
A Self-Reconfigurable Gate Array Architecture �

Reetinder Sidhu�, Sameer Wadhwa�, Alessandro Mei�, and Viktor K. Prasanna�

� Department of EE-Systems, University of Southern California,
Los Angeles CA 90089, USA

sidhu@halcyon.usc.edu, sameer@halcyon.usc.edu,
prasanna@ganges.usc.edu

� Department of Mathematics, University of Trento
38050 Trento (TN), Italy

mei@science.unitn.it

10th International Workshop on Field Programmable Logic and Applications, August 2000.

Abstract. This paper presents an innovative architecture for a reconfigurable de-
vice that allows single cycle context switching and single cycle random access to
the unified on-chip configuration/data memory. These two features are necessary
for efficient self-reconfiguration and are useful in general as well—no other de-
vice offers both features. The enhanced context switching feature permits arbi-
trary regions of the chip to selectively context switch—its not necessary for the
whole device to do so. The memory access feature allows data transfer between
logic cells and memory locations, and also directly between memory locations.
The key innovation enabling the above features is the use of a mesh of trees based
interconnect with logic cells and memory blocks at the leaf nodes and identical
switches at other nodes. The mesh of trees topology allows a logic cell to be as-
sociated with a pair of switches. The logic cell and the switches can be placed
close to the memory block that stores their configuration bits. The physical prox-
imity enables fast context switching while the mesh of trees topology permits
fast memory access. To evaluate the architecture, a point design with 8 � 8 logic
cells was synthesized using a standard cell library for a 0.25 �m process with 5
metal layers. Timing results obtained show that both context switching and mem-
ory access can be performed within a 10 ns clock cycle. Finally, this paper also
illustrates how self-reconfiguration can be used to do basic routing operations
of connecting two logic cells or inserting a logic cell by breaking an existing
connection—algorithms (implemented as configured logic) to perform the above
operations in a few clock cycles are presented.

1 Introduction
By exploiting the reconfigurability of devices such as FPGAs, significant performance improve-
ments have been obtained over other modes of computation for several applications. Such a device
provides configurable logic whose functionality is governed by bits written into its configuration
memory, which is typically SRAM. Thus device functionality can be quickly reconfigured to suit
application requirements by writing appropriate bits into the configuration memory—this is the
key advantage of reconfigurable computing over other modes of computation.

In most cases however, reconfiguration of the device, whether at compile time or at runtime,
is performed externally. Much greater performance gains and a high degree of flexibility can be
obtained if the device can generate configuration bits at runtime and use them to modify its own
configuration—the ability of a device to do so is what we call self-reconfiguration.

Self-reconfiguration is a powerful feature that allows configured logic to adapt itself as the
computation proceeds, based on input data and intermediate results. It can be used for simple
tasks such as reconfiguring the constant in a KCM (constant coefficient multiplier)—a self-
reconfigurable device can do so on its own, which is faster than reconfiguring the device from an

� This work was supported by the National Science Foundation, Grant CCR-9900613. Alessan-
dro Mei was supported by MURST, “Progetto Giovani Ricercatori 1998”.

external source. Self-reconfiguration can also be used for non-trivial tasks such as constructing an
FSM for string matching [6], or evolving genetic programs [5]. The above applications achieve
efficient computation through a fine-grained interleaving of computation and configuration which
would not be possible without a self-reconfigurable device.

A self-reconfigurable device needs to be able to store multiple contexts of configuration in-
formation and context switch between them. Also, it should allow configured logic to access the
configuration memory. The configured logic can then perform self-reconfiguration by modifying
configuration memory contents of a particular context and then switching to that context. Hence
for efficient self-reconfiguration, it is crucial that the device should enable configured logic to
perform

– fast context switching,
– fast random access of the configuration memory,

Even for applications that do not use self-reconfiguration, the above two features can be useful—
the former reduces reconfiguration overhead while the latter allows configuration memory to be
used for data storage as well.

So far, no device architecture has been designed specifically to support self-reconfiguration.
Existing devices offer at most one of above two features—none offers both. Devices such as the
Sanders CSRC [4] can switch contexts in a single clock cycle but provide only serial configuration
memory access—it can take hundreds of clock cycles to access a particular location [3]. On the
other hand, a device like the Berkeley HSRA [9] provides fast random access to the configuration
memory (which can thus be used for data storage too) but requires hundreds of clock cycles to
switch context—a complete reconfiguration takes about 5 �s [2].

In this paper we present an innovative architecture (Section 2) that supports both single cycle
context switching (Section 3.1) as well as single cycle random memory access (Section 3.2), thus
providing both features necessary for efficient self-reconfiguration. Further, the context switch-
ing feature permits arbitrary regions of the chip to selectively context switch—it is not neces-
sary for the whole device to do so. The memory access feature permits data transfer with single
source multiple destinations, and—with restrictions—multiple sources and destinations. In addi-
tion, the architecture has a simplicity and regularity that makes it efficient for configured logic
to generate configuration bits for self-reconfiguration. This is demonstrated by describing how
self-reconfiguration can be used to do basic routing operations such as connecting two logic cells
or inserting a logic cell by breaking an existing connection (Section 4). Finally, implementation
results are presented (Section 5) followed by conclusion and future directions (Section 6).

2 Architecture

2.1 Overview

The Self-Reconfigurable Gate Array (shown in Figure 1) consists of a rectangular1 array of PEs.
Each PE consists of a logic cell and a memory block. A logic cell contains a 16-bit LUT and
a flip-flop. A memory block can store one or more configuration contexts as well as data for
the configured logic. PEs are connected to each other through direct connections to 4 nearest
neighbors as well as a mesh of trees network. As shown in Figure 1, it consists of a complete
binary tree along each row and column of the array, with PEs at the leaves of the trees and
identical switches at the non-leaf nodes.

