
Chapter 1

Introduction

THE DESIGN process for digital integrated circuits is extremely com-
plex. Unfortunately, the Electronic Design Automation (EDA) and
Computed Aided Design (CAD) tools that are essential to this de-In this book I’ll call the

tools “CAD tools” and
the companies “EDA
companies”

sign process are also extremely complex. Finding a combination of tools
and a way of using those tools that works for a particular design is know
as finding a “tool path” for that project. This book will introduce one path
through these complex tools that can be used to design digital integrated
circuits. The tool path described in this book uses tools from Cadence
(www.cadence.com) and Synopsys (www.synopsys.com) that are available
to university students through special arrangements that these companies
make with universities. Tool bundles that would normally cost hundreds of
thousands or even millions of dollars if purchased directly from the compa-
nies are made available through “university programs” at small fixed fees.

In order to justify these small fees, however, the EDA companies typ-
ically reduce their costs by offering very limited support for these tools to
university customers. In an industrial setting there would likely be an en-
tire CAD support department whose job it is to get the tools running and to
develop tool flows for projects within the company. Few universities, how-
ever, can afford that type of support for their CAD tools. That leavesInstructions for

installing the CAD tools
can be found in the
appendices

universities to sink or swim with these complex tools making it all the more
important to find a usable tool path through the confusing labyrinth of the
tool suites. This book is an attempt to codify at least one working tool path
for a Cadence/Synopsys flow that students and researchers can use to de-
sign digital integrated circuits. It includes tutorials for specific tools, and an
extended example of how these tools are used together to design a simple
integrated circuit.

In addition to the CAD tools from Cadence and Synopsys, The tutori-
als assume that you have some sort of CMOS standard cell library avail-



CHAPTER 1: Introduction Draft September 3, 2007

able. The specific examples in this book will use a cell library developed
at the University of Utah specifically for our VLSI classes known as the
UofU Digital library. This library, and the technology information avail-Details about these

libraries can also be
found in the appendices

able through the NCSU CDK (North Carolina State University Cadence De-
sign Kit), are freely available from the University of Utah and North Car-
olina State University respectively. If you don’t have these libraries you
should be able to follow most of the tutorials with your own library, but you
must have a library of some sort.

1.1 Cad Tool Flows

The general tool flow described here uses CMOS standard cells with auto-
matic place and route to design the chip, but also includes details of howCAD tools typically do

not include any
technology or cell data.

This data comes directly
from the chip and cell
vendors and contains

information specific to
their technologies.

to design custom cells as layout and add those cells to a library. This cus-
tom portion of the flow could, of course, be used to design a fully custom
chip. It can also be used to design your own cell library. Designing a cell
library involved not only designing the individual cells, but characterizing
those cells in terms of their delay in the face of different output loads and
input slopes, and codifying that behavior in a way that the synthesis tools
can use. The cells also must have their physical parameters characterized
so that the place and route tools have enough information to assemble them
into a chip. Finally, simulation at a variety of levels of detail and timing
accuracy is essential if a functional chip is to result from this process.

This entire tool flow will use a large number of tools from both Cadence
and Synopsys, a large number of different file formats and conversion pro-
grams, and a lot of different ways of thinking about circuits and systems.File types for the

complete flow are
described as they are
used in the flow and

documented in the
appendices. In addition

to Cadence database
files, they include .lib,

.db, .lef, .gds, .sdf, .def,
.v, .sdc, and .tcl files.

This is inevitable in a task as complex as designing a large integrated cir-
cuit, but it can be intimidating. One ramification of the type of complexity
inherent in VLSI design is that the tools, designed as they are to handle
very large collections of cells and transistors, aren’t much simpler to use on
just 4 transistors than they are on 4,000, 400,000, or 4,000,000 transistor
designs. It is not easy to simply start small and add features. One must,
in some ways, do it all right from the start which makes the learning curve
quite steep. There are lots of pieces of the flow that must be available right
from the start which can be overwhelming at first. Hopefully by breaking
the tool flow into individual tool tutorials, and with detailed walk-through
tutorials with lots of screen shots of what you should see on the screen, this
can be made less intimidating.

Of course, as with any tool with a steep learning curve, once you’ve
made it up the steep part of the curve, you may not want to refer back to
the level of detail contained in the tutorial descriptions. For that stage of
the process I’ve included slimmed down “highlights” versions of the tool

DRAFT - Please do not distribute 12



Draft September 3, 2007 1.1: Cad Tool Flows

instructions in the appendices of this volume. If you need to refer back to a
tool that you’ve used before but haven’t used for a while, you may just need
to glance at the highlights in the appendices rather than walk through the
entire tutorial again.

I need at least one figure of the whole tool flow here, and perhaps in-
dividual pictures of flows for different purposes. For example, a flow for
cell design, a flow for standard cell from Verilog descriptions, and a general
flow.

1.1.1 Custom VLSI and Cell Design Flow

This is a tool flow for designing custom VLSI systems where the design
goes down to the circuit fabrication layout. This flow starts with transis-
tor schematics at the front end and uses custom layout to design portions
of the system. It is used for designing cell librarys as well as for design-
ing performance-critical portions of larger circuits where individual design
of the transistor-level circuits is desired. The front end for this flow is
transistor-level schematics inComposer. These schematics may be sim-
ulated at a functional level using Verilog simulators likeVerilog-XL and
NC Verilog, and with a detailed analog simulator likeSpectre. The back
end is composite layout usingVirtuoso and more detailed simulation using
analog simulators.

