
Chapter 4

Verilog Simulation

A HARDWARE DESCRIPTIONLANGUAGE (HDL) is a programming
language designed specifically to describe digital hardware. Typ-
ical HDLs look somewhat like software programming languages

in terms of syntax, but have very different semantics for interpreting the
language statements. Digital hardware, when examined at a sufficient level
of detail, is described as a set of Boolean operators executing concurrently.
These Boolean operators may be complex Boolean functions, refined into
sets of Boolean gates (NAND, NOR, etc.), or described in terms of the in-
dividual transistors that implement the functions, but fundamentally digital
systems operate through the combined effect of these Boolean operators
executing at the same time. There may be a few hundred gates or tran-
sistors, or there may be tens of millions, but because of the concurrency
inherent in these systems an HDL used to describe these systems must be
able to support this sort of concurrent behavior. Of course, they also support
“software-like” sequential behavior for high-level modeling, but they must
also support the very concurrent behavior of the fine-grained descriptions.

To enable this sort of behavior, HDLs are typically executed through
event-driven simulators. An event-driven simulator uses a notion of simu-
lation time and an event-queue to schedule events in the system being de-
scribed. Each HDL construct (think of a construct as modeling a single gate,
for example, but it could be much more complex than that) has inputs and
outputs. The description of the construct includes not only the function of
the construct, but how the construct reacts over time. If a signal changes
then the event-queue looks up which constructs are affected by that change
to know which code to run. That code may produce a new event at the con-
struct’s output, and that output event will be sent to the event queue so that
the output event will happen sometime in the future. When simulation time
advances to the correct value the output event occurs which may cause other
activity in the described system. The event-queue is the central controlling

CHAPTER 4: Verilog Simulation Draft September 3, 2007

structure that enables the HDL program to behave like the hardware that it
is describing. So, although you may think of “running a program” written
in a software programming language, it’s more correct to think of “running
a simulation” when executing an HDL program.

Verilog is one of the two most widely used Hardware Description Lan-
guages with VHDL being the other main HDL in wide use today. Much of
the simulation information described in this chapter will translate reason-One reason to choose

Verilog is that some of
the tools in this CAD

flow, place and route in
particular, require

Verilog as an input
specification.

ably easily to VHDL simulators, but for this text I’ll stick with Verilog. The
choice of using Verilog is somewhat arbitrary as the two languages are quite
similar in their ability to describe digital systems. In very general terms,
many designers find Verilog syntax simpler and easier to use, at the expense
of VHDL’s richer type system, but both HDLs are used on “real” designs.

Verilog program execution (program simulation) requires a Verilog sim-
ulator that implements the event-driven semantics of the language. You
will also need a method of sending inputs to your program, and a means
of checking that the outputs of your Verilog program are correct. This is
usually accomplished using a second Verilog program known as atestbench
or testfixture. This is similar to how integrated circuits are tested. In that
case the chip to be tested is called the Device Under Test (DUT), and the
DUT is connected to a testbench that drives the DUT inputs and records and
compares the DUT outputs to some expected values. If we use the same
terminology for our Verilog simulations, then the Verilog program that you
want to run would be the equivalent of the DUT, and you need to write a
testbench program (also in Verilog) to drive the program inputs and look at
the program outputs.

This general scheme is shown in Figures 4.1 and 4.2. These figures show
the test environment that is created by theComposer system, but they are a
good general testbench format. There is a top-level module namedtest that
is simulated. This module includes one instance of the DUT. In this case the
DUT is our twoBitAdd module from Chapter 3 and the instance name istop.
It also includes testfixture code in a separate file namedtestfixture.verilog.
In this file is aninitial block that has the testfixture code. Example testfix-
ture code will be seen in the following sections of this Chapter. Note that
the moduletest defines all the inputs to the DUT asreg type, and outputs
from the DUT aswire type. This is because the testfixture wants to set the
value of the DUT inputs and look at the value of the DUT outputs.

This text does not include a tutorial on the Verilog language. There are
lots of good Verilog overviews out there, including Appendix A of the class
textbookCMOS VLSI Design: A Circuits and Systems Perspective, 3rd
ed by Weste and Harris [1]. I’ll show some examples of Verilog code and
testbench code, but for a basic introduction see Appendix A in that book, or
any of the good Verilog introductions on the web.

DRAFT - Please do not distribute 48

Draft September 3, 2007

Figure 4.1: The simulation environment for a Verilog program (DUT) and
testbench

‘timescale 1ns / 100ps
module test;

wire Cout;
reg Cin;
wire [1:0] Sum;
reg [1:0] A;
reg [1:0] B;

twoBitAdd top(Cout, Sum, A, B, Cin);

‘include "testfixture.verilog"
endmodule

Figure 4.2: Verilog code for a DUT/testbench simulation environment

DRAFT - Please do not distribute 49

CHAPTER 4: Verilog Simulation Draft September 3, 2007

There are three Verilog simulators of interest to this CAD flow. They
are:

Verilog-XL : This is an interpreted simulator from Cadence. Interpreted
means that there is a run-time interpreter executing each Verilog in-
struction and communicating with the event-queue. This is an older
simulator and is the reference simulator for the Verilog-1995 stan-
dard. Because it is the reference simulator for that standard it has not
been updated to use some of the more modern features of Verilog, and
because it is interpreted it is not the fastest of the simulators. But, it
is well integrated into the Cadence system and is the default Verilog
simulator for many tools.

NC Verilog : This is a compiled simulator from Cadence. This simulator
compiles the Verilog code into a custom simulator for that Verilog
program. It converts the Verilog code to a C program and compiles
that C program to make the simulator. The result is that it takes a
little longer to start up (because it needs to translate and compile), but
the resulting compiled simulator runs much faster than the interpreted
Verilog-XL. It is also compatible with a large subset of the Verilog-
2000 standard and is being actively updated by Cadence to include
more and more of those advanced features.

VCS: This is a compiled simulator from Synopsys. It is not integrated into
the Cadence tools, but is integrated to some extant with the Synopsys
tools so it is useful if you spend more time in the Synopsys portion of
the design flow before using the back-end tools from Cadence. It is
also a very fast simulator likeNC Verilog.

4.1 Verilog Simulation of Composer Schematics

The simulators from Cadence are integrated with theComposer schematic
capture tool. This means that if there are Verilog models for the cells you
use in your schematic, you can simulate your schematics without leaving the
dfII environment. All the cell libraries that we will use have Verilog models
so all schematic simulation will be done through a Verilog simulator.

In order to do this you need a Verilog version of your schematic. That
is, you need walk the schematic hierarchy and generate Verilog code that
captures the module connectivity of the schematic. Whenever a node is
encountered whose behavior can be described with a piece of Verilog code,
you need to insert that Verilog code. The result is a hierarchical Verilog
program that captures the functionality of the schematic. This process is
known asnetlisting, and the result is a structural Verilog description that is

DRAFT - Please do not distribute 50

Draft September 3, 2007 4.1: Verilog Simulation of Composer
Schematics

also sometimes called anetlist. According to Figure 4.1 this netlist could
also be known as the DUT. Once you have the DUT code, you need to write
testbench code to communicate with the DUT during simulation.

Fortunately theComposer-Verilog integration environment will gen-
erate a simulatable netlist for you from the schematic, and also generate
a template for a testbench file. The netlisting process walks through your
hierarchical schematic and generates a program that describes the hierar-
chy. If the netlister encounters abehavioral cell view, that view contains
Verilog code that describes that module’s function so the code in thebehav-
ioral view is added to the netlist. If a schematic uses transistors from the
NCSU Analog Parts or UofU Analog Parts libraries, those transistors are
replaced with Verilog transistor models. The Verilog transistor primitives
are built into the Verilog language and simulate the transistors as switches.
We use thecmosschview to signal to the netlister that this is a leaf cell that
contains only transistors.

These two different description techniques for leaf cells (behavioraland
transistorcmossch) can be mixed in a single schematic, and in fact if the
leaf cells have bothbehavioral (Verilog) andcmossch (transistor) views
you can choose which low-level behavior is simulated by manipulating the
netlisting procedure inComposer. This is useful because each type of
simulation has its own advantages and disadvantages. Behavioral model-
ing can simulate more quickly, and allows back-annotation of timing from
other tools like synthesis tools though a Standard Delay Format (sdf) file
(described in more detail in Section 4.4 and in Chapter 8). Switch level
modeling can be a more accurate simulation of the low level details of the
circuit’s operation and can expose problems that are not visible in the more
high-level behavioral simulation.

4.1.1 Verilog-XL : Simulating a Schematic

As an example of simulating a schematic usingVerilog-XL we’ll use the
two-bit adder from Chapter 3. To startVerilog-XL simulation you can use
the CIW window by going toTools → Verilog Integration → Verilog-
XL.... TheSetup Environment window appears in which the Run Direc-
tory, Library, Cell and View fields need to be filled. Press OK.

Or (the much easier way) open up theComposer schematic of the two- It is very important to
have a separate run
directory for each
different design, but you
can keep the same run
directory for different
simulations of the same
design.

bit adder using the library browser and in theComposer schematic editing
window, selectTools→ Simulation → Verilog-XL . TheSetup Environ-
ment window appears with all the fields filled. TheRun Directory can be
changed or left as default<designname>.run1. A dialog box for simu-
lation of the two-bit adder from Chapter 3 is shown in Figure 4.3. Press
OK .

DRAFT - Please do not distribute 51

CHAPTER 4: Verilog Simulation Draft September 3, 2007

Figure 4.3: Dialog Box for Initializing a Simulation Run Directory

This will initialize theVerilog-XL simulator and bring up theVerilog-
XL control window as shown in Figure 4.4. This is the window from which
the simulation can be invoked. Most simulation activities can be controlled
from the menus or from the widget icons on the left side of the panel. Hov-
ering your mouse over those widgets will give you an idea of what they are.
This manual won’t go over all of them, but some playing around should
reveal what most of them do.

Before starting simulation the environment needs to be set up and an
input stimulus file for the circuit (a testbench, also called atest fixture by
Verilog-XL) needs to be created.

Setting up the Simulation Environment

SelectSetup→ Record Signals.... In theRecord Signal Optionswindow
which appears you can change the signals that will be recorded during the
simulation fromTop Level Primary I/O to All Signals if you like. Saving
only the top level I/O signals saves a lot of time and disk space, but only
records the signals at the very top level of your circuit. Thus, you can’t
probe or observe any signals further down in the circuit hierarchy. If you
want to be able to see circuit values inside the sub-circuits you should save
All Signals.

