
Transaction Level Modeling

Brad Matthews
ECE 652

What is Transaction Level
Modeling?

 Involves the abstraction of content to a
level above RTL

Move from pin-level communication to a set
of function calls
burst_write(int addr, int data, int *wdata)
burst_read(int addr, int data, int *rdata)
write(int addr, int data)
 read(int addr)

Why is Transaction Level
Modeling important?

Provides an executable specification
for both hardware and software
engineers

Simulation speedup (5x-1000x)
System level design exploration and

verification

The TLM Dream

Transaction Level Model will be
completed before a single line of RTL
or software is written

Allow for hardware and software to be
developed at the same time

Improve time to market and eliminate
“specification errors”

Languages for TLM
C

Pros: Well-known, fast, can use Verilog PLI or
Synopsys’ DirectC to integrate model with RTL

Cons: OOP is not easy, No industry supported
application program interface (API) for TLM

C++
Pros: Fast, OOP language, templates, inheritance,

polymorphism
Cons: No industry supported API for TLM

 SystemC
Pros: C++ with classes that support System Level

Modeling, industry support, can co-simulate with RTL
Cons: Knowledge-base not as deep as C++ or C.

TLM Layers

TLM Layers (cont…)

C++ Inheritance

 Provides a mechanism for creating a new
class using a base class. The new class is
generally termed a derived class.

A derived class can inherit use the
functions/data of the base class, extend the
functionality, or override the functions
provided by the base class

 Inheritance defines an “is a” relationship
For example, a dog “is a” animal

C++ Templates

Allows for the definition of functions once
for multiple data types

The “C” way
 float calculate_fir(int NumberOfTaps);
 int calculate_fir(int NumberOfTaps);

The “C++” way
 fir<float, 256> fir1;
 fir<int, 512> fir2;
 fir1.calculate_fir(); fir2.calculate_fir();

 C++ Template Example
template<type T, int N=256>
class FIR : public sc_module
{

public:
sc_in<T> data_in;
sc_out<T> data_out;
……
T calculate_fir()

 private:
T tap[N];

}

SystemC Terminology
Module

Container Class that can consists of
processes, ports, channels, and other
modules.

Processes
Code block that describes and

implements the module functionality

Port
Provides mechanism to connect a module

to a channel via an interface

SystemC Terminology (cont…)

 Interface
Describes what methods are available, but

provides no method implementations or data
fields

Describes what is supported such as read() or
write()

Channels
 Implements the methods made available by the

the interface
Performs the actual transfer

[1]

SystemC Terminology (cont…)

SystemC Terminology (cont…)

[1]

Example TLM Code

Example TLM Code (cont…)

Resulting Structure

Transaction Level Modeling
with AMBA

Why?
Mechanism that allows architect to:

Explore arbitration algorithms
Ensure enough system bandwidth is available
Provide executable specification to designers

Extremely useful for platform-based
development
RapidChip (LSI Logic)
SoC Mosaic (Toshiba)

AMBA Bus Structure

[2]

SystemC AMBA System

[3]

AMBA System Modeling
Components

 Module(s)
 Clock Generator (HCLK)
 Master(s)
 Slave(s)
 Bus*
 Arbiter
 Decoder
 Monitor**

 Interface(s)
Master Interface
Slave Interface
Arbiter Interface
Decoder Interface

Channel(s)
AHB Channel
Bus*

AMBA Clock Generator

Simple declaration of sc_clock:
sc_clock clk("clock", sc_time(10, SC_NS));

System with multiple clock domains
would be defined by multiple
declarations of sc_clock:
sc_clock clk1("clock1", sc_time(20, SC_NS));
sc_clock clk2("clock2", sc_time(10, SC_NS));
sc_clock clk3("clock3", sc_time(5, SC_NS));

AMBA Master Module

Master has the following properties:
Port that connects to an interface

implemented by a channel (AHB Channel
or Bus)

Read/Write transaction requests are
implemented in the channel but made
from the master.

AMBA Slave Module
Slave has the following properties

Port connects to an interface with
functions again implemented by the
channel

Transactions are to be initiated using the
channel

Common to represent a slave address
space using an array to read()/write()
from/to a given address

AMBA Bus Module/Channel

Masters and Slaves connect to the Bus
using the AHB Channel (module*)

Arbiter and Decoder connects to the
Bus using specialized interfaces

Can be represented as a simple mux-
bus structure or a complex pipeline
structure with defined latency

AMBA Arbiter Module

Arbiter processes requests and, using
a desired algorithm, provides masters
with a grant signal for bus access

Key is the arbitration algorithm
Simple Priority-Based Arbitration
Round-Robin Arbitration
Weighted Round-Robin Arbitration

AMBA Decoder Module

Reads the address line to determine
which slave should be granted access
to the Read Mux.

Contains address map for design in
order to decode correctly

AMBA AHB Bus Channel

Implements the functions of the
interfaces detailed in the Master,
Slave, and Bus modules

Routines include:
Read()
Write()
BurstRead()
BurstWrite()

sc_main() code structure

AMBA Signaling

AMBA Signaling (cont…)

AMBA TLM Data Flow

AMBA TLM Data Flow (cont…)

AMBA TLM Data Flow (cont…)

AMBA TLM Data Flow (cont…)

AMBA Master Code

AMBA Master Code (cont…)

TLM Summary

The key word with Transaction Level
Modeling is abstraction

Increased simulation speed at the cost
of accuracy

Important to find the right level of
abstraction to meet the desired
performance/accuracy goals

References

[1]http://www.elet.polimi.it/upload/sil
vano/mioweb5/FilePDF/METODOLOGIE
/Simple%20Bus%20Slides.pdf

[2] ARM, Amba specification (rev 2.0),
March 2005.

[3] ARM Ltd. AMBA AHB Cycle Level
Interface Specification, Document
number AHBCLI.1.1.0, 2003.

