
Chapter 2

Cadence ICFB

CADENCE is a large company that offers a dizzying array of software
for Electronic Design Automation (EDA) or Computer Aided De-
sign (CAD) applications. Cadence CAD software is generallyThe custom design

tutorials are a good
starting point for custom
analog IC design too

targeted at the design of electrical circuits, both digital and analog, and
extending from extremely low-level VLSI design to the design of circuit
boards for large systems. This book is primarily interested in digital inte-
grated circuit (IC) design so we’ll look primarily at those tools from the
Cadence suite.

2.1 Cadence Design Framework

Many of the digital IC design tools from Cadence are grouped under a
framework calledDesign Framework II (dfII). ThedfII environment inte-
grates a variety of design activities including schematic capture (Composer),
simulation (Verilog-XL orNC Verilog), layout design (Virtuoso andVirtuoso-
XL, design rule checking (DRC) (Diva andAssura), layout versus schematic
checking (LVS) (Diva and Assura), and abstract generation for standard
cell generation (Abstract). These are all individual programs that perform
a piece of the digital IC design process, but are all accessible (to a greater
or lesser extent) through thedfII framework and thedfII user interface. Note
that many of these programs were developed by separate companies that
have been acquired by Cadence and folded into thedfII framework after that
acquisition. Thus, some integrate better than others!

As we’ll see, though, there are some pieces of the Cadence tool flow
that are not linked into thedfII framework. Most notably place and route of
standard cells withSOC Encounter, connection of large blocks withICC
Chip Assembly Router (CAR) and Verilog synthesis withBuildGates are
done in separate programs with separate interfaces.

CHAPTER 2: Cadence ICFB Draft September 3, 2007

However, we’ll start with thedfII tools in this tool flow, so we’ll need
to start up thedfII framework. The executable in the Cadence tool suite that
starts up this framework is calledicfb which stands for Integrated Circuit
Front to Back design. If you were to set up your search path so that the
Cadence tools were on your path, and execute theicfb command you
would see thedfII framework start up.

Unfortunately, this wouldn’t help you much! It turns out that having the
tool framework is only half the battle. You also need detailed technology
information about the devices you want to use for your design. This detailed
design information includes technology information about the IC process
that you are using and libraries of transistors, gates, or larger modules that
you can use to build your circuits. This information includes many files of
detailed (and somewhat inscrutable) information, and does not come from
Cadence. Instead, it comes from the vendor of the IC process and from the
vendor of the gate and module cells that you are using in your design. This
collection design information is typically called a “Cadence Design Kit” or
CDK.

For this book we will use technology information for IC processes sup-
ported by the MOSIS chip fabrication service. This information has been
assembled into a CDK by the good folks at North Carolina State University
(NCSU). The NCSU CDK has detailed techology information for all theWe’re using

NCSU CDK v1.5 processes currently offered through MOSIS. These processes are available
either in “vendor” rules which have have the actual specifics of the technol-
ogy as offered by the vendor, or through abstracted rules known as Scalable
CMOS or SCMOS rules. The SCMOS are scalable in the sense that a de-
sign done in the SCMOS rules should, theoretically, be useable in any of the
MOSIS processes simply by changing a scalaing parameter. That means that
the SCMOS rules are a little conservative compared to some of the vendor
rules because they have to work for all the different vendors.

Of course, it’s not quite that simple because as design features get smaller
and smaller the IC structures don’t scale at the same rate. But, it works
pretty well. To handle the differences required by smaller geometry pro-
cesses MOSIS has a number of modifiers to the SCMOS rules (SCMOS
for “generic” SCMOS, SCMOSSUBM for submicron processes, and SC-
MOS DEEP for even smaller processes). For this class we’ll be using theWe’re using the

SCMOS V8.0 rules. SCMOSSUBM rules which will then be fabricated on the AMI C5N 0.5µ
CMOS process.