Note: To make changes to theRecord Signal Optionslater on, make
sure that the interactive simulation is stopped. If it is not stopped then select
Simulation→ Finish Interactive or press the widget with the black square

DRAFT - Please do not distribute 52

Draft September 3, 2007 4.1: Verilog Simulation of Composer
Schematics

Figure 4.4: The InitialVerilog-XL Simulation Control Window

Figure 4.5: The Record Signals Dialog Box

DRAFT - Please do not distribute 53

CHAPTER 4: Verilog Simulation Draft September 3, 2007

Figure 4.6: Dialog to Create a New Test Fixture Template

which stops the current simulation.

Defining the Test Fixture (testbench)

SelectStimulus→ Verilog... and a prompt window appears asking if you
wish to create a template (Figure 4.6). SelectYes.

All the steps in setting up the test fixture file must be completed before
starting Interactive Simulation. If interactive simulation is already started,
selectSimulation → Finish Interactive or press the stop (black square
widget) button.

In the Stimulus Options window which appears (See Figure 4.7) select
copy. In the Copy From: frame, select theFile Name from the list as
testfixture.Verilog. TheFile Name in theCopy To: frame can be changed
or left as the defaulttestfixture.new. The Design Instance Pathshould
not be changed fromtest.top. This is the DUT structure that is createdVerilog lets you access

signals in a hierarchy
using a “.” between

levels of the hierarchy.
A wire foo inside the
instance top could be

accessed using
test.top.foo, for

example.

by theComposer netlisting procedure. The uppermost cell is namedtest.
This cell contains one instance of your top-level circuit which is given an
instance name oftop. The other component within thetest module is your
testbench code. The template for this testbench will be created when you
pressApply .

Now selectEdit mode and choosetestfixture.new(or the file name you
have given to the test fixture) from theField Name. SelectMake Current
Test Fixture andCheck Verilog Syntaxand pressApply or OK .

The default editor (most likelyemacs) will open up. Use this editor to
type in the Verilog code that you want to use as your test fixture. Then save
the test fixture and close the editor. The original test fixture template should
look something like that in Figure 4.8. The interface signals are found on
the symbol and repeated here in the test fixture template. Your test code

DRAFT - Please do not distribute 54

Draft September 3, 2007 4.1: Verilog Simulation of Composer
Schematics

Figure 4.7: TheVerilog-XL Stimulus Options Form

should go after the interface signal definitions and before theendstatement.
This piece of Verilog code is aninitial block which is executed when you
simulate the netlist assembled byComposer.

An example of a complete simple test fixture for the two bit adder is
shown in Figure 4.9.

Some important things to notice about the test fixture in Figure 4.9 are:

• Verilog comments are either C-style with* and *\ bracketing the
comment, or a pair of backslashes\\ denoting a comment to the end
of the line. Please use comments in your test fixture!

• A $display statement is the equivalent of a C printf statement in a
Verilog program. These can be very helpful so that you can see how
things are progressing during your simulation.

• A good Verilog testbenchalwayschecks for the correct value of the
outputs in the testbench and prints something if the values are not
correct. You can see this in theif statements in the testbench code.
These statements check for a correct value and print an error message
if the value is not correct.All your testbenches should be self-checking
like this! Waveforms are a great way to debug some things and for the

DRAFT - Please do not distribute 55

CHAPTER 4: Verilog Simulation Draft September 3, 2007

Figure 4.8: Test Fixture Template for the Two Bit Adder

designer of the circuit to see what’s going on, but they are really bad
for checking whether a complete circuit is doing the right thing, or
whether a change in the circuit has caused a change in behavior. Once
you have a self-checking testbench you can make improvements and
re-run the simulation to see if the behavior has changed.

When you save the testbench code and exit the editor, the system willThe syntax check is
checking for

Verilog-1995 syntax
check the Verilog for correct syntax. If you don’t pass the syntax check
you’ll need to reopen the testbench file and fix the errors. When you suc-
cessfully dismiss the testfixture dialog box by selecting the new test fixture
you are ready for simulation.

An example of a different type of testbench is shown in Figure 4.10. In
this testbench loops are used to test the two bit adder exhaustively, and the
checks are computed using Verilog to compute the answer instead of the
testbench author writing down each result separately. Note that the integer
variables required for thefor loops are defined outside theinitial block.
Also note that there are a variety of syntax choices and shorthands available
for referring to the input vectors.

Still another style of writing a testbench is shown in Figure 4.11. In this
testbench the values of the inputs, and the values that should be checked

DRAFT - Please do not distribute 56

Draft September 3, 2007 4.1: Verilog Simulation of Composer
Schematics

Figure 4.9: An Example Test Fixture for the Two Bit Adder

DRAFT - Please do not distribute 57

CHAPTER 4: Verilog Simulation Draft September 3, 2007

// Default Verilog stimulus.
integer i,j,k;
initial
begin

A[1:0] = 2’b00;
B[1:0] = 2’b00;
Cin = 1’b0;

$display("Starting simulation...");

for(i=0;i<=3;i=i+1)
begin

for(j=0;j<=3;j=j+1)
begin

for(k=0;k<=1;k=k+1)
begin

#20
$display("A=%b B=%b Cin=%b, Cout-Sum=%b%b", A, B, Cin, Cout, S);
if ({Cout,S} != A + B + Cin)

$display("ERROR: Cout-Sum should equal %b, is %b",
(A + B + Cin), {Cin,S});

Cin=˜Cin; // invert Cin
end

B[1:0] = B[1:0] + 2’b01; // add the bits
end

A = A+1; // shorthand notation for adding
end

$display("Simulation finished... ");
end

Figure 4.10: Another Test Fixture for the Two Bit Adder

DRAFT - Please do not distribute 58

Draft September 3, 2007 4.1: Verilog Simulation of Composer
Schematics

for on the outputs, are held in external text files one value per line. These
values might, for example, have been generated by some other application
like Matlab or through some C, Java, python, or other program that you
write to generate values to check for.

In this test fixture arrays are defined to hold the inputs forA andB, and
for the results of the two bit addition. These Verilog arrays are initialized
using the$readmembcommand to read memory values in binary format
(actually it’s ASCII format with 1 and 0 as the digits, as opposed to$read-
memhwhere the values in the test file are hex digits). The values in the data
files are formatted with one array row of data on each line of the data file.

Once the data values are loaded into the arrays the simulation walks
through all the values in the test arrays and check the answer against the
value in the corresponding location in theresultsarray.

Of course, experienced Verilog programmers may have lots of additional
ideas about how to write great test fixtures. These are just some ideas for
how to think about your testbenches. Remember that all testbenches should
be check for the correct answer in the testbench code!

Running the Simulation

Once you have a testbench that passes the syntax check, and you have set
up the signals that you want to record, you can run the simulation. Start the
Verilog simulation by selectingSimulation→Start Interactive or pressing
the widget button with the square and right-facingplay button (upper left of
the widgets). This netlists your design, check the netlist for errors, and
prepares the netlist and test fixture for simulation.

After you have done this once in the currentrun directory you will get a
dialog box like that in Figure 4.13 asking if you want to re-netlist the design
or use the old netlist. Usually you want to re-netlist at this point so that any
changes you’ve made since that last time you simulated are updated in the
simulation netlist.

The results for the netlisting in my example looks like that in Figure 4.14.
Note that for each of the basic gates I used in my schematic the netlis-
ter chosebehavioral views of those schematics. Later we’ll see how to
change the netlisting order so that the netlisting process will get the transis-
tor switch-level views.

Note that once you’ve successfully netlisted the Verilog and initialized
the simulator all the rest of the widgets that used to be grayed out become
active. The Verilog window now looks like that in Figure 4.15.

Now that you’re in “interactive” mode, you can run the simulation us-

DRAFT - Please do not distribute 59

CHAPTER 4: Verilog Simulation Draft September 3, 2007

// Default Verilog stimulus.
reg [1:0] ainarray [0:4]; // define memory arrays
reg [1:0] binarray [0:4]; // to hold input and result
reg [2:0] resultsarray [0:4];
integer i;

initial
begin

/* A simple Verilog test fixture for testing a 2-bit adder */

$readmemb("ain.txt", ainarray); // read values into
$readmemb("bin.txt", binarray); // arrays from files
$readmemb("results.txt", resultsarray);

A[1:0] = 2’b00; // initialize inputs
B[1:0] = 2’b00;
Cin = 1’b0;

$display("Starting...");
#10
$display("A = %b, B = %b, Cin = %b, Sum = %b, Cout = %b",

A, B, Cin, Sum, Cout);

for(i=0; i<=4; i=i+1) // loop through all values in arrays
begin

A = ainarray[i]; // set the inputs
B = binarray[i]; // from the memory arrays
#10
$display("A = %b, B = %b, Cin = %b, Sum = %b, Cout = %b",

A, B, Cin, Sum, Cout);
// check against results array
if ({Cout,Sum} != resultsarray[i])

$display("Error: Sum should be %b, is %b instead",
resultsarray[i],Sum);

end
$display("...Done");
$finish;

end

Figure 4.11: A Test Fixture Using Values From External Files

DRAFT - Please do not distribute 60

Draft September 3, 2007 4.1: Verilog Simulation of Composer
Schematics

(a) ain.txt (b) bin.txt (c)
results.txt

Figure 4.12: Data files used in Figure 4.11

Figure 4.13: Dialog box for re-netlisting a previously netlisted design

DRAFT - Please do not distribute 61

CHAPTER 4: Verilog Simulation Draft September 3, 2007

Figure 4.14: The Netlisting Log for the Two Bit Adder

ing the testbench you designed by selectingSimulation → Continue or by
pressing theplay widget (the right-facing triangle). This runs your test-
bench on theComposer-generated netlist. The result of the simulation on
the testbench from Figure 4.9 is shown in Figure 4.16. You can see that
the$display statements have printed the simulation values, and none of the
ERROR statements have printed, which means that the circuit passed this
simulation with correct results.

Printing Verilog-XL Output

The output in theVerilog-XL window is available through theEdit → View
Log File → Simulation menu choice. This will bring up the contents of
theVerilog-XL in a window where you canSave-Asany file you like. This
is just a text file that has the results of the$display statements in your test-
bench.

SimVision Waveform Viewer

Now that you have a successful simulation, you can, if you wish, look at
the waveforms. Waveforms are a good way to get certain types of informa-
tion from the simulation, but hopefully you’ve checked for enough values

DRAFT - Please do not distribute 62

Draft September 3, 2007 4.1: Verilog Simulation of Composer
Schematics

Figure 4.15: TheVerilog-XL Window After Netlisting

DRAFT - Please do not distribute 63

CHAPTER 4: Verilog Simulation Draft September 3, 2007

Figure 4.16: Result of Running with the Testbench from Figure 4.9

DRAFT - Please do not distribute 64

Draft September 3, 2007 4.1: Verilog Simulation of Composer
Schematics

Figure 4.17: Waveform Window Without any Signals

in your testbench that you already know if your circuit is working or not.
The waveform viewer is a good place for debugging if your circuit isn’t
completely correct though. Especially if you’ve selected theRecord All
Signalsoption, you can use the waveform viewer and navigation system to
look at signals deep inside your circuit to see where things have started to
fail. Standard debugging techniques apply here: starting with the incorrect
output and working backwards in the circuit to figure out what caused that
output to be incorrect is a great way to start. The waveform viewer attached
to Verilog-XL by default isSimVision.

