
Transaction level modeling of SoC with SystemC 2.0

Sudeep Pasricha
Design Flow and Reuse/CR&D

STMicroelectronics Ltd
Plot No. 2 & 3, Sector 16A
Noida – 201301 (U.P) India
(sudeep.pasricha@st.com)

Abstract

System architects working on SoC design have
traditionally been hampered by the lack of a
cohesive methodology for architecture
evaluation and co-verification of hardware and
software. These activities are crucial and must
be addressed at an early stage to prevent costly
redesign effort later in the design cycle which
can adversely affect time-to-market. SystemC 2.0
facilitates the development of Transaction Level
Models (TLMs) which are models of the
hardware system components at a high level of
abstraction. System architects can quickly
develop these models and be ready with an
executable specification of the hardware blocks
as soon as the initial functional specifications of
the system are decided. The high speed of
simulation of these TLMs allows early
development and verification of hardware
dependent application software. Timing details
can be incorporated into these models to allow
performance estimation and architecture
exploration. The modular nature of SystemC also
promotes reuse of developed components from
one system to another. This paper elaborates on
the concepts mentioned above and introduces an
example SoC TLM platform.

1. Introduction

A system-on-a-chip comprises of many
components such as processors, timers, interrupt
controllers, busses, memories and embedded
software. It is a complete system, which would
have been assembled on a board a few years
back, but can now be fit entirely in a single
circuit because of advances in semiconductor
technology. The traditional RTL to layout design
and verification flow proves inadequate for these
mu lti million gate systems which have the added
complexity of embedded software running on
them to cope with. At STMicroelectronics, we

are moving towards extending this flow by
concentrating our design and verification efforts
before the RTL to layout flow comes into the
picture. We call this the System-to-RTL flow.

Systems can be modeled at various levels of
abstraction. While the terminology may differ
slightly from paper to paper, the distinguishing
concepts remain the same. In this paper, the
micro architecture level of abstraction refers to a
cycle accurate models that include complete pin
and signal descriptions that verify cycle and
system behavior at a very low level. The
architecture level of abstraction is less detailed
but these models are still implementation
dependent. It is useful for software developers
who can use the instruction set of the processor
that is made available at this abstraction to run
and debug their code. Finally there is the
functional level of abstraction, which captures
the functional behavior of the system, without
much concern for implementation details. These
models are generally architecture independent.

Our extended flow for system-on-a-chip
introduces the concept of Transaction Level
Modeling. These models are not as detailed, nor
are they concerned with the micro-architecture
like the RTL models. Rather, they correspond to
the architecture level of abstraction. This is a
natural extension of the high-level design
process since SoC designs are actually conceived
at the transaction level. System architects do not
start out thinking about relationships between
pins and address busses. Rather they start out by
mapping out data flow details - the type of data
that flows and where it is stored.

2. What is a Transaction?

In the SoC world, the term transaction has
several meanings. In our context, the term refers
to the exchange of a data or an event between
two components of a modeled and simulated

system. Here we are not interested in the
protocol that realizes this exchange, as we are
not verifying the micro-architecture. A data
transaction can be a single word, a series of
words or a complex data structure that is
transferred over a bus between system
components. For example, a DMA master can
request to read data from a memo ry. To do so, it
issues a read transaction specifying the address
in the memory to read data from. Another case
could be a write transaction issued by the
embedded software when it wants to write to the
registers of the DMA controller. An event
transaction models synchronization aspects that
ensure correct operation of the SoC model.
Interrupts between components can be
considered to be an example of an event
transaction.