The mesh of trees is a well studied network in parallel processing [1]. It has useful properties
such as a small diameter and a large bisection bandwidth. The mesh of trees is also suitable for
VLSI implementation since it permits area efficient layout of the PEs in a 2D mesh. The mesh
layout also makes possible local, nearest neighbor interconnections. Also, since the area occupied
by the mesh of trees network grows only logarithmically with PE array size, the architecture can
be efficiently scaled to bigger devices. There is, however, a much more important reason for using

1 Henceforth we assume, for convenience, an array size of � � � where � is a power of 2
(� � ��) although it is not a fundamental limitation.

this network. It is the use of the mesh of trees with memory blocks and logic cells at its leaves
and switches at the non-leaf nodes, that makes it possible for context switch and memory access
operations to be performed in a single clock cycle, as explained below.

Column switch Local interconnect

PE

Row switch
PE and owned switches

Fig. 1. SRGA architecture is based on
a mesh of trees interconnect with PEs
(containing a memory block and logic
cell each) at the leaves and identical
switches at other nodes.

We first describe the ownership relation that exists
between PEs and switches. Consider any row of the PE
array. It consists of � PEs and � � � switches. We
associate with each PE, the switch that succeeds it in
the in-order traversal of the tree. The above associa-
tions are made for each row and column tree. As a result
each PE is associated with two2 switches—a row switch
and a column switch. Switches associated with a PE are
owned by that PE.

A configuration context contains bits that config-
ure all the logic cells and all the switches in the mesh
of trees network. The configuration contexts are stored
in memory blocks. Each memory block not only stores
configuration bits for the logic cell in that PE, but also
for the switches owned by that PE. In the VLSI lay-
out, a PE and its switches can be placed close to each
other3. This makes it practical to have a dedicated wire
for each configuration bit to be transferred from a mem-
ory block of the logic cell and switches—the large num-
ber of wires required (about 80) is not a problem as
they are very short in length. All memory blocks locally

transfer data simultaneously over their dedicated wires (the context address is broadcast to all
PEs). In this manner a context switch operation can be performed in a single clock cycle (please
see Section 3.1 for a detailed explanation).

A memory access operation transfers data between rows or between columns of PEs. The
source and destination are the logic cells and/or the memory blocks of the PEs. Each memory
block is implemented as a random access memory that can read or write a single bit every clock
cycle (the address used by the memory blocks is broadcast to all PEs). Also, as mentioned earlier,
memory blocks are located only at the leaf nodes of the mesh of trees network. Thus an � -bit
data word can be transferred between rows over column trees or between columns over row trees.
In this manner a memory access operation can be performed in a single clock cycle (please see
Section 3.2 for a detailed explanation).

2.2 Interconnection Network
The interconnection network of the proposed device consists of 2 parts—the logic interconnec-
tion network (LIN) and the memory interconnection network (MIN). The mesh of trees network
mentioned above is composed of a part of the LIN and all of the MIN as described in the following
sections. Section 2.3 describes the switch at each non-leaf node of the mesh of trees network.

Logic Interconnection Network The LIN serves the same purpose as the interconnection
network in a typical FPGA—that of connecting together the logic cells as specified by the con-
figuration bits controlling the network switches. All LIN wires are in pairs. Each wire always
carries signals in a single direction and wires forming a pair carry signals in opposite directions.

The network consists of 2 types of interconnections. One type are the local connections be-
tween each logic cell and its 4 nearest neighbors. These are direct connections—they do not pass
through any switches. The other type of connections are in the form of a mesh of trees with PEs
at leaf nodes and switches at others.

2 The exceptions are PEs in the right column which do not have an associated row switch and
PEs in the bottom row which lack an associated column switch.

3 The tree of switches is “flattened” with the � � � switches placed in a single row (or column)
adjacent to their owner PEs.

RLi

RLm

RRi

RRm

RPm

RLo oRR

oRPRPi

of S
Right child

Parent
of S

Switch

S

Left child
of S

RPm

RLo

oRR

oRP

RLm

RRm

RLi RPi
RRi

1

1

1

0

0

0

c_out[68]

c_out[69]

c_out[70]

LIN

MIN
RTLR[y]

Bidirectional
switchSwitch S

(b)

(a)

Fig. 2. (a) Switch input and output connections.
(b) Internal details. Column switches have iden-
tical structure. Please see Figure 4 for connec-
tions with owner PE.

Memory Interconnection Network The
MIN is used for performing data transfers dur-
ing the memory access operations. Unlike the
LIN, the wires are not in pairs—a single wire is
used for each connection, and it may carry sig-
nals in either direction. The MIN also forms
a mesh of trees network with PEs at the leaf
nodes and switches at the remaining ones.

2.3 Switch
For each non-leaf node of the mesh of trees
network there is an switch, the structure of
which is shown in Figure 2. Each switch is
connected to 2 child nodes and a parent node.
Both child nodes are either switches or logic
cells while the parent node is a switch.

For the LIN part of the switch, each con-
nection is a pair of wires and so it has 3 inputs
and 3 outputs. As shown, each output can be
connected to either of 2 inputs via the muxes.
The switch thus allows any input to be con-
nected to any output without any restriction,
except connecting an input to its output pair.
Such a connection would only route a signal
back where it came from, which is not useful.
To configure the LIN part of the switch, 3 bits
are required—1 for the control input of each of
the 3 muxes.

For the MIN part of the switch, each con-
nection is a single wire. The wires from the
child nodes are permanently connected to-
gether and are connected to the parent wire
through a bidirectional switch. By opening all
switches at a particular level, a memory tree
can be broken into multiple smaller trees.