To start theSimVision waveform viewer after running a simulation,
selectDebug→ Utilities → View Waveform... or pressing the waveform
viewer widget (bottom right in the widget array). TheWaveform 1 - SimVi-
sionwindow appears as shown in Figure 4.17.

No waveforms appear yet. You need to select which signals you want to
appear in the waveform window. You do this through theDesign Browser.
SelectWindows→ New→ Design Browseror press theDesign Browser
button (it looks like a folder with a magnifying glass in front of it), and
theDesign Browser 1 SimVisionwindow appears as shown in Figure 4.18.

DRAFT - Please do not distribute 65

CHAPTER 4: Verilog Simulation Draft September 3, 2007

Figure 4.18: Design Browser with Signals Selected

Using this window you can navigate the hierarchy of your circuit to select
the specific wires that you’d like to see in the waveform window. Once
selected, you send the values to the waveform window using the widget
that looks like waveforms in a black square. You can also right-click after
selecting the signals you want to get a menu with the choice tosend to
Waveform Window. TheDesign Browserwith all the top level I/O signals
in the two bit adder selected is shown in Figure 4.18.

Once you send waveforms to theWaveform window, you’ll see them as
in Figure 4.19. This set of waveforms was generated using the exhaustive
testbench from Figure 4.10. I’ve also zoomed out to see the entire test using
the controls on the right neat the magnifying glass icon. The widget with the
equal sign (=) will zoom out to fit the entire simulation on the X-axis. The
+ and- buttons will zoom in and out. You can also set cursors and measure
time between cursors using these controls.

DRAFT - Please do not distribute 66

Draft September 3, 2007 4.1: Verilog Simulation of Composer
Schematics

Figure 4.19: Waveform Window Showing Exhaustive Test Results

DRAFT - Please do not distribute 67

CHAPTER 4: Verilog Simulation Draft September 3, 2007

Figure 4.20: Waveform Window Showing Outputs as a Bus

However, the outputs are a little hard to read in this window because
the carry-out (Cout) and sum (Sum) outputs are on different waveforms. It
would be easier if these were combined into a single bus so that you could
read the output value as a three-bit number. You can do this by selecting
the Cout and Sum traces in theWaveform window and collecting them
into a bus usingEdit → Create→ Bus or using theCreate Busoption
in the right-click menu once the traces are selected. The result, zoomed in
to a closer view, is shown in Figure 4.20. In this waveform the output is
collected into a bus and reads as a three-bit output value.

Printing Waveform Outputs

Output from theSimVision waveform viewer can be printed using theFile
→ Print Window... menu choice. This will bring up yet another different
print dialog box, as shown in Figure 4.21. You can fill in your name and
other information to have it printed along with the waveforms. At the top
of the dialog box you can select a Unix/Linux print command (the defaultWith no -P argument, lpr

uses the printer defined
in your $PRINTER

environment variable

lpr -l works fine), or you can selectPrint to file: and give a file name. The

DRAFT - Please do not distribute 68

Draft September 3, 2007 4.1: Verilog Simulation of Composer
Schematics

Figure 4.21: Printing Dialog Box for SimVision

result is a postscript file. I haven’t found hand-modification required for the
postscript produced bySimVision.

4.1.2 NC Verilog : Simulating a Schematic

As an example of simulating a schematic we’ll again use the two-bit adder
from Chapter 3. To startNC Verilog simulation you can use the CIW win-
dow by going toTools→ Verilog Integration → NC Verilog.... TheVer-
ilog Environment for NC Verilog Integration window appears in which
the Run Directory, Library, Cell and View fields need to be filled in.

Or (the much easier way) open up theComposer schematic of the two- It is very important to
have a separate run
directory for each
different design, but you
can keep the same run
directory for different
simulations of the same
design.

bit adder using the library browser and in theComposer schematic editing
window, selectTools→ Simulation→ NC Verilog. TheVerilog Environ-

DRAFT - Please do not distribute 69

CHAPTER 4: Verilog Simulation Draft September 3, 2007

Figure 4.22: Dialog Box for Initializing a Simulation Run Directory for
NC Verilog

ment for NC Verilog Integration window appears with all the fields filled
in. If the fields are not filled in, you can use theBrowse button to open
a smalllibrary manager window to select the library, cell, and schematic
view.

TheRun Directory can be changed or left as default<designname> run1.
Note that the default run directory name forNC Verilog has an underscore
rather than the dot used in theVerilog-XL environment. It’s not a terribly
important difference, but it can help you keep track of which run directory
is which if you’re using both simulators. A dialog box for simulation of the
two-bit adder from Chapter 3 is shown in Figure 4.22.

Once theVerilog Environment for NC Verilog Integration dialog has
been filled in, initialize the design by selectingCommands→ Initialize
Designor by selecting theInitialize Design widget that looks like a sprinter
starting a race.

This will initialize theNC Verilog simulator and make some other wid-
gets in theVerilog Environment for NC Verilog Integration dialog active,
including theGenerate Netlistwidget. Selecting that widget (or issuing that
command using theCommandsmenu) will generate a simulation netlist for
the schematic.

DRAFT - Please do not distribute 70

Draft September 3, 2007 4.1: Verilog Simulation of Composer
Schematics

Figure 4.23: The Record Signals Dialog Box

Before starting simulation the environment needs to be set up and an
input stimulus file for the circuit (a testbench, also called atest fixture by
NC Verilog) needs to be created.

Setting up the Simulation Environment

SelectSetup→ Record Signals.... In the Record Signal Setupwindow
which appears you can change how many levels of hierarchy will have their
internal signals saved. If you leave the default setting of 1 you will only get
the top-level I/O signals from your schematic. Thetestscope in the netlist is
the wrapper that theNC Verilog integration system builds with one instance
of your circuit (with labeltop) and the test fixture. If you would like to
be able to see the values of signals further down in your circuit hierarchy,
change the number or selectAll to have all hierarchical signals saved. See
Figure 4.23 for details.

Generating the Simulation Netlist

Next generate the simulation netlist by selecting theGenerate Netlistwid-
get (the widget that looks like a tree of boxes with check marks in them),
or by using theCommands→ Generate Netlistmenu choice. The result
is that a netlist is generated with a top-level simulation macro namedtest
that contains one instance of your circuit (the DUT) labeledtop and a tem-
plate for the test fixture code that you will fill in to drive your simulation.

DRAFT - Please do not distribute 71

CHAPTER 4: Verilog Simulation Draft September 3, 2007

Figure 4.24: Dialog to Create a New Test Fixture Template

If you’re re-simulating a design in the same run directory, you’ll see a re-
netlisting dialog box like that in Figure 4.13. As in theVerilog-XL case, it’s
almost always the case that you should re-netlist to make sure you’re sim-
ulating the most recent changes to your circuit. The result of the netlisting
command should be very similar to that shown in Figure 4.14 because the
same netlister is used for bothVerilog-XL andNC Verilog. This step also
enables more of the widgets and commands in theVerilog Environment
for NC Verilog Integration window.

Defining the Test Fixture (testbench)

SelectCommands→ Edit Test Fixture . This brings up theEdit Test
Fixture window with the default test fixture file name oftestfixture.Verilog
already selected as shown in Figure 4.24. TheFile Type should beStimulus
and it’s a good idea to select theCheck Verilog Syntax box. TheTest
Bench File Typeis the top-level module namedtest that is created with the
instance of your circuit instantiated as the DUT namedtop. You can view
this file if you’re curious. Your stimulus code is inserted with a Verilog
‘include statement in theTest Bench

You can edit the stimulus portion of the test bench by selectingedit in
theEdit Test Fixture dialog and either selectingApply or OK . The default
editor (most likelyemacs) will open up. Use this editor to type in the
Verilog code that you want to use as your test fixture. Then save the test
fixture and close the editor. The original test fixture template should look
something like that in Figure 4.8 from Section 4.1.1. The interface signals
are found on the symbol and repeated here in the test fixture template. Your
test code should go after the interface signal definitions and before theend
statement. This piece of Verilog code is aninitial block which is executed
when you simulate the netlist assembled byComposer.

For examples of test fixtures for the two bit adder, see Figures 4.9, 4.10,
and 4.11 in Section 4.1.1. Once you have entered your test fixture code and

DRAFT - Please do not distribute 72

Draft September 3, 2007 4.1: Verilog Simulation of Composer
Schematics

saved the result without Verilog errors you are ready to simulate.

Note that even thoughNC Verilog includes many Verilog-2000 fea-
tures, the syntax checker for the test fixture appears to be checking for the
Verilog-1995 syntax that Verilog-XL prefers. I belive, but have not tested
completely, that if you want to use Verilog-2000 features in your test fixture
you can remove theCheck Verilog Syntaxoption when editing. However,
this will open the door for Verilog syntax errors of all types to creep into
your test fixture code so beware!

Running the Simulation

Once you have a testbench that passes the syntax check, and you have set
up the signals that you want to record, you can run the simulation. Start
the Verilog simulation by selectingCommands→ Simulate menu choice
or pressing theSimulatewidget button with the DUT rectangle with square
waves on right and left denoting inputs and outputs.

This will analyze, elaborate, and compile theNC Verilog simulator for
your design. The result is that two new windows pop up as shown in Fig-
ures 4.25 and 4.26: theConsole - SimVisionand theDesign Browser 1
- SimVision. TheDesign Browseris the same as seen in theVerilog-XL
example and is shown after thetestandtop nodes have been expanded. The
Console is a control console for theNC Verilog simulation. If you look
carefully you’ll see the command line that initializes the simulation which
includes the information we set previously to include (probe) signals at all
levels of the circuit hierarchy.

Once these windows are open you can select the signals that you would
like to see using theDesign Browser. Click theSend to Waveformwidget
in theDesign Browserwindow to open aWaveform window. Then click on
theRun Simulation button in any of the windows. This button is looks like
a white right-pointing triangle, or a standard “play” button from applications
like audio players. The simulation runs and the waveforms appear in the
Waveform window. You can zoom in and out, add or delete waveforms, and
group or expand buses as described in Section 4.1.1. Printing a waveform
from SimVision is also described in that Section. The result of simulating
using the exhaustive test fixture from Figure 4.11 is shown in Figure 4.27.