3. TLMs for eSW development

One of the major areas of interest for Transaction
Level Modeling is embedded software (eSW).
Since most SoCs contain at least one
programmable processor, software is an essential
part of a SoC. TLM models ease the
development of eSW by enabling high-speed
simulation of quickly developed models early in
the SoC development lifecycle. The speeds
required for this purpose vary around 1/1000th to
1/100th of real simulation time of the final
product. This means a simulation speed of at
least 100k bus transactions per second, which is
possible with TLM models but not with the
detailed RTL models which tend to be naturally
much slower. These TLM models can be built as
soon as the architectural specification is
available, and even before the time consuming
RTL code development commences. This means
that eSW development, which is a very lengthy
activity, takes place in parallel with the RTL
development and not after it. Tasks closely
related to the hardware implementation such as
low level software development will still have to
wait for the RTL model to be completed, but
there is still a considerable saving of time which
can cut off several valuable months from the
development cycle. For instance, the MPEG4
IVT team in STMicroelectronics used TLM
models for eSW development 6 months before
the top-level netlist was made available.

4. TLMs for architecture exploration

Untimed TLM models, which include the correct
ordering of events with no notions of physical
time or duration, provide the first level of
analysis which is useful for eSW developers.
System architects are more interested in timed
TLM models, which they can utilize for
architecture exploration. One can argue that
cycle accurate models in RTL provide a more
precise basis for analysis. But this is only
partially true. These cycle accurate models
require many times the effort that goes into the
development of TLM models. The detailed
models are also much more difficult to change
than TLM models when, for example, HW/SW
tradeoffs are being explored. Using TLM models
for the purpose of architecture exploration is still
being studied. Precision issues essential to issue
modeling guidelines for developers of high level
TLM models targeted at architecture exploration
need to be further understood before being
accepted by system architects. In an experiment
done by the System Architecture group (CR&D)
STMicroelectronics [1], a complex dual
processor SoC platform at the TLM and RTL
levels was compared and it was found that the
TLM model had less than a 15% error margin for
most figures (such as interrupt latencies and bus
utilization) against transactions observed in RTL
SoC simulation. This is an encouraging result
that is already being used as the basis for new
and additional comparisons using other SoC
models. The aim is to gain the confidence of
RTL architects and designers by showing that
decisions made at the timed TLM level are also
valid at the cycle accurate reference RTL
platform level.

5. SoC lifecycle and consistency

issues

According to the approach outlined above, the
SoC lifecycle will require at least three models -
one for each of the three levels of abstraction.
Since the functionality of the SoC is independent
of the architecture, its functional model can be
started at an early stage of product specification.
Once the SoC architecture specification is made
available, work on RTL code development and
the SoC TLM model starts. The TLM model is
built quickly with a much shorter development
time than the detailed RTL model. This means
that eSW development and architectural
exploration can begin almost as soon as the first
architecture specification is released. While the
software and architecture teams are working on

the SoC TLM model, the RTL development
takes place culminating in a SoC RTL platform.
At this stage, hardware implementation
dependent tasks like low level software
development and validation can begin. These
tasks are conducted concurrently with the
synthesis and back end implementation using the
standard ASIC design flow. By the time the first
hardware emulator board is available, the eSW
has been developed and validated thoroughly so
that chances of first time silicon success are high.
One problem that would have to be addressed in
this flow is that of maintaining consistency
between the three views of the same system -
functional, architectural and mic ro-architectural.
This issue can be addressed by reusing the same
system test vectors across all views, therefore
ensuring conformance to expected functionality.

6. SystemC 2.0

We have used SystemC 2.0 for our Transaction
Level Modeling effort. SystemC is a C++ library
aimed specifically at system level modeling. It
has all the benefits that C++ possesses - it is an
object oriented design language that makes full
use of data encapsulation and generic
programming concepts. SystemC 2.0 defines
primary channels for communicating
transactions but leaves it to the user to define
higher-level SystemC channels suited to their
design needs.

Communication in the TLM platform is ensured
by using a primitive channel, while the
synchronization is based on events. We have
developed our own channel, as proposed in [3].
Our channel is an example of a communication
channel that suits the needs of fast simulation for
eSW development. The necessary building
blocks for process synchronization and
communication refinement are (user-defined)
interfaces, ports, and channels. An interface
defines a set of methods, but does not implement
these methods. It is a pure virtual object without
any data in order not to anticipate
implementation details. A channel implements
one or more interfaces. A port enables a module,
and hence its processes, to access a channel
interface. A port is defined in terms of an
interface type, which means that the port can be
used only with channels that implement that
interface type. The use of interfaces enables
a scheme called interface-method-call [3] IMC
refers to a process calling an interface method of
a channel. The interface method is implemented

in the channel, but it is executed in the context of
the caller (the process). An example of an
interface method is a blocking read method of a
FIFO. When calling this interface method, the
caller (process) can be suspended if there is not
enough data available.