But, that’s getting ahead of ourselves a little bit. The important thing for
now is that without the NCSU CDK, we won’t have any technology infor-
mation to work with. So, instead of starting upicfb directly, we’ll start it up
with the NCSU CDK already loaded. This will happen by calling Cadence
from a script that we’ve written instead of calling the tool directly. This

DRAFT - Please do not distribute 18

Draft September 3, 2007 2.2: Starting Cadence

script will start a new shell, set a bunch of required environment variables,
and call the icfb tool with the right switches set. Other tools for the rest of
this book will use similar scripts.

2.2 Starting Cadence

Before you start using cadence you need to complete the following steps:

First make a directory from which to run Cadence. This is important so
that all of Cadence’s files end up in a consistent location. It’s also nice to
have all of Cadence’s setup and data files in a subdirectory and not clogging
up your home directory. I recommend making an ICCAD directory and CAD tools can generate

a lot of temporary and
auxiliary files!

then under that making a cadence directory. Later on we’ll add to that by
making separate directories for the other IC tools like Synopsys dcshell,
module complier, SOC Encounter and so on under that ICCAD directory.

cd
mkdir IC CAD
mkdir IC CAD/cadence

Now it’s handy to set a few environment variables. In particular you
want to set your UNIX search path to include the directory that has theAll the Cadence and

Synopsys CAD tools run
on Solaris or Linux so if
you don’t have a good
grasp of basic UNIX
commands, now’s the
time to go learn them!

startup scripts for the CAD tools. You also need to set an environment vari-
able that points to a location for class-specific modifications to the general
Cadence configuration files. I recommend that you put these commands in
your .cshrc or .tcshrc file so you won’t have to retype them each time you
start a shell. If you’re using bash you’ll have to adjust the syntax slightly. In
general you want to set your path to point to where the tool startup scripts
live, and set yourLOCAL CADSETUP variable to point to the directory
that holds the local information. These locations are site- and semester-
specific so check with your instructor for details of your system’s organiza-
tion!

set path = ($path<path-to-tool-scripts>)
setenv LOCALCADSETUP<path-to-local-setup-info>

As an example, these commands might be something like the follow-
ing (again, check with your instructor or tool administrator for your local
direcory information):

set path = ($path /uusoc/facility/cadcommon/local/bin/F07)
setenv LOCALCADSETUP /uusoc/facility/cadcommon/local/class/6710

Finally, you need to copy one Cadence init file from the NCSU CSK
directory so that things get initialized correctly. The file is called.cdsinit

DRAFT - Please do not distribute 19

CHAPTER 2: Cadence ICFB Draft September 3, 2007

(note the initial dot!). You can put it in your $HOME directory so that you’ll
always get that init file, or you can put it in the directory from which you
start Cadence if you think you might ever want to start Cadence from a
different directory for different projects or classes with a different.cdsinit
file.

I recommend making this a symbolic link so that if the system-wide
.cdsinit file is updated you’ll see the new version automatically. You only
need to do this once so that a link to the bbb.cdsinit file is in place before you
startCadence. Again, the specific installation paths are site- and semester-
specific so be sure to check for the correct path!

l n -s<path-to-NCSU-CDK>/.cdsinit $HOME
or
cd $HOME/ICCAD/cadence
ln -s<path-to-NCSU-CDK>/.cdsinit .

As an example, the<path-to-NCSU-CDK> might be
/uusoc/facility/cadcommon/NCSU/CDK-F07.

Now that you have your own cadence directory (called
$HOME/IC CAD/cadence if you’ve followed the directions up to this point),
set your path, and linked the NCSU .cdsinit file either to $HOME or to
$HOME/IC CAD/cadence you’re ready to start Cadenceicfb with the NCSU
CDK. Before starting the tool connect to your $HOME/ICCAD/cadence
directory (or where ever you wish to start Cadence from) first.