TheSimVision application is a very complex front end to theNC Verilog
simulator. It’s not just a waveform viewer as it is withVerilog-XL. From
SimVision you can set break points, single step simulations, explore the
circuit being simulated using aSignal Flow Browser, reference the simu-
lation to the Verilog source code, and many other features. Please explore
these features as you are simulating your Verilog code withNC Verilog!

DRAFT - Please do not distribute 73

CHAPTER 4: Verilog Simulation Draft September 3, 2007

Figure 4.25: SimVision Console Window

Printing NC Verilog Output

Printing waveforms fromSimVision is the same whether you get toSimVi-
sion from Verilog-XL or from NC Verilog. The dialog for printing wave-
forms is shown in Figure 4.21 in Section 4.1.1.

The output of the$displaystatements in your testbench code are stored
in the log file of the simulation. There may be a way to access the log file
from the SimVision menus, but I haven’t found it. To see the output of
the$display, $monitor and other output statements in your testbench look
at the logfile in the simulation directory. Recall that the default simulation
directory name is<designname> run1, and the default log file name is
simout.tmp. This is simply a text file that includes the log information
from the NC Verilog simulation including all the outputs from$display
and from other output commands in your test fixture.

4.2 Behavioral Verilog Code inComposer

One way to describe the functionality of your circuit is to use collections of
Boolean gates from a standard cell library, as is shown in the previous sec-
tions. Another way is to describe the functionality of the circuit as Verilog
code. The Verilog code might be purely structural meaning that it consists
only of instantiations of gates from that same standard cell library. In that

DRAFT - Please do not distribute 74

Draft September 3, 2007 4.2: Behavioral Verilog Code in Composer

Figure 4.26: SimVision Design Browser Window

DRAFT - Please do not distribute 75

CHAPTER 4: Verilog Simulation Draft September 3, 2007

Figure 4.27: Waveform Window Showing the Output of Exhaustive Simu-
lation

DRAFT - Please do not distribute 76

Draft September 3, 2007 4.2: Behavioral Verilog Code in Composer

case the Verilog is simply a textual version of the schematic. Verilog can
also describe a circuit as a behavior meaning that it uses statements in the
Verilog language to describe the desired behavior. A behavioral Verilog de-
scription will look much more like a software program than like a circuitSynthesis of behavioral

Verilog into structural
(gate-level) Verilog is
covered in Chapter 8.

description, and will need to be converted (orsynthesized) into a structural
description at some point if you want to actually build the circuit, but as an
initial description, a behavioral model can be much more compact, can use
higher-level descriptions, and can simulate much more quickly.

A behavioral Verilog model can be developed as a Verilog program us-
ing a text editor, and simulated using a Verilog simulator without ever using
the Composer schematic tool as will be seen in Section 4.3. However,
symbols inComposer schematics can be an interface to behavioral Ver-
ilog code just as easily as they can contain gate schematics. These symbols
which encapsulate Verilog behavioral code may be connected in schematics
using wires just like other symbols, and can peacefully coexist with other
symbols that encapsulate gate views. The cell view used for generalNote that cell views that

consist of transistors or
that correspond to a
single standard cell may
use cmos sch as their
schematic view

schematics isschematicand the cell view we use for behavioral Verilog
views isbehavioral. In fact, a single cell may have both of these views and
you can tell the netlister later which view to use in a given simulation. You
can actually use any view name you like for the Verilog behavioral view.
It might actually make sense in some situations to use a different name,
like verilog for your Verilog view so you can keep track of which pieces of
Verilog are your own behavioral code and which pieces of Verilog are the
library cell descriptions. For now we won’t make a distinction.

This allows great freedom in terms of how you want to describe your
circuits. You can start with a Verilogbehavioral view for initial functional
simulation, and then incrementally refine pieces of the circuit into gate level
schematicviews, all while using the same testbench code for simulation.

4.2.1 Generating a Behavioral View

Making a behavioral view is very similar to making any other cell view. You
use the Library Manager to make a new cell view, except that you choose
behavioral as the view name instead ofschematic.

Start in the Library Manager and select the library in which you want to
make your new cell view. Of course, if you’re starting a whole new library,
you need to make the new library first. If you’re adding a behavioral view to
a cell that already exists, select the cell too. That will fill in both the library
and the cell in thenew cell viewdialog box as shown in Figure 4.28. In
this case I’m using the nand2 that was designed as a transistor schematic in
Chapter 3 Section 3.3 and will add a behavioral view of that cell. Clicking
OK to the dialog box of Figure 4.28 will open up aVerilog Editor . Actually,

DRAFT - Please do not distribute 77

CHAPTER 4: Verilog Simulation Draft September 3, 2007

Figure 4.28: Dialog Box for Creating a Behavioral View

this is just a text editor, in this caseemacs.

In the editor you will get a very simple template for your new Verilog
component. If you have already made a symbol for your cell, then the tem-
plate will already have the inputs and outputs of the Verilog module defined
from the pins on the symbol. If you haven’t yet made a symbol, there will
just be a module name. In this case because we already defined a symbol,
the Verilog template looks like Figure 4.29. You now need to fill in this
template with Verilog code that describes the behavior of your cell.

One (particularly simple) example of a Verilog behavioral descriptionVerilog built-in gate
primitives include and,
or, not, nand, nor, xor,

and xnor.

is shown in Figure 4.30. This description uses the Verilog built-in nand gate

Figure 4.29: Behavioral View Template Based on the nand2 Symbol

DRAFT - Please do not distribute 78

Draft September 3, 2007 4.2: Behavioral Verilog Code in Composer

Figure 4.30: Complete Behavioral Description of a nand2 Cell

model. This isn’t a gate from an external library, it’s the built-in Verilog
primitive. The name of the instance isi0. Note that I’ve given the instance
a name that starts in an underscore so that if I ever navigate to this instance
in a simulation I can tell that it came from the behavioral model of the cell.

I’ve also usedspecify statements to describe the input to output delay
of the cell. In this case both the rising and falling delays for both the A
to Y and B to Y paths are set to 1.0 time units. These specify blocks are
very important later on! They are the mechanism through which extracted
timings from the synthesis procedures are annotated to your schematic. The
timings in the Standard Delay Format (.sdf) file that comes from the syn-
thesis program will be in terms of the input to output path delay, and the
back-annotation procedure will look for specify statements in the cell de-
scriptions to update to the new extracted timing values.

There are many different descriptions you could use in Verilog for a
simple NAND gate like this. You could, for example, define the function as
a continuous assignment

assign Y = ˜(A & B);

or you could define the function as an assignment inside analwaysblock

reg Y;
always @(A or B)

begin
Y = ˜(A & B);

end

DRAFT - Please do not distribute 79

CHAPTER 4: Verilog Simulation Draft September 3, 2007

or, if you had a standard cell library available with the appropriate gates,
you could define it the NAND as a structural composition of gates from that
library.

wire w;
AND2 _u1(w, A, B);
INV _u2(Y,w);

Each of these descriptions would work. The point is that any legal Ver-
ilog behavioral/structural syntax that will simulate in the Verilog simulator
will work for the contents of abehavioral cell view.

Once you have entered your Verilog code into the template in the editor,
save the file and quit the editor. This will cause theComposer VerilogThe syntax checker

appears to be checking
for Verilog 1995 (i.e.

Verilog-XL) syntax in
this check.

integration system to check the syntax of your code and make sure that it
is compatible with the Verilog editor. If it reports errors you need to re-edit
and fix your Verilog code.

It will also check to make sure that the pin descriptions in your schematic
view, the pins in your symbol, and the interface in your behavioral view are
all consistent. This is critical if all the different views can be used in various
combinations in later simulations.

Once you have a behavioral view of a cell, that view can be simu-
lated fromComposer using aCadence Verilog simulator, and it can be
included via the symbol in other schematics and those schematics can be
simulated using eitherVerilog-XL or NC Verilog. All of the cells in the
UofU Digital v1 1 library have behavioral views. These views are the de-
fault choice when simulating schematics that include instances of these
cells. If a transistor switch-level simulation is desired, follow the procedure
in Section 4.4.1.

4.2.2 Simulating a Behavioral View

The simplest way to simulate a behavioral view is to make a new schematic
and include an instance of the symbol that encapsulates the behavioral view.
Then you can use the procedure described in Section 4.1.1 to simulate with
Verilog-XL, or the procedure described in Section 4.1.2 to simulate with
NC Verilog.

You can also simulate the Verilog code in the behavioral view directly
without going through a schematic. If you double-click thebehavioral view
in the library manager you’ll open an emacs editing window to edit the
code. However, if you right-click on the behavioral view you’ll get a menu
where you can chooseOpen (Read Only). If you select this choice you’ll
open a read-only window that looks like that in Figure 4.31. From here you

DRAFT - Please do not distribute 80

Draft September 3, 2007 4.3: Stand-Alone Verilog Simulation

Figure 4.31: Read Only Window for Simulation of Behavioral View

can selectTools→ Verilog-XL to simulate that code using theVerilog-XL
simulator as described in Section 4.1.1. There appears to be no option for
direct simulation usingNC Verilog.

4.3 Stand-Alone Verilog Simulation

The preceeding sections have all used theComposer integration frame-
work to simulate circuits and behavioral Verilog code through theCom-
poser schematic capture tool. Of course, you may have Verilog code that
you’ve developed outside of the schematic framework that you’d like to sim-
ulate. It’s entirely reasonable and common to develop a system as a Verilog
program using a text editor and then using that Verilog code as the starting
point for a CAD flow. The CAD flow in this case goes from that Verilog
code (through synthesis) directly to the back end place and route without
ever using a schematic. Of course, the Verilog simulators can run (simulate)
that Verilog code directly.

In order to simulate your Verilog code you will need both the code that
describes your system, and testbench code to set the inputs of your system
and check that the outputs are correct. As shown in Figure 4.1 this corre-
sponds to DUT code (the code describing your system) and testbench or
testfixture code. These should both be part of a single top-level module that
is simulated. An example is shown in Figure 4.2 where the testfixture code
is contained in a separate file namedtestfixture.verilog.

DRAFT - Please do not distribute 81

CHAPTER 4: Verilog Simulation Draft September 3, 2007

As another example, consider the Verilog code describing a simple state
machine shown in Figure 4.32. This state machine looks at bits on the input
insig and raises the output signalsaw4whenever the last four bits have all
been1. Of course, there are simpler ways of building a circuit with this
functionality, but it makes a perfectly good example of a small finite state
machine to simulate with each of the Verilog simulators.

In order to simulate this piece of Verilog code a testbench is required.
Based on the technique described in Figures 4.1 and 4.2, a top-level Verilog
file is required that includes an instance of thesee4module and some test-
bench code. This top-level file is shown in Figure 4.33, and an example of a
possible testbench in thetestfixture.v included file is shown in Figure 4.34.
These files will be used to demonstrate each of the Verilog simulators in
stand-alone mode.