The channel we have developed has the
following features:

q Master/slave oriented transactions: a master

initiates a transaction (a read or write
operation) to be served by a slave

q Multi master / multi slave support: An
arbitrary high number of masters is
supported, with good scalability of
performances

q Registration facilities: Masters can register
and get information about the slaves of the
platform for specialized exchanges

q Synchronization ensured by events: this
avoids implementing an ad hoc scheduling
policy, and offers a scalable platform

q Decoding is done on the slave side

7. EASY platform: an example SoC

TLM platform

We now come to an example SoC TLM platform
developed by the System Architecture group
(CR&D) in STMicroelectronics. This TLM
platform is a subset of ARM Ltd. Micropack /
Easy SoC. It has been written in C++ using
SystemC 2.0 for system level transaction
handling.

Based on an analysis for system design needs in
ST, we have developed a higher level SystemC
communication channel that offers high level
(e.g. read and write) primitives to IP TLM
modeling engineers. The source code of IP
blocks of the Easy TLM platform has been used
as an example from which other platforms have
been derived. The only tools required to develop
such TLM IPs are the free-of-charge open source
SystemC 2.0 kernel and GNU compiler &
debugger.

The platform is composed of:

q a timer with two counters (compliant with

the EASY functional specification)
q an interrupt controller (compliant with the

EASY functional specification)
q a memory

q a traffic generator, intended to run a
compute function and handle interrupts

The generator loads a value into the timer
(counter 1 and 2). When the timer reaches 0, it
raises an interrupt to the interrupt controller. The
interrupt controller manages the interrupt and
propagates it to the generator. The latter
suspends the execution of the computing
function, handles the interrupt, clears the
interrupt source, and resumes its execution (see
Figure 1).

Figure 1: EASY platform with generator

The channel is instantiated as follows:

tac_channel<DATA_TYPE>
tac_channel_inst("TAC_CHANNEL");

Each block is modeled as a SystemC module,
instantiated in the main function, and connected
to the channel:

MEMORY = new
memory("MEMORY",MEMSPACESIZE,MEMBASE);
MEMORY->slave_port(tac_channel_inst);
TIMER = new timer
("TIMER",TIMERSPACESIZE,TIMERBASE);
TIMER->slave_port(tac_channel_inst);
TIMER->int_timer1(int_timer1);
TIMER->int_timer2(int_timer2);
ITC = new itc
("ITC",INTSPACESIZE,INTBASE);
ITC->slave_port(tac_channel_inst);
ITC->int_timer1(int_timer1);
ITC->int_timer2(int_timer2);
ITC->nIRQ(nIRQ);

GENE = new
generator("GENERATOR",0,MEMBASE,true);
GENE->nIRQ(nIRQ);
GENE->master_port(tac_channel_inst);

Below is a couple of examples dealing with the
write and read primitives, extracted from the
traffic generator code.

q Timer configuration (Write operations):

master_port.write(TIMER1LOAD,701);
master_port.write(TIMER1CONTROL,TIMER_ENA
BLED |
TIMER_PERIODIC_MODE | TIMER_PRESCALE_16);
master_port.write(TIMER2LOAD,500);
master_port.write(TIMER2CONTROL,TIMER_ENA
BLED |
TIMER_PERIODIC_MODE |
TIMER_PRESCALE_256);

q Read a block of data from memory:

master_port.read(addr,verif_mem,BLOCK_SIZ
E);

q Dealing with interrupts (another thread is

managing the interruption):

if (IRQ_Handled) {
wait(IRQ_End);
}

In the version of the platform described above,
the generator module contains instructions that
manipulate the components in the platform. In a
subsequent version, the generator was replaced
by eSW running on an ARM ISS (Figure 2). In
that case it was the eSW that manipulated the
platform. Here we use the generator for
simplicity to demonstrate the transactions taking
place in the system. Note that the generator can
replicate the functionality of the eSW running on
the ISS and it presents a similar interface to the
rest of the system. Hence it can be used instead
of the eSW and ISS to validate and examine the
rest of the system components.

