
Transaction Level Modeling

Brad Matthews
ECE 652

What is Transaction Level
Modeling?

 Involves the abstraction of content to a
level above RTL

Move from pin-level communication to a set
of function calls
burst_write(int addr, int data, int *wdata)
burst_read(int addr, int data, int *rdata)
write(int addr, int data)
 read(int addr)

Why is Transaction Level
Modeling important?

Provides an executable specification
for both hardware and software
engineers

Simulation speedup (5x-1000x)
System level design exploration and

verification

The TLM Dream

Transaction Level Model will be
completed before a single line of RTL
or software is written

Allow for hardware and software to be
developed at the same time

Improve time to market and eliminate
“specification errors”

Languages for TLM
C

Pros: Well-known, fast, can use Verilog PLI or
Synopsys’ DirectC to integrate model with RTL

Cons: OOP is not easy, No industry supported
application program interface (API) for TLM

C++
Pros: Fast, OOP language, templates, inheritance,

polymorphism
Cons: No industry supported API for TLM

 SystemC
Pros: C++ with classes that support System Level

Modeling, industry support, can co-simulate with RTL
Cons: Knowledge-base not as deep as C++ or C.

TLM Layers

TLM Layers (cont…)

C++ Inheritance

 Provides a mechanism for creating a new
class using a base class. The new class is
generally termed a derived class.

A derived class can inherit use the
functions/data of the base class, extend the
functionality, or override the functions
provided by the base class

 Inheritance defines an “is a” relationship
For example, a dog “is a” animal

C++ Templates

Allows for the definition of functions once
for multiple data types

The “C” way
 float calculate_fir(int NumberOfTaps);
 int calculate_fir(int NumberOfTaps);

The “C++” way
 fir<float, 256> fir1;
 fir<int, 512> fir2;
 fir1.calculate_fir(); fir2.calculate_fir();

 C++ Template Example
template<type T, int N=256>
class FIR : public sc_module
{

public:
sc_in<T> data_in;
sc_out<T> data_out;
……
T calculate_fir()

 private:
T tap[N];

}

SystemC Terminology
Module

Container Class that can consists of
processes, ports, channels, and other
modules.

Processes
Code block that describes and

implements the module functionality

Port
Provides mechanism to connect a module

to a channel via an interface

SystemC Terminology (cont…)

 Interface
Describes what methods are available, but

provides no method implementations or data
fields

Describes what is supported such as read() or
write()

Channels
 Implements the methods made available by the

the interface
Performs the actual transfer

[1]

SystemC Terminology (cont…)

SystemC Terminology (cont…)

[1]

Example TLM Code

Example TLM Code (cont…)

Resulting Structure

Transaction Level Modeling
with AMBA

Why?
Mechanism that allows architect to:

Explore arbitration algorithms
Ensure enough system bandwidth is available
Provide executable specification to designers

Extremely useful for platform-based
development
RapidChip (LSI Logic)
SoC Mosaic (Toshiba)

AMBA Bus Structure

[2]

SystemC AMBA System

[3]

AMBA System Modeling
Components

 Module(s)
 Clock Generator (HCLK)
 Master(s)
 Slave(s)
 Bus*
 Arbiter
 Decoder
 Monitor**

 Interface(s)
Master Interface
Slave Interface
Arbiter Interface
Decoder Interface

Channel(s)
AHB Channel
Bus*

AMBA Clock Generator

Simple declaration of sc_clock:
sc_clock clk("clock", sc_time(10, SC_NS));

System with multiple clock domains
would be defined by multiple
declarations of sc_clock:
sc_clock clk1("clock1", sc_time(20, SC_NS));
sc_clock clk2("clock2", sc_time(10, SC_NS));
sc_clock clk3("clock3", sc_time(5, SC_NS));

AMBA Master Module

Master has the following properties:
Port that connects to an interface

implemented by a channel (AHB Channel
or Bus)

Read/Write transaction requests are
implemented in the channel but made
from the master.

AMBA Slave Module
Slave has the following properties

Port connects to an interface with
functions again implemented by the
channel

Transactions are to be initiated using the
channel

Common to represent a slave address
space using an array to read()/write()
from/to a given address

AMBA Bus Module/Channel

Masters and Slaves connect to the Bus
using the AHB Channel (module*)

Arbiter and Decoder connects to the
Bus using specialized interfaces

Can be represented as a simple mux-
bus structure or a complex pipeline
structure with defined latency

AMBA Arbiter Module

Arbiter processes requests and, using
a desired algorithm, provides masters
with a grant signal for bus access

Key is the arbitration algorithm
Simple Priority-Based Arbitration
Round-Robin Arbitration
Weighted Round-Robin Arbitration

AMBA Decoder Module

Reads the address line to determine
which slave should be granted access
to the Read Mux.

Contains address map for design in
order to decode correctly

AMBA AHB Bus Channel

Implements the functions of the
interfaces detailed in the Master,
Slave, and Bus modules

Routines include:
Read()
Write()
BurstRead()
BurstWrite()

sc_main() code structure

AMBA Signaling

AMBA Signaling (cont…)

AMBA TLM Data Flow

AMBA TLM Data Flow (cont…)

AMBA TLM Data Flow (cont…)

AMBA TLM Data Flow (cont…)

AMBA Master Code

AMBA Master Code (cont…)

TLM Summary

The key word with Transaction Level
Modeling is abstraction

Increased simulation speed at the cost
of accuracy

Important to find the right level of
abstraction to meet the desired
performance/accuracy goals

References

[1]http://www.elet.polimi.it/upload/sil
vano/mioweb5/FilePDF/METODOLOGIE
/Simple%20Bus%20Slides.pdf

[2] ARM, Amba specification (rev 2.0),
March 2005.

[3] ARM Ltd. AMBA AHB Cycle Level
Interface Specification, Document
number AHBCLI.1.1.0, 2003.