Start Cadence with the command:

cad-ncsu

Of course, once you set this all up once, you should be able to jumpWe’re using dfII from
the IC v5.1.41 release right to the cad-ncsu step the next time you want to start Cadence.

You should see two windows once things get started up. The first is
theCommand Interperter Window or CIW. It’s shown in Figure 2.1. The
other is theLibrary Manager shown in Figure 2.2. The CIW is the main
command interface for all thedfII tools. In practice you will probably not
type commands into this window. Instead you’ll use interfaces in each of the
tools themselves. However, because most of the tools put their dignosticCadence also keeps the

log information in a
CDS.log file which it
puts in your $HOME

directory

log information into the CIW, you will refer back to it often. Also, there are
some things that just have to be done from this window. For now, just make
sure that your CIW looks something like the one in Figure 2.1.

TheLibrary Manager is a general interface to all the libraries and cells
views that you’ll use indfII. Cells in dfII are individual circuits that you
want to design separately. IndfII there is a notion of a “cell view” which

DRAFT - Please do not distribute 20

Draft September 3, 2007 2.2: Starting Cadence

Figure 2.1: Command Interperter Window (CIW) forcad-ncsu

means that you can look at a cell in a number of different ways (in different
views). For example, you might have a shematic view that shows the cell
in terms of its components in a graphical schematic, or you might have a
Verilog description of the cell as behavioral Verilog code. Both of these cell
views can exist at the same time and are just alternate ways of looking at the
same cell. The cell views that we’ll eventually end up using in this tool flow
are the following:

schematic: This view is a graphical schematic showing a cell as an inter-
connection of basic components, or as hierarchically defined compo-
nents.

symbol: This view is a symbolic view of the cell that can be used to place an
instance of this cell in another schematic. This is the primary mecha-
nism for generaing hierarchy in a schematic.

cmossch: This is a schematic that consists of CMOS transistors. A cmossch
view corresponds to a cell that is completely contained in a single
standard cell. That is, it is a leaf-cell in the standard cell hierarchy
that corrseponds to a cell in an existing library. It’s important in some
tool steps to differentiate the schematics that should be expanded by
the netlisting process and the leaf cells where the netlisting should
stop. That’s the purpose of the cmossch view.

extracted: This view is generated by the circuit extraction process in the
Cadence tools. It contains an extracted electrical netlist of the cell
that the simultors can use to understand the electrical behavior of the
cell.

analog-extracted: This view is generated from the extracted view and con-
tains a little extra information for the analog simulator.

DRAFT - Please do not distribute 21

CHAPTER 2: Cadence ICFB Draft September 3, 2007

Figure 2.2: Library Manager window incad-ncsu

behavioral: This view is Verilog code that describes the behavior of the
cell.

layout: This view contains the composite layout information for a cmossch
cell. This is the graphical information that the IC fabrication service
uses to fabricate the cell on the silicon.

abstract: This layer takes the layout and extracts only the informaton that
the place and route software needs to do the placement and routing.
That is, it needs to know the physical dimensions of the cell, the con-
nection points and layers, and any obstructions for the metal routing
layers, but it doesn’t need to know anything about the transistor lay-
ers. This view will be generated by theabstract process.

functional: This view is reserved for behavioral descriptions of CMOS
transistors. It’s used for a similar reason to the cmossch view: it
lets the netlister know when it has hit a transistor. You won’t need
to create these views unless you’re adding new transistor models to a
library.

DRAFT - Please do not distribute 22

Draft September 3, 2007 2.2: Starting Cadence

spectre: This view is used by the analog circuit netlister to generate an in-
put file for the Spectre analog simulator. You won’t need to create this
view unless you’re adding new transistor models to a library. There
are a number of other similar views for other simulators that you also
don’t need to worry about.