4.3.1 Verilog-XL

Verilog-XL is an interpreted Verilog simulator from Cadence that is the ref-
erence simulator for the Verilog-1995 standard. This means that Verilog
constructs from later versions of the standard will not run with this simu-
lator. As seen in Section 4.1.1, it is well-integrated with theComposer
schematic capture system, but it is easily used on its own too. The inputs to
the simulator are, at the simplest, just a list of the Verilog files to simulate,
but can also include a dizzying array of additional arguments and switches
to control the behavior of the simulator. If you’re already set your path to
include the standard CAD scripts (see Section 2.2), then you can invoke the
Verilog-XL simulator using the script

sim-xl <verilogfilename >

I find it useful to put the files that you want to simulate in a separate file,
and then invoke the simulator with the -f switch to point to that file. In the
case of our example from Figures 4.32 to 4.34, thefiles.txt file simply lists
the see4.v and seetest.v files and looks like:

see4.v
seetest.v

In this case, I would invoke theVerilog-XL simulator using the com-
mand:

sim-xl -f files.txt

Anything that you put on thesim-xl command line will be passed through
to theVerilog-XL simulator so you can include any other switches that you
like this way. Try sim-xl -help to see a list of some of the switches.

DRAFT - Please do not distribute 82

Draft September 3, 2007 4.3: Stand-Alone Verilog Simulation

// Verilog HDL for "Ax", "see4" "behavioral"
// Four in a row detector - written by Allen Tanner
module see4 (clk, clr, insig, saw4);

input clk, clr, insig;
output saw4;

parameter s0 = 3’b000; // initial state, saw at least 1 zero
parameter s1 = 3’b001; // saw 1 one
parameter s2 = 3’b010; // saw 2 ones
parameter s3 = 3’b011; // saw 3 ones
parameter s4 = 3’b100; // saw at least, 4 ones

reg [2:0] state, next_state;

always @(posedge clk or posedge clr) // state register
begin

if (clr) state <= s0;
else state <= next_state;

end

always @(insig or state) // next state logic
begin

case (state)
s0: if (insig) next_state = s1;

else next_state = s0;
s1: if (insig) next_state = s2;

else next_state = s0;
s2: if (insig) next_state = s3;

else next_state = s0;
s3: if (insig) next_state = s4;

else next_state = s0;
s4: if (insig) next_state = s4;

else next_state = s0;
default: next_state = s0;

endcase
end

// output logic
assign saw4 = state == s4;
endmodule //see4

Figure 4.32: A simple state machine described in Verilog:see4.v

DRAFT - Please do not distribute 83

CHAPTER 4: Verilog Simulation Draft September 3, 2007

\\ Top-level test file for the see4 Verilog code
module test;

\\ Remember that DUT outputs are wires, and inputs are reg
wire saw4;
reg clk, clr, insig;

\\ Include the testfixture code to drive the DUT inputs and
\\ check the DUT outputs
‘include "testfixture.v"

\\ Instantiate a copy of the see4 function (named top)
see4 top(clk, clr, insig, saw4);

endmodule //test

Figure 4.33: Top-level Verilog code for simulatingsee4namedseetest.v

If you look inside thesim-xl script you will see that it starts a new shell,
sources the setup script forCadence, and then callsVerilog-XL with what-
ever arguments you supplied. The command puts the log information into a
file calledxl.log in the same directory in whichsim-xl is called.

If I run this command using thesee4example, I get the output shown
in Figure 4.35. The important parts of the output are the results from the
$displaystatements in the test bench. They indicate that the state machine is
operating as expected because none of theERROR statements has printed.

If there were errors in the original Verilog code, and the testbench was
written to correctly check for faulty behavior then you would getERROROf course, if the

testbench checking code
is not correct, all bets

are off!

statements printed. As an example, if I modify thesee4code in Figure 4.32
so that it doesn’t operate correctly, a simulation should signal errors. I’ll
change the next-state function in states4 so that instead of looping in that
state on a1 the state machine goes back to states0. If I simulate that (faulty)
state machine, thexl.log file of the simulation prints out a series ofERROR
statements as shown in Figure 4.36.

Stand-AloneVerilog-XL Simulation with simVision

It’s also possible to run theVerilog-XL simulator in stand-alone mode and
also invoke the gui, which includes the waveform viewer. To do this, use
the sim-xlg script instead ofsim-xl . The only difference is that the

sim-xlg invokes the gui (simVision), and starts the simulator ininter-
active mode which means that you can select signals to see in the waveform
viewer before starting the simulation. The command would be

sim-xlg -f files.txt

DRAFT - Please do not distribute 84

Draft September 3, 2007 4.3: Stand-Alone Verilog Simulation

// Four ones in a row detector testbench (testfixture.v)
// Main tests are in an initial block
initial
begin

clk = 1’b0; // initialize the clock low
clr = 1’b1; // start with clr asserted
insig = 1’b0; // insig starts low

#500 clr = 1’b0; // deassert clear and start running

// use the send_test task to test the state machine
send_test(32’b0011_1000_1010_1111_0000_0111_1110_0000);
send_test(32’b0000_0001_0010_0011_0100_0101_0110_0111);
send_test(32’b1000_1001_1010_1011_1100_1101_1110_1111);
send_test(32’b1011_1111_1101_1111_1111_1100_1011_1111);

// Print something so we know we’re done
$display("\nSaw4 simulation is finished...");
$display("If there were no ’ERROR’ statements, then everything worked!\n");
$finish;

end

// Generate the clock signal
always #50 clk = ˜clk;

// this task will take the 32 bit input pattern and apply
// those bits one at a time to the state machine input.
// Bits are changed on negedge so that they’ll be set up for
// the next active (posedge) of the clock.
task send_test;

input [31:0]pat; // input bits in a 32-bit array
integer i; // integer for looping in the for statement
begin

for(i=0;i<32; i=i+1) // loop through each of the bits in the pat array
begin

// apply next input bit before next rising clk edge
@(negedge clk)insig = pat[i];

// remember to check your answers!
// Look at last four bits to see if saw4 should be asserted
if ((i > 4)

&& ({pat[i-4],pat[i-3],pat[i-2],pat[i-1]} == 4’b1111)
&& (saw4 != 1))
$display("ERROR - didn’t recognize 1111 at pat %d,", i);

else if ((i > 4)
&& ({pat[i-4],pat[i-3],pat[i-2],pat[i-1]} != 4’b1111)
&& (saw4 == 1))
$display("ERROR - signalled saw4 on %b inputs at step %d",

{pat[i-3],pat[i-2],pat[i-1],pat[i]}, i);
end // begin-for

end // begin-task
endtask // send_test

Figure 4.34: Testbench code forsee4.vin a file namedtestfixture.v
DRAFT - Please do not distribute 85

CHAPTER 4: Verilog Simulation Draft September 3, 2007

--->sim-xl -f test.txt
Tool: VERILOG-XL 05.10.004-s Jul 29, 2006 20:50:01

Copyright (c) 1995-2003 Cadence Design Systems, Inc. All Rights Reserved.
Unpublished -- rights reserved under the copyright laws of the United States.

Copyright (c) 1995-2003 UNIX Systems Laboratories, Inc. Reproduced with Permission.

THIS SOFTWARE AND ON-LINE DOCUMENTATION CONTAIN CONFIDENTIAL INFORMATION
AND TRADE SECRETS OF CADENCE DESIGN SYSTEMS, INC. USE, DISCLOSURE, OR
REPRODUCTION IS PROHIBITED WITHOUT THE PRIOR EXPRESS WRITTEN PERMISSION OF
CADENCE DESIGN SYSTEMS, INC. RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is subject to
restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in
Technical Data and Computer Software clause at DFARS 252.227-7013 or
subparagraphs (c)(1) and (2) of Commercial Computer Software --
Restricted
Rights at 48 CFR 52.227-19, as applicable.

Cadence Design Systems, Inc.
555 River Oaks Parkway
San Jose, California 95134

For technical assistance please contact the Cadence Response Center at
1-877-CDS-4911 or send email to support@cadence.com

For more information on Cadence’s Verilog-XL product line send email to
talkv@cadence.com

Compiling source file ‘‘see4.v’’
Compiling source file ‘‘seetest.v’’

Warning! Code following ‘include command is ignored
[Verilog-CAICI]

‘‘seetest.v’’, 6:
Compiling included source file ‘‘testfixture.v’’
Continuing compilation of source file ‘‘seetest.v’’
Highest level modules:
test

Saw4 simulation is finished...
If there were no ’ERROR’ statements, then everything worked!

L17 ‘‘testfixture.v’’: $finish at simulation time 13200
1 warning
0 simulation events (use +profile or +listcounts option to count)
CPU time: 0.0 secs to compile + 0.0 secs to link + 0.0 secs in
simulation
End of Tool: VERILOG-XL 05.10.004-s Jul 29, 2006 20:50:02
--->

Figure 4.35: Output of stand-aloneVerilog-XL simulation ofseetest.v

DRAFT - Please do not distribute 86

Draft September 3, 2007 4.3: Stand-Alone Verilog Simulation

<previous text not included...>
Compiling included source file ‘‘testfixture.v’’
Continuing compilation of source file ‘‘seetest.v’’
Highest level modules:
test

ERROR - didn’t recognize 1111 at pat 10,
ERROR - didn’t recognize 1111 at pat 11,
ERROR - didn’t recognize 1111 at pat 5,
ERROR - didn’t recognize 1111 at pat 6,
ERROR - didn’t recognize 1111 at pat 15,
ERROR - didn’t recognize 1111 at pat 16,
ERROR - didn’t recognize 1111 at pat 17,
ERROR - didn’t recognize 1111 at pat 18,
ERROR - didn’t recognize 1111 at pat 20,
ERROR - didn’t recognize 1111 at pat 21,
ERROR - didn’t recognize 1111 at pat 27,
ERROR - didn’t recognize 1111 at pat 28,
ERROR - didn’t recognize 1111 at pat 29,
ERROR - didn’t recognize 1111 at pat 30,

Saw4 simulation is finished...
If there were no ’ERROR’ statements, then everything worked!

L17 ‘‘testfixture.v’’: $finish at simulation time 13200
1 warning
0 simulation events (use +profile or +listcounts option to count)
CPU time: 0.0 secs to compile + 0.0 secs to link + 0.0 secs in
simulation
End of Tool: VERILOG-XL 05.10.004-s Jul 29, 2006 21:21:49

Figure 4.36: Result of executing a faulty version ofsee4.v

DRAFT - Please do not distribute 87

CHAPTER 4: Verilog Simulation Draft September 3, 2007

Figure 4.37: Control console for stand-aloneVerilog-XL simulation using
SimVision

which, if you look inside the script, does exactly the same thing that
sim-xl does, but adds a couple switches to start up the simulation in the
gui in interactive mode. The gui that is used is the same gui environment
from Section 4.1.1. Select the signals that you would like to see in the
waveform first before starting the simulation with theplay button (the right-
facing triangle). The control console is shown in Figure 4.37, the hierarchy
browser in Figure 4.38, and the waveform window (after signals have been
selected and the simulation run) in Figure 4.39. See Section 4.1.1 for more
details of driving thesimVision gui.