2.4 Registers
The SRGA contains a number of registers that are accessed by the configured logic for performing
context switch and memory access operations. The registers are shown in Figure 3 and described
below.

The SRGA contains 3 global registers—their contents are broadcast to all PEs. They are
described below.

Operation Register (OR) It is a 2-bit register that specifies what operation (if any) shall
be initiated in the next clock cycle, as shown in Table 1(a).
Memory Operation Register (MOR) It is also a 2-bit register that specifies (if the OR

indicates a memory operation in the next clock cycle) source and destination of the data
transfer as shown in Table 1(b).
Context and Memory Address Register (CMAR) It specifies (depending on OR contents)

the context to switch to or the memory address to be accessed in the next clock cycle. It con-
sists of 2 fields. Bits � � ���

�
�� � � form the context field of the CMAR—only these bits

need to be specified when the CMAR is used for a context switch. The remaining ����
�
���

bits form the offset field. This field (along with the context field) is utilized when the CMAR
is used to specify a memory address. �� is the number of contexts and �� is the configura-
tion word size—that is, the number of bits required to configure a logic cell and its 2 owned
switches (each memory block thus stores ��� �� bits).

OR[1] OR[0] Operation
0 0 No operation
0 1 Context switch
1 0 Row memory access
1 1 Column memory access

(a)

MOR[1] MOR[0] Source and destination
0 0 Memory to memory
0 1 Memory to logic (read)
1 0 Logic to memory (write)
1 1 Logic to logic

(b)
Table 1. (a) OR operations, (b) MOR oper-
ations.

The SRGA contains 4 periphery registers—
they are located along the boundary of the � ��
PE array. Each register is � -bits long.

Source Row Register (SRR) It is located
along the left side of the PE array. A set bit
implies that the corresponding PE row will be
the source for the next row memory access.
Destination Row Register (DRR) It is lo-

cated along the right side of the PE array. A
set bit implies that the corresponding PE row
will be a destination for the next memory ac-
cess operation.
Row Mask Register (RMR) It is located

along the bottom of the PE array. A set bit
indicates that, during a row memory access,
no data transfer will take place for the corre-

sponding column. The RMR and the DCR are physically the same register (this is not a
problem as both a row and column memory access cannot occur in the same clock cycle).
Source Column Register (SCR) Same as SRR except for columns and located at the top

of the array.
Destination Column Register(DCR) Same as DRR except for columns and located at the

bottom of the array.
Column Mask Register (CMR) Same as RMR except for columns. The CMR and the

DRR are physically the same register.

0 1 N-1x

CMAR context field offset field

Context address

Gobal
Registers

Memory address

OR

MOR

(b)

0 1 x N-1

0
1

N
-1

y

0
1

N
-1

y

PE array

DCR/RMR

SCR

D
R

R
/C

M
R

S
R

R

PE(x,y)

CSMR
DRMR

(a)

Fig. 3. (a) PE connections to periph-
ery and memory mapped registers. (b)
Global registers.

The SRGA contains 2 memory mapped registers.
Each has �� bits—1 bit in each of the �� memory
blocks. These registers can be accessed by the config-
ured logic using memory access operations.

Context Switch Mask Register (CSMR) If the
CSMR bit in a PE is set, the PE does not switch
contexts even when a context switch operation oc-
curs. Thus the CSMR enables the context switch
operation to be controlled for each PE thus provid-
ing flexibility in context switching.
Data Restore Mask Register (DRMR) If the DRMR

bit in a PE is set, it prevents the flip-flop contents of
the logic cell in the PE from being restored when a
context switch operation occurs. Thus, the DRMR
enables data sharing between logic configured on
different contexts.

2.5 PE
Figure 4 shows the structure of a PE (and also the con-
nections to the 2 switches owned by it). The PE receives
various signals from registers described in the preceding
section. These are used by the control logic shown on
the top of the figure to generate wr mem, wr log and
switch context which are used during context switch

and memory access operations as described in Section 3.
The LIN nearest neighbor connections (��, ��, ��, ��, ��, ��, ��, ��) and the row tree

and column tree connections (��, ��, ��, ��) are connected to the logic cell and so are the MIN
connections (the bidirectional �� and �� are converted to the unidirectional ���, ���, ��� and
���). The memory block supplies configuration bits to the logic block over the wires c out[0:67]
and to the 2 owned switches over c out[68:73]. These (c out[0:74]) are the large number of short
wires for transferring configuration bits mentioned in Section 2.1.

0

1

0

1
0

1
C

m

m
R

R
m0 C

m0

0

1

N

E

S

W

R

C

i

i

i

i

i

i

N

E

S

W

R

C

o

o

o

o

o

o

0

1
Logic

Cell Block

c_out[72:74]

c_out[68:70]

CMAR

Rm

Cm

switch_context

MOR[0]
SRR[y]
SCR[x]

Cmi

Rmi

OR[0]
OR[1]
MOR[0]
MOR[1]
DRR[y]
DCR[y]
RMR[x]

R
R
R

R
R
R

Li
Ri
Pi

Po
Ro
Lo

RR Rim rm pm

C
C
C

C
C
C

Po
Ro
Lo

Pi
Ri
Li

CMR[y]

C
T

LR
[x

]
R

T
LR

[y
]

c_out[0:67]

context_state

clk

clk

Row data
source regsiter

source register
Coulmn data

Memory
switch
Row

Column
switch

FF

d_in

d_out

c_out[74]

FF

wr_log wr_mem

C C C
im rm pm

DRMR

Fig. 4. PE structure.