If the final target is a cell library then the cells can be characterized for
performance using a simulator likeSpectre or by using a library character-
izer tool likeSignalstorm. These chacterizations are required if you would
like to use these cells with a synthesis system later on. Abstract view can
also be generated so that the cells can be used with a place and route system.

1.1.2 Hierarchical Cell/Block ASIC Flow

This is a tool flow for system level design using a CMOS standard cell li-
brary. The library may be a commercial library or it may be one that you de-
sign yourself, or a combination of the two. The front end can be schematics
designed using cells from these libraries, or Verilog code. If the system de-
cription is in structural Verilog code which is set of instantiations of standard
cells in Verilog, then this can be used directly as the front-end description.
If the Verilog is behavioral Verilog, then a synthesis step using Synopsys
dc shell, design vision or module compiler, or CadenceBuildGates can
synthesize the behavioral description into a Verilog structural description.

These descriptions, whether structural, behavioral, or a combination of
both, can be simulated for functionality usingVerilog-XL or NC Verilog.

DRAFT - Please do not distribute 13



CHAPTER 1: Introduction Draft September 3, 2007

These simulations may use a zero-delay, unit-delay, or extracted delay model.
The extracted delays come from the synthesis systems which extract timings
based on the cell characterizations.

The back end to the ASIC flow usesSOC Encounter to place and route
the structural file into a full chip. This description may be extracted again to
get timings that include wiring delays, or the timing can be analyzed using
a static timing analyzer like SynopsysPrimeTime. The system can also be
simulated in mixed-timing mode where parts of the circuit are simulated at a
switch level using a Verilog simulator and parts of the circuit are simulated
at a detailed level using an analog simulator likeSpectre. The final result
is a gds (also known as stream) file that can be sent to a fabrication service
such as MOSIS to have the chips built.

Of course, the tool flows described here only scratches the surface of
what the tools can do! Please feel free to explore, press on likely looking
buttons, and read the manuals to explore the tools further. If you discover
new and wonderful things that the tools can do, document those additions
to the flow and let me know and I’ll include them in subsequent releases of
this manual.

1.2 What this Manual is and isn’t

This manual includes walk-through tutorials for a number of tools from Ca-
dence and Synopsys, and description of how to combine those tools into a
working tool flow for VLSI design. It isnot a manual on the VLSI design
process itself! There are many fine textbooks about VLSI design available.
This is a “lab manual” that is meant to go along with those textbooks and
describe the nuts and bolts of working with the CAD tools. I will assume
that you either already understand general VLSI design, or are learning that
as you proceed through the tutorials contained in this manual.

Bugs in the Tools?

Before we dive into the tutorials, here’s a quick word about tool bugs. These
tools are complex, but so are the systems that you can design with them.
They also feel very cumbersome and buggy at times, and at times they are!
However, even with the inevitable bugs that creep into tools like this, I en-
courage you to follow the tutorials carefully and resist the temptation to
blame a tool bug each time you run into a problem! I’ve found in teaching
courses with these tools for years that it is almost 100% certaintly that if
you’re having trouble with a tool in a class setting, that it’s something that
you’ve done or some quirk of your data rather than a bug in the tool. It’s

DRAFT - Please do not distribute 14



Draft September 3, 2007 1.3: Typographical Conventions

amazing how subtle (or sometimes how obvious!) the differences can be
in what you’re doing and what the procedure specifies. Relax, take a deep
breath, and think carefully about what’s going on and what might cause it.
Read the error messages carefully. Occasionally there is real information
in the error message! Try explaining things to a fellow student. Often in
the process of explaining what you’re doing you’ll see what’s going on. Let
someone else look at it. Let your first instinct be to try to figure out what’s
going on, not to blame the tool! If the tool turns out the be the problem,
at least you will have exhausted the more likely causes of the problem first
before you discover this.

1.3 Typographical Conventions

Finally, a word about typographical conventions. I will try to stick to these,
but don’t promise perfect adherence to these conventions! In general:

• I’ll try to use boxed, fixed width font for any text that
you should type in to the system. This, hopefully, will look a little like
the fixed-width font you’ll see on your screen while you’re typing. So
if you are supposed to type in a command likecad-ncsu it will
look like that.

• I’ll try to use bold face for things that you should see on the sceen
or in windows that the tools pop up. So if you should seeCreate
Library in the title bar of the window, it will look like that in the text.

• I’ll use slanted text in the marginal notes. These are little points of
interest that are ancillary or parenthetical to the main text. This is a margin note

• I’ll use a non-serifed face to give the names of the tools that we’re
working with. Note that the name of the tool, likeComposer, is sel-
dom the name of the executable program that you run to get to that
program. For those, refer back to the typed commands likecad-ncsu .

DRAFT - Please do not distribute 15



CHAPTER 1: Introduction Draft September 3, 2007

DRAFT - Please do not distribute 16