4.3.2 NC Verilog

NC Verilog is a compiled simulator from Cadence that implements many
of the Verilog 2000 features. It compiles the simulator from the Verilog sim-
ulation by translating the Verilog to C code and compiling the C code. This
results in a much faster simulation time at the expense of extra compilation
time at the beginning. This simulator is also well-integrated with theCom-
poser schematic capture tool as seen in Section 4.1.2. At its simplest, the
inputs to theNC Verilog simulator are just a list of files to simulate, but like
other Verilog simulators, there are many many switches that can be given at
the command line to control the simulation. If you’re already set your path
to include the standard CAD scripts (see Section 2.2), then you can invoke
theNC Verilog simulator using the script

sim-nc <verilogfilename >

DRAFT - Please do not distribute 88

Draft September 3, 2007 4.3: Stand-Alone Verilog Simulation

Figure 4.38: Hierarchy browser for thesee4example

DRAFT - Please do not distribute 89

CHAPTER 4: Verilog Simulation Draft September 3, 2007

Figure 4.39: Waveform viewer after running thesee4example

DRAFT - Please do not distribute 90

Draft September 3, 2007 4.3: Stand-Alone Verilog Simulation

I find it useful to put the files that you want to simulate in a separate file,
and then invoke the simulator with the -f switch to point to that file. In the
case of our example from Figures 4.32 to 4.34, thefiles.txt file simply lists
the see4.v and seetest.v files and looks like:

see4.v
seetest.v

In this case, I would invoke theNC Verilog simulator using the com-
mand:

sim-nc -f files.txt

Anything that you put on thesim-nccommand line will be passed through
to theNC Verilog simulator so you can include any other switches that you
like this way. Try sim-nc -help to see a list of some of the switches.
If you look inside thesim-nc script you will see that it starts a new shell,
sources the setup script forCadence, and then callsNC Verilog with the
command line information that you have supplied. The log file isnc.log.
If I run this command using thesee4example, I get the output shown in
Figure 4.40. The important parts of the output are the results from the$dis-
play statements in the test bench. They indicate that the state machine is
operating as expected because none of theERROR statements has printed.

If there were errors in the original Verilog code, and the testbench was
written to correctly check for faulty behavior then you would getERROR Of course, if the

testbench checking code
is not correct, all bets
are off!

statements printed. These error statements would look similar to those in
Figure 4.36.

Stand-AloneNC Verilog Simulation with simVision

It’s also possible to run theNC Verilog simulator in stand-alone mode and
also invoke the gui, which includes the waveform viewer. To do this, use
the sim-ncg script instead ofsim-nc . The only difference is that the

sim-ncg invokes the gui (simVision), and starts the simulator ininter-
active mode which means that you can select signals to see in the waveform
viewer before starting the simulation. The command would be

sim-ncg -f files.txt

which, if you look inside the script, invokes the same command as does
sim-nc, but with a switch that starts up the simulation in theSimVision gui.
This is the same gui environment from Section 4.1.2. Select the signals that
you would like to see in the waveform first before starting the simulation
with theplay button (the right-facing triangle). The control console for the

DRAFT - Please do not distribute 91

CHAPTER 4: Verilog Simulation Draft September 3, 2007

---> sim-nc -f test.files
ncverilog: 05.10-s014: (c) Copyright 1995-2004 Cadence Design Systems,
Inc.
file: see4.v

module worklib.see4:v
errors: 0, warnings: 0

file: seetest.v
module worklib.test:v

errors: 0, warnings: 0
Caching library ’worklib’ Done

Elaborating the design hierarchy:
Building instance overlay tables: Done
Generating native compiled code:

worklib.see4:v <0x3d4ece8f>
streams: 5, words: 1771

worklib.test:v <0x37381383>
streams: 6, words: 4703

Loading native compiled code: Done
Building instance specific data structures.
Design hierarchy summary:

Instances Unique
Modules: 2 2
Registers: 7 7
Scalar wires: 4 -
Always blocks: 3 3
Initial blocks: 1 1
Cont. assignments: 1 1
Pseudo assignments: 3 4

Writing initial simulation snapshot: worklib.test:v
Loading snapshot worklib.test:v Done
ncsim> source
/uusoc/facility/cad_tools/Cadence/LDV/tools/inca/files/ncsimrc
ncsim> run

Saw4 simulation is finished...
If there were no ’ERROR’ statements, then everything worked!

Simulation complete via $finish(1) at time 13200 NS + 0
./testfixture.v:17 $finish;
ncsim> exit
--->

Figure 4.40: Output of stand-aloneNC Verilog simulation ofseetest.v

DRAFT - Please do not distribute 92

Draft September 3, 2007 4.3: Stand-Alone Verilog Simulation

Figure 4.41: Control console forNC Verilog throughSimVision

NC Verilog simulation is shown in Figure 4.41. The hierarchy and wave-
form windows will look the same as theVerilog-XL version in Figures 4.38
and 4.39. See Section 4.1.1 for more details of driving thesimVision gui.

4.3.3 vcs

The Verilog simulator fromSynopsys is vcs This isn’t integrated with More correctly we are
using vcs mx which is
the “mixed mode”
version that can support
both Verilog and VHDL,
but I’ll just call it vcs
because we’re mostly
interested in the Verilog
version.

theCadence dfII tool suite, but is a very capable simulator in its own right
so it’s important to know about if you’re using more of theSynopsys tools
thanCadence tools. Thevcs simulator is a compiled simulator so it runs
very fast once the simulator is compiled, and is compatible with Verilog-
2000 features. The inputs to the simulator are, at the simplest, just a list
of the Verilog files to simulate, but can also include a dizzying array of
additional arguments and switches to control the behavior of the simulator.
If you’re already set your path to include the standard CAD scripts (see
Section 2.2), then you can invoke thevcs simulator using the script

sim-vcs <verilogfilename >

I find it useful to put the files that you want to simulate in a separate file,
and then invoke the simulator with the -f switch to point to that file. In the
case of our example from Figures 4.32 to 4.34, thefiles.txt file simply lists
the see4.v and seetest.v files and looks like:

see4.v
seetest.v

DRAFT - Please do not distribute 93

CHAPTER 4: Verilog Simulation Draft September 3, 2007

In this case, I would invoke thevcs simulator using the command:

sim-vcs -f files.txt

Anything that you put on thesim-vcs command line will be passed
through to thevcs simulator so you can include any other switches that
you like this way. Try sim-vcs -help to see a list of some of the
switches. If you look inside thesim-vcsscript you will see that it starts a
new shell, sources the setup script forSynopsys, and then callsvcs with
the command line information you have supplied. The log file isvcs.log.
If I run this command using thesee4example, I get the output shown in
Figure 4.42.

For thevcs simulator, running thesim-vcsscript doesn’t actually run the
simulation. Instead it compiles the Verilog code into an executable called
simv. After compiling this simulator, you can run it by runningsimv
to get the output seen in Figure 4.43, but thesimv executable needs some
setup information aboutSynopsys before it can run, so rather than runsimv
directly, you will run it through a wrapper calledsim-simv as follows:

sim-simv <executable-name >

Because the executable will be namedsimv unless you’ve overridden
that default name with a command-line switch, this will almost always be
called as:

sim-simv simv

The important parts of the output are the results from the$displaystate-
ments in the test bench. They indicate that the state machine is operating as
expected because none of theERROR statements has printed.

If there were errors in the original Verilog code, and the testbench was
written to correctly check for faulty behavior then you would getERROROf course, if the

testbench checking code
is not correct, all bets

are off!

statements printed. These error statements would look similar to those in
Figure 4.36.

Stand-Alonevcs Simulation with VirSim

It’s also possible to run thevcs simulator in stand-alone mode and also
invoke the gui, which includes the waveform viewer. To do this, use the
sim-vcsg script instead ofsim-vcs . The only difference is that the

sim-vcsg invokes the gui (VirSim), and starts the simulator ininterac-
tive mode which means that you can select signals to see in the waveform
viewer before starting the simulation. The command would be

sim-vcsg -f files.txt

The only real difference in thesim-vcsgscript from thesim-vcsscript

DRAFT - Please do not distribute 94

Draft September 3, 2007 4.3: Stand-Alone Verilog Simulation

---> sim-vcs -f test.files
Chronologic VCS (TM)

Version X-2005.06-SP2 -- Sat Jul 29 21:49:35 2006
Copyright (c) 1991-2005 by Synopsys Inc.

ALL RIGHTS RESERVED

This program is proprietary and confidential information of Synopsys
Inc.
and may be used and disclosed only as authorized in a license
agreement
controlling such use and disclosure.

Parsing design file ’see4.v’
Parsing design file ’seetest.v’
Parsing included file ’testfixture.v’.
Back to file ’seetest.v’.
Top Level Modules:

test
No TimeScale specified
Starting vcs inline pass...
1 module and 0 UDP read.
recompiling module test
make: Warning: File ‘filelist’ has modification time 41 s in the
future
if [-x ../simv]; then chmod -x ../simv; fi
g++ -o ../simv -melf_i386 -m32 5NrI_d.o 5NrIB_d.o gzYz_1_d.o SIM_l.o
/uusoc/facility/cad_tools/Synopsys/vcs/suse9/lib/libvirsim.a
/uusoc/facility/cad_tools/Synopsys/vcs/suse9/lib/libvcsnew.so
/uusoc/facility/cad_tools/Synopsys/vcs/suse9/lib/ctype-stubs_32.a -ldl
-lc -lm -ldl
/usr/lib64/gcc/x86_64-suse-linux/4.0.2/../../../../x86_64-suse-linux/bin/ld:
warning: libstdc++.so.5, needed by
/uusoc/facility/cad_tools/Synopsys/vcs/suse9/lib/libvcsnew.so, may
conflict with libstdc++.so.6
../simv up to date
make: warning: Clock skew detected. Your build may be incomplete.
CPU time: .104 seconds to compile + .384 seconds to link
--->

Figure 4.42: Output of runningsim-vcsonfiles.txt

DRAFT - Please do not distribute 95

CHAPTER 4: Verilog Simulation Draft September 3, 2007

---> sim-simv simv
Chronologic VCS simulator copyright 1991-2005
Contains Synopsys proprietary information.
Compiler version X-2005.06-SP2; Runtime version X-2005.06-SP2; Jul 29
21:49 2006

Saw4 simulation is finished...
If there were no ’ERROR’ statements, then everything worked!