A “library” is a collection of cells that are grouped together for some
reason (being part of the same project, or part the same set of standard
cells, for example). Libraries also have technology information attached
to them so that the cells in the library refer to a consistent set of technolgy
data. This technology information is linked rather than copied so that when
updates are made on the techology, all libraries with that technology at-
tached will see the updates. For example, all the standard gates cells thatThe UofU Digital

library uses the v1 1
syntax to indicate
version 1.1 of the
library. Cadence doesn’t
like dots in cell names!

you’ll be using (until you make your own!) are grouped into a library called
UofU Digital v1 1. You will create libraries for each of your designs so
that you can keep the design data separate for different projects. Think of
librarires as directories that collect design dat together for a specific design.
You could throw all your stuff into one directory, but it would be easier to
find and use if you separate different designs into different libraries.

You should see a bunch of libraries already listed in the Library Man-If you’re using a
different CDK or PDK,
you’ll see different
libraries in the default
list

ager. If you scroll around you should be able to see the following libraries
if you are using the NCSU CDK:

NCSU TechLib xxx: These are technology libraries for each of the MO-
SIS processes. The “xxx” will be filled in with information about
which MOSIS process is being desctribed (ami06 for the AMI C5N
.6µ process, for example). We won’t use these directly, and depend-
ing on how Cadence is set up for your class you might not see these at
all. If you’re not using the UofU packages, then you’ll probably see
all of these.

NCSU Analog Parts: This library contains components (transistors, re-
sistors, capacitors, etc.) that you’ll use for transistor-level design,
and also some components for circuit-level simulation using spectre
(in theAffirma analog circuit design environment). The switch-level
transistor models in this library have zero delay for simulation.

NCSU Digital Parts: This library contains a variety of Boolean logic gates
that you can use for gate-level design. Note that these gates donot
have layout or place and route views so theycan not be used for ac-
tually building chips! They are typically used in classes just for the
initial “learn about the schematic capture tool” assignments.

basic: This is the Cadence built-in library which you won’t use directly. It
has basic components from which other parts are built.

DRAFT - Please do not distribute 23

CHAPTER 2: Cadence ICFB Draft September 3, 2007

cdsDefTechLib: A generic Cadence technology that we won’t use.

If you’re using a different CDK (Cadence Design Kit) or PDK (Pro-
cess Deisgn Kit) you’ll see different libraries. Also, you may see additional
libraries for local additions or modifications to the default libraries. For
example, at the University of Utah you’ll see:

UofU Analog Parts: This is a library with copies of the transistor com-
ponents from theNCSU Analog Library , but these transistors have
0.1ns of delay for switch level simulation.

UofU TechLib ami06: This is a technology library for AMI C5N 0.5µ li-
brary using the SCMOSSUBM rules that we’ll use in the tutorials.
It’s based on the NCSU technology library for this process, but has
some local tweaks that make it a little more friendly to this flow.

UofU Sheets: This library has graphics for schematic sheet borders that are
specific to the University of Utah.

UofU Digital v1 1: This is a library of standard cells developed at theIf you look at the cells in
UofU Digital v1 1 you
should see that each of
them has a number of
different cell views as

defined previously

University of Utah for VLSI classes. It has the UofUTechLib ami06
technology attached to it so it can be used with the AMI C5N0.6µ
CMOS process through the SCMOSSUBM design rules from MO-
SIS. This library will be enabled for viewing when it’s needed.

UofU Gatesv1 1: This is a library with only the gate (cmossch, behav-
ioral, and symbol) views of the cells in the UofUDigital v1 1 library.
It’s used for initial assignments so that students can use the gates with-
out seeing the other cell views.

UofU Pads: This library (enabled for viewing when it’s needed) contains
I/O pad cells to be used with the AMI C5N CMOS process.

Unfortunately, you’ll have to keep very careful track of when to use
components out of each of these libraries. Some have very specific uses.
The only way to handle this is just to pay attention and keep track!

Now that you’ve started Cadence using thecad-ncsu script, we can
move on to using the individual EDA tools in thedfII suite...

DRAFT - Please do not distribute 24