For memory reads and
writes, the memory block is
connected to the row and col-
umn MIN trees through d in
and d out. The ���	
�	 �		

and ���� signals are used to
restore logic cell flip-flop con-
tents when context switching
(as described in Section 3.1).

The 2 muxes at the bot-
tom are used to select either
the logic cell or memory block
output to drive the MIN when
the PE is a source in a mem-
ory access operation. The tris-
tate buffers are used since the
MIN wires are bidirectional.

2.6 Memory Block
Figure 5 shows the structure of
a memory block. The memory
cell array is internally arranged
as �� columns of ��(=75) bits
each. Thus each column can
store a configuration word. This
arrangement enables all �� bits
of a configuration word to be
read out in a single clock cycle
(and registered in c out). Also, in case of a memory read or write operation, a single bit can be
read from or written to the memory cell array. As should be clear from the figure, the CSMR
and DRMR can also be accessed through memory operations. The CCR stores the address of the
current context and is used during context switching as described in Section 3.1.

2.7 Logic Cell

Memory cell
array
(nc x cs cells)

switch_context

load

1

0

load

load

clk

clk

from
CMAR

DRMR

c_out

d_out

cs-3

cs

nc

wr_data

DRMR

context field

Current
context
reg.(CCR)

load

clk

clkd_in

D
Q

Column
Decoder

Demux
Row

Row
Mux

Config.
word
reg.

switch_context_2

offset field

clk

CSMR

Fig. 5. Memory block structure.

Figure 6 shows the structure
of a logic cell. It consists of
a 16-bit LUT and a flip-flop.
The LUT can implement 2
boolean functions of 3 inputs
(with outputs ��� and ���) or
a single boolean function of 4
inputs (output ���).

As can be seen, the mux
��� enables any of the inputs
received by the logic cell to be
used as input ��� of the LUT—
the inputs ���, ��� and ���

are driven by muxes ���, ���

and ��� respectively which
are identical to ���. Similarly,
the output �� of the logic cell
can be connected to any of the
inputs or any of the outputs
of the LUT or flip-flop. Identi-
cal muxes ���–��� drive the
other outputs of the logic cell.

Ni Ei Si Wi Ri Ci
Rmi

Cmi

LUT

M0i

Control bits for input muxes
M0i, M1i, M2i and M3i

LUT configuration bits

L0i

(from LIN and MIN)

FF FFM4i

Control bits for
input mux M4i

Control bits for output muxes
M0o, M1o, M2o, M3o, M4o
M5o, M6o and M7o

0

1

switch_context

context_state

clk Reset

D Q

(to LIN and MIN)

to L1i, L2i, L3i and L4i)
(identical muxes connect

Rmo and Cmo)

(identical muxes connect
to Eo, So, Wo, Ro, Co,

0
1

1
0

1
0

M0o
M7oM6oM5oM4oM3oM2oM1o

No CmoRmoCoRoWoEo So

L4i

c_out register)
(from memory block

Fig. 6. Logic cell structure.

The complete flexibility in
configuring connections allows
the LUT and flip-flop to be used
while other signals are routed
though the logic cell. Also, since
each mux has similar inputs and
requires 4 control bits, the con-
figuration word format (shown in
Figure 7) is simple and regular,
which considerably eases genera-
tion of configuration bits required
for self-reconfiguration.

3 Basic Operations

3.1 Context Switch
Operation

Performing a context switch op-
eration from current context a to
another context b involves saving
the state of context a, restoring
the state of context b and replac-
ing the configuration bits of con-
text a with those of b in regis-
ters that determine the function-
ality of the configurable logic. A

context switch operation completes in a single clock cycle. The context state consists of the
� � � bits stored in the logic cell flip-flops (FF in Figure 6). The registers that determine the
functionality of the configurable logic are the configuration word registers in each memory block
(shown in Figure 5). The state of context b is restored only in those PEs which have their DRMR
(Data Restore Mask Register) bit reset—in other PEs, the context a state is retained. In this man-
ner data can be shared between contexts. Also, only those PEs switch to context b which have
their CSMR (Context Switch Mask Register) bit reset—other PEs retain context a. In this man-
ner, arbitrary regions of the � �� PE array may switch contexts while remaining regions retain
the current context. In order to have static logic (logic that does not change on context switches)
using above approach, it needs to be configured only on one context. This is more efficient than
the static logic mode in [8] which required the same logic to be configured in all contexts. Also,
the proposed approach permits multiple contexts to be active in different regions of the PE array
at the same time.

For a context switch to occur, some logic on the currently active context (context a) needs to
write into the CMAR (explained in Section 2.4) the address of the context to switch to (context
b) and into the OR the bits 01—writing these bits into the OR initiates a context switch operation
in the next clock cycle. At the positive edge which marks the beginning of the next clock cycle,
the CMAR and OR contents are registered and broadcast to all the memory blocks.

In each memory block (shown in Figure 5), in the first half of the clock cycle, the con-
figuration word for context b is loaded into the configuration word register as follows. The
switch context signal is 1 while the switch context 2 signal is 0. As a result the context field

iM0 M2i
M1i M3i M4i M0o M1o M2o M3o M4o M5o M7oM6o SR SCLUT

0 4 8 12 16 20 36 40 44 48 52 56 60 64 68 71 74

FF contents
Fig. 7. Configuration word format.

of the CMAR gets applied to the column decoder selecting the column corresponding to context
b for loading into the configuration word register. Also its load enable input (EN) is 1 (assuming
that the CSMR bit is 0). Therefore at the negative clock edge at the end of the first half of the
clock cycle, the configuration word register gets loaded with the configuration word for context
b.