$finish at simulation time 13200
V C S S i m u l a t i o n R e p o r t

Time: 13200
CPU Time: 0.090 seconds; Data structure size: 0.0Mb
Sat Jul 29 21:49:54 2006
--->

Figure 4.43: Output of stand-alonevcs simulation ofseetest.vusing the
compiledsimv simulator

is that it adds a switch to “Run Interactive” after compilation through the
VirSim gui environment. Using thesim-vcsgscript on thesee4example
you would see the window in Figure 4.44 pop up. This is the control con-
sole for theSynopsys interactive simulatorVirSim. I would first open
up a hierarchy window using theWindow → Hierarchy menu choice, the
ctl-shft-H hotkey, or theNew Hierarchy Browser widget. You can

use this window (shown in Figure 4.45) to select the signals that you would
like to track in the simulation. You can also open a waveform window using
theWindow → Waveform menu, thectl-shft-W hotkey, or theNew
Waveform Window widget. Signals selected in the hierarchy window can
be added to the waveform window using theadd button.

Once the signals that you want to track have been added to the waveform
window you can run the simulation using thecontinue command (menu
or widget). Figure 4.46 shows the waveform window after signals have
been added from the hierarchy window to the waveform window and the
simulation has been run using thecontinuebutton.

4.4 Timing in Verilog Simulations

Time is modeled in a Verilog simulation either by explicit delay statements
or through implicit constructs that wait for an event or an edge of a signal
before progressing. Explicit delays are denoted with the# character. You’ve
seen the# character used in the testbench code examples in this chapter. The
simplest syntax is#10which means to delay 10 time units before proceeding

DRAFT - Please do not distribute 96

Draft September 3, 2007 4.4: Timing in Verilog Simulations

Figure 4.44: Console window for controlling avcs simulation throughVir-
Sim

DRAFT - Please do not distribute 97

CHAPTER 4: Verilog Simulation Draft September 3, 2007

Figure 4.45: Hierarchy browser window fromVirSim

DRAFT - Please do not distribute 98

Draft September 3, 2007 4.4: Timing in Verilog Simulations

Figure 4.46: Waveform window forVirSim after running thesee4simula-
tion

DRAFT - Please do not distribute 99

CHAPTER 4: Verilog Simulation Draft September 3, 2007

with the simulation and executing the following statement. You can also use
the #8:10:12syntax to indicate minimum, typical, and maximum delays.
If delays are specified in this way you can choose which delay to use in
a given simulation using command-line switches to the Verilog simulator.
Typically (and for the three simulators we use) this is accomplished with a
+mindelays, +typdelaysor +maxdelayscommand-line argument.

Of course, if the#10 construct delays by 10 time units, it is important
to know if those time units correspond to any real time units or are simply
unit delay timings that are not meant to model any specific real time values.
Verilog uses the‘timescale command to specify the connection between
timing units and real timing numbers. The‘timescale directive takes two
arguments: a timing unit and a timing precision. For example,

‘timescale 1 ns / 100 ps

means that each “unit” corresponds to 1ns, and the precision at which
timings are computed is 100ps. But be careful! For many simulations the
delay numbers donot correspond to actual real times and are simply generic
“unit timings” to model the fact that time passes without trying to model the
exact amount of time the activity takes. Make sure you understand how
timing is used in your simulation before you make assumptions!

Implicit delays in a Verilog simulation are signaled using the@ char-
acter which causes the following statement or procedural block to wait for
some event before proceeding. The even might be a signal transition on a
wire, an edge (posedgeor negedge) of a signal change, or an abstractevent
through the Verilogevent construct. These implicit delays are often used,
for example, to wait for an active clock edge before proceeding.

4.4.1 Behavioral versus Transistor Switch Simulation

In our CAD flow there are two main types of Verilog simulations:

Behavioral: The Verilog describes the desired behavior of the system in
high-level terms. This description does not correspond directly to
hardware, but can be synthesized into hardware using a synthesis tool
(Chapter 8).

Structural: The Verilog consists of instantiations of primitive gates from
a standard cell library. Each of the gates corresponds to a leaf cell
from the library that can be placed and routed on the completed chip
(Chapter 10). The structural Verilog can be strictly textual (Verilog
code), or a hierarchical schematic that uses gate symbols from the
standard cell library.

DRAFT - Please do not distribute 100

Draft September 3, 2007 4.4: Timing in Verilog Simulations

If you’re simulating behavior only with high-level behavioral Verilog,
then the timing in your simulation depends on the timing that you specify
in your code using either explicit (#10) or implicit (@(posedge clk)) state-
ments in your Verilog code. If you’re simulating structural code then you
(or, hopefully, the tools) need to generate a simulatable netlist of the struc-
tural code where each leaf cell is replaced with the Verilog code that defines
the function of that cell.

A schematic may be strictly structural if all the leaf cells of the hierarchi-
cal schematic are standard cells, or it can contain symbols that encapsulate
behavioral code using the behavioral modeling techniques in Section 4.2.

Given this way of thinking about Verilog descriptions of systems, it is
easy to apply this to the standard cells themselves. Each of the standard
cells in our standard cell library have two different descriptions which are
instantiated in two different cell views in theCadence library:

behavioral: In this cell view there is Verilog behavioral code that describes
the behavior of the cell. An example of a behavioral view of a stan-
dard cell is shown in Figure 4.30. Note that this behavioral description
includes unit delays for thenand2 cell using aspecifyblock to spec-
ify the input to output delays for that cell as1.0units in both the min
and max cases.

cmossch: In this schematic view the library cells are described in terms of
their transistor networks using transistor models from the analog cells
libraries. Timing in a simulation of this view would depend on the
timing associated with each transistor model.

The CMOS transistors that are the primitives in thecmossch leaf cell
views have their behavior described in a separate cell view:

functional: In this view each transistor is described using a built in Ver-
ilog switch-level model of a transistor. Switch-level means that the
transistor is modeled as a simple switch that is closed (conducting)
from source to drain on one value of the gate input, and open (non-
conducting) for the other value of the gate input. Using these models
results in aswitch level simulation of the hardware. This models the
detailed behavior of the system is simulated with each transistor mod-
eled as an ideal switch. This type of simulation is is more accurate
(in some sense) than the behavioral model, but not as accurate (or as
time consuming) as a more detailed analog transistor simulation.

If each of the cells in the standard cell library has two different views
that can be used to simulate the behavior of the cell, then you should be able

DRAFT - Please do not distribute 101

CHAPTER 4: Verilog Simulation Draft September 3, 2007

Figure 4.47: A Netlisting Log for the Two Bit Adder that stops at behavioral
views of the standard cell gates

to modify how the simulation proceeds by choosing a different view for
each cell when you netlist the schematic. If you expand the schematic to the
behavioral views of the standard cells you will get one flavor of simulation,
and if you expand through thecmosschviews all the way to thefunctional
views of each transistor you will get a different flavor of simulation of the
same circuit. This is indeed possible.

Suppose you were simulating a schematic with eitherVerilog-XL or
NC Verilog. The netlisting log might look like that in Figure 4.47. This is a
repeat of the netlist for the two bit adder from Section 4.1.1 and shows that
as the netlister traversed the hierarchy of the circuit it stopped when it found
leaf cells withbehavioral views. If this simulation were to run, it would
use the behavioral code in those behavioral views for the simulation of the
cells. How did the netlisted decide to stop at the behavioral views? That
is controlled by theverilogSimViewList andverilogSimStopList variables
that control the netlister. Those values are set to default values in the.simrc
file in the class directory. If you looked in that file you would see that they
are set to:

verilogSimViewList = ’("behavioral" "functional" "schematic" "cmos_sch")
verilogSimStopList = ’("behavioral" "functional")

This means that the netlister will look at all the views in the View list,
but stop when it finds a view in the Stop list. You can modify these lists
before the netlisting phase of each of theCadence Verilog simulators used

DRAFT - Please do not distribute 102

Draft September 3, 2007 4.4: Timing in Verilog Simulations

Figure 4.48: TheSetup Netlistdialog fromVerilog-XL

with the Composer schematic capture tool. Using eitherVerilog-XL or
NC Verilog you can modify theverilogSimViewList before generating the
netlist. Use theSetup→ Netlist menu choice. InVerilog-XL you’ll see
the window in Figure 4.48, and inNC Verilog you’ll see the window in
Figure 4.49. In either case you can removebehavioral from the Netlist
These Viewslist. The result of this change and then generating the netlist
is seen in Figure 4.50 where the netlister has ignored thebehavioral views,
descended through thecmosschviews, and stopped at thefunctional views
of thenmosandpmostransistors.

4.4.2 Behavioral Gate Timing

If you’re stopping the netlisting process at thebehavioral views then any
timing information in those behavioral views will be the timing used for
the simulation. There are a number of ways to encode timing in the be-
havioral descriptions. One way to get timing information into a behavioral
simulation is to include timing information explicitly into your behavioral
descriptions. For example, using hash notation like#10will insert 10 units
of delay into your behavioral simulation at that point in the Verilog code.
This can enable a rough top-level estimate of system timing in a descrip-
tion that is a long ways from a real hardware implementation. An example
of using explicit timing in a behavioral description is shown in Figure 4.51
for a two-input NAND gate. Another style of description with procedural
assignment of the NAND function is shown in Figure 4.52.

Be aware, though, that#10-type timing is ignored for synthesis. Syn-
thesis takes timing into account using the gate timing of the cells in the
target library. It does not try to impose any timing that you specify in the
behavioral description. This is covered in more detail in Chapter 8.

You can also put parameters in your descriptions so that you can override

DRAFT - Please do not distribute 103

CHAPTER 4: Verilog Simulation Draft September 3, 2007

Figure 4.49: TheSetup Netlistdialog fromNC Verilog

DRAFT - Please do not distribute 104

Draft September 3, 2007 4.4: Timing in Verilog Simulations

Figure 4.50: Netlisting result after removingbehavioral from the ver-
ilogSimViewList

module NAND (out, in1, in2);
output out;
input in1, in2;

assign #10 out = ˜(in1 & in2);

endmodule

Figure 4.51: Verilog description of a NAND gate with explicit timing

module NAND (out, in1, in2);
output out;
reg out;
input in1, in2;

always @(in1 or in2)
begin

#10 out = ˜(in1 & in2);
end

endmodule

Figure 4.52: Another description of a NAND gate with explicit timing

DRAFT - Please do not distribute 105

CHAPTER 4: Verilog Simulation Draft September 3, 2007

module NAND (out, in1, in2);
output out;
reg out;
input in1, in2;
parameter delay = 10;

always @(in1 or in2)
begin

#delay out = ˜(in1 & in2);
end

endmodule

Figure 4.53: NAND description withdelayparameter

the default values when you instantiate the module. For example, the NAND
in Figure 4.53 has a default delay of 10 defined as adelay parameter. This
can be overridden when the NAND is instantiated using the syntax

NAND #(5) _io(a,b,c);

which would override the default and assign a delay of 5 units to the
NAND function.

