys.com or call your local support center

Fault Simulating ATPG Vectors

TestSim supports fault simulation of ATPG vectors either in serial mode
(multiplexed flip–flop designs only) or in parallel mode (default or
initialization test protocols only).

Note
TestSim does not support fault simulation for LSSD designs.

In general, the fault coverage results reported by TestSim will be greater
than or equal to the fault coverage reports reported by Test Compiler.
Increased fault coverage results in TestSim are usually due to cells
which are assumed to be black boxes by Test Compiler, because of test
design rule violations, which are not black boxes for TestSim and can be
used to increase fault coverage results or internal 3–state nets. In some
special cases, fault coverage results reported by TestSim can be lower
than the fault coverage results reported by Test Compiler. Decreased
fault coverage results in TestSim are usually due to redundant faults,
which cannot be identified by TestSim and are marked as untested, or
probable detects, which are counted as untested for fault coverage
calculations. For more information, refer to Chapter 10, “Fault Simulation
with TestSim,” in the Test Compiler Reference Manual.

Parallel Fault Simulation of ATPG Vectors
Parallel fault simulation of the ATPG pattern set is accomplished by fault
simulating the .vdb file generated by create_test_patterns . You will use
the TOP.vdb file generated in Chapter 3 of this tutorial to perform parallel
fault simulation.

� To fault simulate:

1. Click on the TOP design icon.

2. Select Tools�Test Synthesis...

The Test Synthesis dialog box is displayed.

Test Compiler TutorialV3.3b

 HOME CONTENTS FIGURES TABLES EXAMPLES INDEX

For further assistance, email solvit@synopsys.com or call your local support center

� To restore the test status:

1. Click Restore/Delete Test Program... in the Test Manger dialog box.

2. Click on the Restore Test Program toggle button.

3. Enter TOP.vdb in the Name: text box.

4. Click Apply.

5. Click Cancel.

� To generate the coverage report:

1. Click Analyze Fault Coverage... in the Test Manger dialog box.

2. Click Coverage to select the coverage report.

3. Click Apply.

Enter the Test Compiler coverage information in the Test Compiler
column in Table 5-1.

Notice that TestSim detected an additional 4 faults (3394 versus 3390).
These additional faults are faults on the enable line of a 3–state driver. In
addition, the number of tied and untested faults differ between TestSim
and Test Compiler. This difference is partially due to the additional
detected faults in TestSim, but there is still a difference of 46 faults
between the ATPG and fault simulation results. The difference is
explained by the difference in classification of tied faults between
TestSim and Test Compiler. Some of the faults marked as tied by
TestSim are marked as redundant by Test Compiler – in this case, due to
the test_hold attributes on the design, the redundant faults are then
marked as untested by Test Compiler. For more information on
difference in fault classifications between TestSim and Test Compiler,
refer to Chapter 10, “Fault Simulation with TestSim,” in the Test Compiler
Reference Manual.

� To close the Test Report window click Cancel.

� To close the Test Reports dialog box click Cancel.

Test Compiler TutorialV3.3b

 HOME CONTENTS FIGURES TABLES EXAMPLES INDEX

For further assistance, email solvit@synopsys.com or call your local support center

Generating a TestSim Model
You will be doing several fault simulation runs during the course of this
chapter, so you should generate a TestSim model for the alarm clock
design.

TestSim libraries are required to generate a TestSim model for your
design. TestSim automatically searches for the TestSim library files
library _testsim.db in your search_path when generating TestSim
design models and performing fault simulation. The TestSim library file
names should not be added to the link_library variable

� To read the design database:

1. Select File�Read...

The Read File dialog box is displayed.

2. Select ../ (Move up one directory) .

3. Click OK.

4. Select TOP.db .

5. Click OK.

� To generate the TestSim model for the alarm clock design:

1. Select Setup�Command Window...

The Command Window is displayed.

2. Enter create_testsim_model TOP_testsim.db in the design_analyzer>
text box. Press Return.

3. Click on the icon in the upper–lefthand corner.

The Command Window is iconified.

Now that you have the TestSim library and TestSim model, you are ready
to start fault simulating. First you will fault simulate the patterns
generated using Test Compiler ATPG, then you will generate and fault
simulate some design verification (functional) vectors. Finally, you will
use TestSim and Test Compiler together to create a multi–style,
multi–pass test process.

Test Compiler TutorialV3.3b

 HOME CONTENTS FIGURES TABLES EXAMPLES INDEX

For further assistance, email solvit@synopsys.com or call your local support center

Figure 5–5 Fault Simulation Results – VHDL

The 809 functional vectors achieved 84.43% fault coverage. If fault
coverage above 84% is required, you can use the multi–style,
multi–pass capability of Test Manager to run incremental ATPG on this
design. Refer to Chapter 9, “Test Manager,” of the Test Compiler
Reference Manual for more information on multi–style, multi–pass
testing.

Wrap–Up

The exercises in this chapter introduced the basics of using TestSim to
fault simulate ATPG patterns and functional vectors. TestSim and Test
Compiler can be used together in a multi–style, multi–pass test process
to achieve the highest possible fault coverage results for your design.