During the second half of the clock cycle, context a state is saved and context b state is
restored as follows. The signal switch context 2 becomes 1 applying contents of the current
context register (which contains the value a) to the column decoder. The signal row select[cs-1]
also becomes 1. These signals together select for writing the memory cell that stores FF contents
for context a. Also the value of d in, the data input to the memory array is the output of FF.
Thus at the end of the second half of the clock cycle, the contents of FF get stored in bit 73 of the
configuration word (shown in Figure 7) for context a. At the same clock edge, the switch context
signal ensures that FF gets loaded with the context state signal. The value of context state is
either the FF contents saved in the configuration word of context b (if DRMR is 0) or the current
contents of FF (if DRMR is 1). Also at the same clock edge, the current context register is loaded
with the value in the context field of the CMAR (b) which would then be used to save the state of
context b at the next context switch. In this manner, the context switch operation is performed in
a single clock cycle.

3.2 Memory Access Operations

nc x cs
bits

SRR or DRR
specified by
Vertical plane

Memory
of PE(0,0)

N bits

N bits

Horizontal plane
specified by CMAR

N-bit word selected by
SRR or DRR, and CMAR

Fig. 8. Selection of an � -bit data word along a row.

A memory access operation transfers
data between rows or between columns
of PEs. The source and destination of
data are the logic cells and/or the mem-
ory blocks in the PEs. Data transfers
can occur from memory blocks to logic
cells (memory read), from logic cells to
memory blocks (memory write) or di-
rectly from memory block to memory
block4. Each data transfer is of an � -bit
word, with each PE in the source row
(or column) contributing 1 bit. Transfer
of any arbitrary subset of the � -bits can
be done using the mask registers RMR
and CMR. All memory access opera-
tions complete in a single clock cycle.
In the first half of the clock cycle, data is read out of the memory blocks or the logic cells of the
source PEs. In the second half, the data bits are broadcast over the column (or row) memory trees
and written into the logic cells or memory blocks of the destination PEs.

The operation is a read, write or memory transfer operation depending on the contents of the
MOR. For all operations, OR contains 10 indicating a row memory operation. Also a single 1 bit
in the SRR indicates the source row while the 1 bits in the DRR specify the destination rows. The
CMAR contains the memory address and the RMR is used to mask any bits, if required. Figure
8 shows the selection of an � -bit word of data along a row. The SRR or DRR selects a vertical
plane while the CMAR specifies a horizontal bit-plane—the selected bits are at their intersection.
Writing 10 in the OR register initiates the operation in the following clock cycle.

Memory Read Operation The MOR contains 01 which indicates that the source is memory
blocks (address of the � -bit memory word specified by the SRR and the CMAR as shown in
Figure 8) while the destination is logic cells (specified by the DRR).

In the first half of the clock cycle, in each memory block, the CMAR contents are applied to
the row demux, the column decoder and the row mux, causing the required data bit to be output

4 Data transfer between logic cells is also supported by the MIN but is not discussed since the
LIN is more suitable for connecting logic cells.

on d out (please see Figure 5). At the negative clock edge, d out is registered in the column data
source flip-flop (shown in Figure 4).

Since the SRR bit for the source row is 1, the tristate buffers in the source row PEs are
enabled, driving the flip-flop contents onto the corresponding memory column trees (described
in Section 2.2). In this manner, in the second half of the clock cycle, the � -bit word is broadcast
over the N column memory trees.

Finally, in each PE in the destination rows (rows for which DRR is 1), the wr log signal
(shown in Figure 4) is asserted causing the bit broadcast over its corresponding column memory
tree to be available as the ��� input to the logic cell. As can be seen from Figure 6, the ��� input
can be used by the logic in various ways—as an input to the LUT, the flip-flop FF, the muxes
��� to ��� connected to the logic cell outputs, or any combination thereof. The outputs of any
of the above that use ��� as input, stabilize by the end of the second half of the clock cycle, thus
completing the memory read operation.

Note that for PEs in non-destination rows, ��� is 0 because wr log is not asserted. The same
is true for those columns of destination row PEs for which the corresponding bit of the mask
register RMR is 1.

Memory Write Operation The MOR contains 10 which indicates that the source is logic
cells (specified by the SRR), while the destination is memory blocks (address specified by the
DRR and CMAR). In the first half of the clock cycle in each PE, the ��� output of the logic cell
is applied to the input of the column source data flip-flop which registers it at the negative clock
edge. As shown in Figure 6, any of several wires inside a logic cell may be connected to ��� by
appropriately configuring mux ���.

At the negative clock edge, ��� is registered in the column data source flip-flop (shown in
Figure 4). Since the SRR bit for the source row is 1, the tristate buffers in the source row PEs are
enabled, driving the flip-flop contents onto the corresponding memory column trees (described
in Section 2.2). In this manner, in the second half of the clock cycle, the � -bit word is broadcast
over the � column memory trees.

Finally, in each PE in the destination rows, the wr mem signal (shown in Figure 4 is asserted
causing the bit broadcast over its corresponding column tree to be available as the d in input
to the memory block. Also, the CMAR contents are applied to the row demux and the column
decoder of the memory array (shown in Figure 5), selecting the memory cell into which d in will
be written. At the positive clock edge, d in gets written into the memory array, thus completing
the memory write operation.

Note that for PEs in non-destination rows, wr mem is not asserted, preventing any memory
write from taking place. The same is true for those columns of destination row PEs for which the
corresponding bit of the mask register RMR is 1.

Memory to Memory Data Transfer Operation The MOR contains 00 which indicates
that the source is memory blocks (address specified by the SRR and CMAR) and the destination
is also memory blocks (address specified by the DRR and CMAR). Note that the CMAR is
used for both source and destination addresses. Thus this operation is useful only if source and
destination are on the same horizontal memory slice (shown in Figure 8).