For our EASY platform, simulation speed with
all transfers being single-word, plus interrupts
processing, is 120 to 170 K bus transactions per
second, depending on the platform version.
Simulation speed with some transactions being
blocks rather than single-word transfers, shows
speeds of several million bus transactions per
second (platform version with ISS as master
would limit that speed). This benchmark
corresponds to the measures made on a SUN
Ultra 10 work station, running at 450 Mhz, with
256 MB RAM.

 TIMER
Cnt1 Cnt2

 MEMORY

 ITC

GENERATOR_BASE

ITMgt Compute

 GENERATOR_n

ITMgt Compute

TAC Channel

nIRQ

int_timer1

int_timer2

Figure 2: EASY platform with ISS/eSW

8. Design Reuse

To reduce cost and development time, reuse of
designed components is a must. Traditionally,
reuse of components close to the final
implementation has proved effective. However it
is not always desirable to reuse components at
this level since slight variations in specification
can result in different implementations and a lot
of remodeling effort. However, moving higher in
abstraction can eliminate the differences among
designs, so that the higher level of abstraction
can be shared and only a minimal amount of
work needs to be carried out to achieve final
implementation. This is the first step towards
building a library of hardware and software
implementations at a high level, which will tend
to be stable across platforms. Of course it is also
important to have a multilevel library, including
the lower level abstractions close to the physical
implementation that change with advances in
technology. But the importance of reuse at a
higher level (system to RTL flow) should not be
ignored. Many system designers have yet to
embrace the idea of a reusable high-level system
library. They have to realize that design reuse in
every shape and form will be necessary to cope
with increasingly complex embedded systems
that have become a reality now.

9. Conclusion and future work

System architects and embedded software
developers are accepting transaction level
modeling into their design flow because it
addresses their need for early architecture
exploration and eSW development. SystemC 2.0
lends itself to TLM modeling and is thus
increasingly becoming the language to propagate
the TLM paradigm. However work still needs to
be done to formalize the methodology for
architecture exploration and for adopting a
common set of modeling guidelines to promote
interoperability. It is forecasted that in the next
few years, most of the content of SoCs will be
pre-designed. This will occur along with a move
to platforms in which many elements of an
architecture are predetermined. The modular
approach used by SystemC will allow libraries of
system components to be developed and reused
for different platforms, thus reducing time -to-
market without compromising on SoC quality.

10. Acknowledgments

I would like to thank Srikant Reddy Modugula
for his valuable advice and support throughout
this work. Thanks to Alain Clouard and Frank
Ghenassia for their cooperation in the area of
TLM modeling. Special thanks to Sudhanshu
Chadha, Rohit Jindal, Digvijay Singh, Kshitiz
Jain and Suraj Bharech for their feedback.

11. References

[1] A. Clouard, G. Mastrorocco, F. Carbognani,

A. Perrin, F, Ghenassia. “Towards Bridging
the Precision Gap between SoC
Transactional and Cycle Accurate Levels”,
DATE 2002

[2] A. Ferrari and A. Sangiovanni-Vincentelli,

System Design. “Traditional Concepts and
New Paradigms”. Proceedings of the 1999
Int. Conf. On Comp. Des, Oct 1999, Austin

[3] “Functional Specification for SystemC 2.0”,

Version 2.0-P, 0ct 2001

[4] Frank Vahid, Tony Givargis. “Embedded

System Design: A Unified Hardware
/Software Introduction”. John Wiley &
Sons, Inc

 TIMER
Cnt1 Cnt2

 MEMORY

 ITC

 eSW

 ARM ISS

 eSW

 ARM ISS_n

TAC Channel

nIRQ

int_timer1

int_timer2