In the first half of the clock cycle, data bits are read from the source row memory blocks
into the corresponding column data source flip-flops as explained in Section 3.2. In the second
half of the clock cycle, the data bits get written into the memory blocks of the destination PEs
as described in Section 3.2. In this manner, the memory to memory data transfer operation is
performed in a single clock cycle. As usual, the RMR can be used to prevent the transfer of any
of the � bits.

4 Basic Routing Operations using Self-Reconfiguration
Modification of configured logic using self-reconfiguration typically occurs as follows. Active
context (a) decides that some logic on it needs to be modified. Context a then writes certain pa-
rameters (in a predetermined location—flip-flops or memory) that specify the reconfiguration re-
quired. It then switches to context b. Logic configured on context b reads the supplied parameters

and uses them to generate the required configuration bits. Next, it writes the bits to appropriate
locations in the memory (these locations store configuration bits for context a). Finally, context
b switches back to context a, which now continues processing using logic that has been modified
through self-reconfiguration.

In this section, we first look at the problem of connecting 2 logic cells in the same row. Since
the SRGA architecture is symmetric w.r.t rows and columns, connecting 2 logic cells in the same
column can be done in a similar manner. Next, we extend the operation to perform insertion of
a logic cell between 2 logic cells previously connected (Section 4.2), and connecting two logic
cells which are not in the same row or column (Section 4.3).

4.1 Connecting 2 logic cells in the same row

Source Destination

Upward path

Lowest
common
ancestor

Downward path

Fig. 9. Connection between 2 logic cells using row
switches.

The problem is to connect the out-
put of a logic cell to the input
of another in the same row, using
only row tree wires5. The LIN row
tree to be used for the routing is
a complete binary tree containing
� � � switches (since each row
has � PEs). Thus creating the re-
quired connection means appropri-
ately configuring a subset of the
� � � switches. As can be seen
from Figure 9, connections need to
be created up the tree starting from
the source logic cell, and then down the tree till the destination logic cell is reached. The high-
est node through which the connection passes is the least common ancestor of the source and
destination logic cells.

To create the connection, the context which requires the routing (a) needs to specify to the
context that will perform the routing, the following information:

– The context address � (� � � � ��) on which the routing is to be performed (typically it
would be a itself).

– The row number � (� � � � �) in which the logic cells to be connected are located.
– The column numbers �� and �� (� � ��� �� � �) of the source and destination logic cells

respectively.

Memory locations to be
written to configure
the row switches

68 (R). 69 (R). 70(R)Lo Ro Po

Vertical plane in row y
specified by DRR

nc x cs
bits

N bits

N bits

in context c at offsets
Horizontal planes

specified by CMAR

of PE(0,0)
Memory

Fig. 10. Memory locations that configure switches of row y in con-
text c. See Figure 7 for offset values.

The first 2 parameters
are used to determine the
memory locations in which
the configuration bits will
be written. Each switch is
configured using 3 bits (see
Figure 2) which are stored
in the memory block of the
PE that owns the switch.
The required memory lo-
cations are thus � � �
columns of 3 bits each—
each column is associated
with one of the � �
� switches. Since all the
switches (and hence their

5 Connecting using only local, nearest neighbor wires is a much simpler problem. Also the
routing delay would be linear compared to logarithmic in case of tree switches.

memory blocks) are in the same row, the memory locations that need to be written are 3 rows
of � � � bits each. Figure 10 shows these locations and how they are accessed. The DRR uses
the supplied row y to specify the vertical bit plane. The CMAR uses supplied context c as the
contents of its context field while the offset field contains 68, 69 or 70 to access one of the 3
horizontal planes (corresponding to muxes driving the ���, ��� and ��� outputs respectively, as
shown in Figure 2). The memory locations that control the switches of the muxes in row y in
context c are at the intersections of the planes.

C

P

L

R

L0 R1L1 R0 P1P0

Fig. 11. Logic module structure.

The remaining parameters (�� and ��) are used to
compute the configuration bits to be written to the lo-
cations determined using the first 2 parameters. We now
look at the problem of computing these bits. Each of the
� � � switches is configured by 3 bits. However, looking
at Figure 9, it can be seen that each switch to be configured
receives a single input and supplies a single output. Thus
only a single mux needs to be configured for each switch.
Therefore, we compute 4 bits for each switch—bits L, P,
R specify respectively whether the mux driving the left
child (���), right child (���) or parent (���) outputs is to
be configured, and bit C specifies with what value.

The logic used to compute the bits required consists of
��� identical logic modules, one module corresponding
to each row switch. Each module generates the 4 bits (L,
R, P and C) for its corresponding switch. Figure 11 shows

the structure of the logic module. Each module requires 5 logic cells. Just as the switches to be
configured are arranged as complete binary tree, so also we configure the � �� logic modules as
a complete binary tree—each module and the switch it represents are in the same position in their
respective trees. The edges of the logic module tree consist of 2 unidirectional links from each
child node to its parent. The lowest level modules are connected to flip-flops—a pair of flip-flops
represents each logic cell.

Computation starts by setting the flip-flops corresponding to the source and destination logic
cells to contain 01 and 10 respectively. Each logic module receives 2 bits from each child node. If
it receives 01 from one child and 00 from the other, it is on the upward path (see Figure 9). Thus
it needs to configure the parent mux and hence writes a 1 into it. Based on whether the 01 was
received from the left or right child, 0 or 1 is written to the C flip-flop (see Figure 2). The logic
module passes the received 01 to its parent. If a node receives a 10 input from one child and 00
from the other, then it is on the downward path. The left or right mux needs to be configured and
a 1 is written to the L or R flip-flop depending upon which child node the 10 was received from.
In both cases, input from parent needs to be selected and hence 0 is written to the C flip-flop. The
module passes 10 to its parent. Finally, if a module receives a 01 from one child and 10 from the
other, it represents the switch which is the least common ancestor of the source and destination
logic cells. A 1 is written to the L or R flip-flop depending upon whether the 10 was received
from the left or right child. Also, a 1 is written to the C flip-flop since the left input needs to be
connected to the right mux or vice versa. The logic module passes neither 01 or 10 to its parent.

The module logic shown in Figure 11 performs the above functions. Since only combinational
logic is required to compute configuration bits, the signals travel up the tree and bits in all logic
module are computed in a single clock cycle6. The subsequent task of writing configuration bits
into the memory becomes very simple if the computed bits for a switch are located in the same
column in which they are to be written. Therefore we map logic modules to �� � �	 �
 logic
cells, each module located in the column in which are to be written the 3 bits that configure the
switch it represents.

Routing of the modules thus placed to connect them in a complete binary tree can be effi-
ciently performed. Figure 12 shows how an � �� (� � �) node tree, with 2 logic cells per node
can be configured with a single upward link from each child node to its parent. Since the required

6 The clock period increases logarithmically with tree size.

logic modules have 5 logic cells (and hence the tree requires 5 rows), they can be connected as a
tree with 2 upward links from each child node to its parent.

0 1 2 3 4 5 6

Mapping on 2
rows of SRGA

3

1

0 2 4

5

6

Tree to be
mapped

Fig. 12. Mapping of a complete ��� node binary tree (with
a unidirectional link from each child node to its parent) onto
2 rows of � logic cells. Each node consists of 2 logic cells.

Finally, the computed bits (L,
R, P and C bits in all modules) are
used to configure the switches. As
discussed above, there are 3 ���
�	 bit memory locations, 1 each
for the control bits of the muxes
driving the ���, ��� and ��� out-
puts. Each clock cycle, the one of
L, R or P bits in all the��� logic
modules are inverted and written
to the RMR and the C bits of all
� � � logic modules are written
to the location addressed by DRR
and CMAR as discussed previ-
ously.

In this manner, in only 3
clock cycles, the configuration
bits to perform the routing oper-
ations are written. Thus, a con-
nection between 2 logic cells in
the same row (or column) can be
created in a constant number of
clock cycles—it does not depend
upon the size of the row. The length of the clock cycle would depend upon the row length but
it would grow only logarithmically with row length (since signals only need to propagate up the
tree of logic modules). A related observation is that several such connections can be created in a
row (or column) in parallel time if they occur in separate subtrees.

4.2 Inserting a logic cell between 2 connected logic cells in the same row

The output of logic cell 	� is connected to the input of logic cell 	� in the same row, using only
row tree switches. The problem is to insert another logic cell 	�, also in the same row into the
connection between 	� and 	�. Doing so requires breaking the above connection and creating 2
new connections—from the output of 	� to the input of 	�, and from the output of 	� to the input
of 	�.

The input parameters are �� (column of 	�) and all the parameters required for the row routing
operation described in Section 4.1. The required operation can be very simply implemented using
2 invocations of the above mentioned row routing operation. It is invoked once with row and
destination column parameters �� and ��, and with �� and �� the second time.

It should be noted that the above operations overwrite row switch configurations which had
created a connection between �� and ��—thus the original connection need not be explicitly
broken. In this manner, the logic cell insertion operation can be efficiently performed in a constant
number of clock cycles.

4.3 Connecting 2 logic cells not in the same row or column

The problem is to connect the output of logic cell 	� to the input of logic cell 	�, when 	� and 	�
are neither in the same row or same column. Let the location of 	� and 	� be (��� ��) and (��� ��).
The required connection can be created by first connecting the output of 	� to the input of the
logic cells at (��� ��) (or (��� ��)) and then connecting the output of the intermediate logic cell to
the input of 	�. The former operation is the row routing operation described in Section 4.1 while
the latter is its column counterpart which can be performed in a similar manner. In addition, the
logic cell at (��� ��) needs to be configured to connect the connections along the row and column
trees. This can be easily done by configuring the 4 bits that control ��� to connect the input ��

to its output ��. The logic cell can still be used for other purposes. In this manner, logic cells can
be efficiently connected even if they are not in the same row or same column.

5 Implementation

Component Area (�
�)
Switch 311
Logic cell 7741
Memory block 81797
PE 90881
�� � array 363018
�� � array 1480095
�� � array 5925859

Fig. 13. Area estimates for
the �� � SRGA design.

The complete SRGA architecture presented in Section 2 was de-
scribed in several thousand lines of Verilog code. The description
was at the RTL level with several components explicitly instanti-
ated. It was then synthesized using a library of standard cells for a
0.25 �m process with 5 metal layers. The synthesized design can
store 8 configuration contexts and has an array size7 of 8 � 8. The
timing estimates are expected to increase slightly8 after place and
route. However, delays due to loading and fanout are accounted
for in the results shown.

As can be seen from Table 13, most of the area in a PE is taken
by the memory block. Its area of 81797 �
� for a memory size of
only (��� �� � �� �) 616 bits is quite poor even for SRAM.

The reason is that the current implementation uses 2 standard library cells to implement a single
memory cell9. By designing a custom memory cell, we expect to reduce the area taken by a PE
(and hence the array) by about half.

Operation Time required (ns) Total
performed (first half)(second half) time (ns)
Context switch 4.76 4.26 9.02
Memory read 5.09 3.83 8.92
Memory write 5.78 3.15 8.93
Memory to memory 5.09 3.15 8.24
Min. clock cycle 5.78 4.26 10.04

Fig. 14. Timing estimates for the �� � SRGA design.

Table 14 shows the times re-
quired (in both halves of the clock
cycle) to perform the context switch-
ing operation—please see Section 3.1
for a description of what happens in
each clock cycle half. The results ob-
tained through implementation demon-
strate that the SRGA is capable of con-
text switching in a single clock cycle.

Table 14 also shows the times re-
quired (in both halves of the clock cycle) to perform the memory read, memory write, and mem-
ory to memory data transfer operations—please see Section 3.2 for what happens in each half
of the clock cycle for the above operations. Again, the times obtained show that the SRGA can
perform memory access operations in a single clock cycle. The bottom row of the table shows
the minimum time required for each half of the clock cycle (obtained by selecting the maximum
times in their corresponding columns) and also the total clock cycle time of 10.04 ns. Thus the
SRGA design can be expected to operate in the range of 80-100 MHz without optimization. Since
the SRGA design has been shown to perform single cycle context switch and single cycle mem-
ory access, while operating at a reasonable clock speed, the chief claims made for the proposed
architecture have been validated by the implementation.

6 Conclusion and Future Directions
This paper presented the detailed description of an innovative reconfigurable device architecture
that performs single cycle context switching as well as single cycle memory access to the unified
on-chip configuration/data memory. These 2 features were realized through the novel use of a
mesh of trees interconnect with logic cells and memory blocks at the leaves and identical switches
at the other nodes. Timing estimates obtained from an SRGA design synthesized using a standard
cell library demonstrated that the architecture could perform both above features while operating
at a reasonable clock speed.

7 Synthesis of larger array sizes failed due to large database sizes.
8 Unless design is optimized for speed. Results shown are for unoptimized design.
9 The standard memories created by memory generators were not found suitable as the required

memory block needs extra logic to handle the context switch operation.

The SRGA architecture is suitable for a large class of reconfigurable computing applications
since it reduces the reconfiguration overhead and provides fast on-chip memory for data storage.
But more important is the ability of the SRGA to perform efficient self-reconfiguration—it is
made possible by the fast context switching and memory access capabilities. Self-reconfiguration
is a powerful feature since it enables the reconfigurable device to modify its own configuration
logic at runtime without any external intervention. This power is demonstrated by showing how
the SRGA can perform basic routing operations very efficiently using self-reconfiguration—part
of the efficiency is due to the simplicity and regularity of the interconnection structure. Further,
significant speedups using self-reconfiguration have been obtained for string matching [6][7] and
genetic programming [5] applications. The above applications require the self-reconfigurable de-
vice to provide fast context switching and memory access, which are precisely the characteristics
of the SRGA.

Following are the future directions we plan to explore:
Interconnect As mentioned in Section 2.2, for efficient mapping of various types of logic, the

interconnection resources of the SRGA may need to be increased. This can be done by
adding more wires to each row and column tree, by connecting same level nodes in a tree, or
by connecting row and column trees through non-leaf nodes. Note that all the above can be
done while preserving the basic mesh of trees structure with identical switches.

Clocking Logic configured on different contexts would typically operate at different clock fre-
quencies. Support needs to be added to the SRGA to enable configuration contexts to specify
the required frequency and accordingly alter operating frequency after a context switch.

Switches Another feature being considered is the addition of configurable logic and/or a flip-flop
to each switch. This would enable efficient mapping of muxes and decoders and would also
help in retiming. Routing using self-reconfiguration would also become more efficient.

References

[1] F. Thomson Leighton. Introduction to Parallel Algorithms and Architectures. Morgan Kauf-
mann, 1992.

[2] S. Perissakis, Y. Joo, J. Ahn, A. DeHon, and J. Wawrzynek. Embedded dram for a reconfig-
urable array. In Proceedings of the 1999 Design Automation Conference, Jun. 1999.

[3] S. M. Scalera. Personal communication, 1998.
[4] S. M. Scalera and J. R. Vazquez. The design and implementation of a context-switching

fpga. In Proceedings of IEEE Workshop on FPGAs for Custom Computing Machines, pages
78–85, Napa, CA, April 1998.

[5] R. P. S. Sidhu, A. Mei, and V. K. Prasanna. Genetic programming using self-reconfigurable
FPGAs. In Field Programmable Logic and Applications - 9th International Workshop,
FPL’99, volume 1673 of Lecture Notes in Computer Science. Springer Verlag, 1999.

[6] R. P. S. Sidhu, A. Mei, and V. K. Prasanna. String matching on multicontext FPGAs using
self-reconfiguration. In FPGA ’99. Proceedings of the 1999 ACM/SIGDA Seventh Interna-
tional Symposium on Field Programmable Gate Arrays, pages 217–226, Feb. 1999.

[7] R. P. S. Sidhu, S. Wadhwa, A. Mei, and V. K. Prasanna. A self-reconfigurable gate array
architecture. In Submitted to IEEE Transactions on Very Large Scale Integration (VLSI)
Systems.

[8] Steve Trimberger, Dean Carberry, Anders Johnson, and Jennifer Wong. A time-multiplexed
FPGA. In Proceedings of IEEE Workshop on FPGAs for Custom Computing Machines,
pages 22–28, Napa, CA, April 1997.

[9] W. Tsu, K. Macy, A. Joshi, R. Huang, N. Walker, T. Tung, O. Rowhani, V. George,
J. Wawrzynek, and A. DeHon. High-speed, hierarchical synchronous reconfigurable array.
In Proceedings of the International Symposium on Field Programmable Gate Arrays, pages
69–78, Feb. 1999.