Behavioral Verilog code can also include timing in aspecifyblock in-
stead of in each assignment statement. Aspecifyblock allows you to define
path delays from input pins to output pins of a module. Path delays are
assigned in Verilog betweenspecifyandendspecifykeywords. Statements
between these keywords constitute a specify block. A specify block appears
at the top level of the module, not within any other initial or always block.
Path delays define timing between inputs and outputs of the module with-
out saying anything about the actual circuit implementation of the module.
They are simply overall timings applied at the I/O interface of the module.
An example of our NAND with aspecifyblock is shown in Figure 4.54. In
this case the delays are specified with separate rising and falling delays. If
only one number is given in aspecifydescription is is used for both rising
and falling transitions.

4.4.3 Standard Delay Format (SDF) Timing

There are two main reasons to use a specify block to describe timing

1. So that you can describe path timing between inputs and outputs of
complex modules without specifying detailed timing of the specific
circuits used to implement the module

DRAFT - Please do not distribute 106

Draft September 3, 2007 4.4: Timing in Verilog Simulations

module nand2 (Y, A, B);
output Y;
input A;
input B;

nand _i0 (Y, A, B);

specify
(A => Y) = (1.5, 1.0);
(B => Y) = (1.7, 1.2);

endspecify

endmodule

Figure 4.54: NAND gate description withspecifyblock

2. So that you can back-annotate circuits that use this cell with timing
information from a synthesis tool.

Synthesis tools can produce a timing information file as output from the
synthesis process insdf format (standard delay format). An sdf file will
have extracted timings for all the gates in the synthesized circuit. Synthesis
programs fromSynopsys andCadence get these timings from the.lib file
that describes each cell in the library and from an estimate of wiring delays
so they’re pretty accurate. They also assume that every cell in the library
has a specify block that specifies the delay from each input to each output!
It is thosespecify statements that are updated with new data from thesdf
files.

Details on generating an sdf file are in Chapter 8 on Synthesis, but as-
suming that you have an sdf file, you can annotate your verilog file with this
timing information. This will override all the default values in the specify
blocks with the estimated values from the sdf file. For example, a snippet of
an sdf file for a circuit that uses a NAND gate from the preceeding figures
would look like:

(CELL
(CELLTYPE "NAND")
(INSTANCE U21)
(DELAY
(ABSOLUTE
(IOPATH A Y (0.385:0.423:0.423) (0.240:0.251:0.251))
(IOPATH B Y (0.397:0.397:0.397) (0.243:0.243:0.243))
)
)
)

DRAFT - Please do not distribute 107

CHAPTER 4: Verilog Simulation Draft September 3, 2007

Notice the matching of the timing paths in the specify bock to the IOPATH
statements in the sdf file, and the the timings are specified in min:typ:max
form for both rising and falling transitions. Each instance of a NAND in the
circuit would have its own CELL block in the sdf file and thus get its own
timing based on the extracted timing done by Synopsys during synthesis.
Remember, though, that this is just estimated timing. The timing estimates
come from the characterizations of each library cell in the .lib file. You can
generate this sdf information after synthesis, or after synthesis and place
and route. The sdf information after place and route will include timing in-
formation based on the wiring of the circuit and therefore be more accurate
than the pre place and route timing.

Details on how to integrate the sdf timing inVerilog-XL andNC Verilog
simulations will be postponed until Chapter 8 so that we can have structural
Verilog simulations and sdf files to use as examples.

4.4.4 Transistor Timing

When you use individualnmosandpmostransistors in your schematics (as
described in Section 3.3), and you simulate those schematics usingVerilog-
XL or NC Verilog, what timing is associated with those primitive switch-
level transistor models? That depends on how the transistor models are
defined. In our case we have two choices:

1. We can use transistors from theNCSU Analog Parts library in which
case the transistors are modeled aszero delay switches. There is no
delay associated with switching of the transistors.

2. We can use transistors from theUofU Analog Parts library in which
case there are 0.1 units of delay associated with each transistor. This
is supposed to very roughly correspond to 0.1ns of delay for each
transistor which is very roughly similar to the delay in transistors in
the 0.5µ CMOS process that we can use through MOSIS for free class
chip fabrication.

Fortunately (by design) each of these libraries has exactly the same
names for each of the transistors (nmos, pmos, rnmos, r pmos, bi nmos,
andbi pmosare the most commonly used devices for digital circuits). This
means that you can control whether you are getting the versions with zero
delay or the versions with 0.1 units of delay by changing which library you
are using. There is a menu choice in theLibrary Manager which can be
used to change the reference library name for a whole library. That is, using
Edit → Rename Reference Library ...(see the dialog box in Figure 4.55)
you can change all references to gates in library A to references of that same

DRAFT - Please do not distribute 108

Draft September 3, 2007 4.4: Timing in Verilog Simulations

Figure 4.55:Rename Reference Librarydialog box fromLibrary Man-
ager

gate in library B. The figure shows how you could change all transistor ref-
erences from theNCSU Analog Parts library to the same transistors in the
UofU Analog Parts library and therefore switch between zero delay switch
level simulation and unit (0.1 units) delay switch level simulation.

Consider simulating the NAND gate designed as a schematic in Fig-
ure 3.12) using the 0.1ns delays on each transistor using theUofU Analog Parts
library. In this case you will open the nand2 schematic and simulate us-
ing Verilog-XL. The netlist result in the CIW (The result is shown in Fig-
ure 4.56) shows that in this case the netlisting has proceeded through the
nand2 and down to thefunctional views of thenmos andpmos devices.
Thesefunctional views are the switch models of the transistor devices. A
portion of the simulation waveform for this circuit is shown in Figure 4.57.

What’s going on in this waveform? They output signal should behave
in a nice digital way but it looks like on one transition of theb input it’s
going to a high-impedance (Z) value (shown by the orange trace in the mid-
dle of the high and low ranges) for a while. On another edge ofb the y
output is going to an unknown (X) value (shown by the red box cover-
ing both high and low values). This is happening because of the delays
at each transistor switch. If you are using the zero-delay transistors of the
NCSU Analog Parts library you won’t see this effect, but you will see a
yellow circle warning and a red transition to show that things are glitching
in zero time.

DRAFT - Please do not distribute 109

CHAPTER 4: Verilog Simulation Draft September 3, 2007

Figure 4.56: Netlist Log for the nand2 Cell

Figure 4.57: Waveform from Simulation of nand2 Cell

DRAFT - Please do not distribute 110

Draft September 3, 2007 4.4: Timing in Verilog Simulations

The reason that adding a small delay on each transistor causes this be-
havior is that there are serial pulldownnmos transistors pulling down the
y output. When these transistors switch, it takes time for the result of the
switching to be passed to the transistor’s output. During the time that the
transistor is switching, the output is unknown, or is unconnected. This is
undesired behavior because theZ andX values can propagate to the rest of
the circuit and cause all sorts of strange behavior that isn’t a true reflection
of the circuit’s behavior. The issue is that in a real circuit it is true that the
output might be unconnected for a brief amount of time during switching,
but the parasitic capacitance on the output will hold the output at a fixed
value during the switching.

To model this behavior in a switch-level simulation we need some way
to tell Verilog to emulate this behavior. That is, we need to make the output
node of the nand2 gate “sticky” so that when it is unconnected it sticks to
the value it had before it was unconnected. This type of wire in Verilog is
a trireg wire. It is still a wire, but it’s a “sticky” wire whose value sticks
when the driver is disconnected from the wire. It acts like a wire from the
point of view of the Verilog code (i.e. it can be driven by a continuous
assignment), but it acts like a register in terms of the simulation (the value
sticks). To informComposer that it should use atrireg wire on the output
of the nand2 instead of the plain wire type we need to add anattribute to
the wire.

Select the outputy wire in the schematic and get its properties with
the q hotkey (or the properties widget). At the bottom of this dialog box
you canAdd a new property to this wire. As shown in Figure 4.58 add a
property namednetType(make sure to get the spelling correct with a capital
“T”), type string, and valuetrireg . The result is seen in the properties box
shown in Figure 4.59. I’ve also changed theDisplay to Value so that the
trireg value can be seen on the schematic to remind you that this additional
property has been set.

In order for theComposer netlister to pay attention to this new prop-
erty, you also need to set theSwitch RC property in the netlisting options
in Verilog-XL, but this should have been already set for you by the default
.simrc file. Once you have thetrireg property on the output node, the output
will no longer go to aZ value. If the output is ever un-driven it will hold its
previous value. Unfortunately, transitions that caused anX in the original
simulation will still cause anX in the nand2 even with thetrireg . This is
because of the delay on the transistors again. There are situations where the
pmos devices have turned on but the series nmos stack hasn’t turned off yet
because of the delay through each device. What you need now is a transistor
at the top of the series stack (nearest the output node) that is weak enough
to be over-driven by the pmos pullup if they’re ever on at the same time.

DRAFT - Please do not distribute 111

CHAPTER 4: Verilog Simulation Draft September 3, 2007

Figure 4.58: Adding a Property to a Net

Figure 4.59: A Net With anetTypeProperty

DRAFT - Please do not distribute 112

Draft September 3, 2007 4.4: Timing in Verilog Simulations

Figure 4.60: Nand2 Cell withr nmosandtrireg Modifications

The weak transistors are calledr nmos and r pmos (the “r ” means
that they are “resistive” switch models). Replacing the topmost nmos de-
vice with a weak device doesn’t change the function of the nand2 gate, but
results in a cleaner waveform at the output. The schematic is seen in Fig-
ure 4.60. Figure 4.61 shows the same portion of the waveform but with both
modifications:trireg on the output node and ar nmosdevice at the top of
the pulldown stack.

Of course, you may not care about the glitches on the outputs of the
nand2 gate. In a synchronous system where the gate outputs are being sent
to a storage element like a latch or flip flop, the glitches should die out long

Figure 4.61: Waveform from Simulation of nand2 Cell with Modifications

DRAFT - Please do not distribute 113

CHAPTER 4: Verilog Simulation Draft September 3, 2007

before they reach the input of the storage element. In that case you may
not care if you make these tweaks to your transistor circuits or not. Also,
in general, it may not be possible to design a transistor circuit that had no
glitches for all possible input changes using the Verilog transistor switch
delay model.

I suggest that you at least addnetType trireg attributes on the outputs
of combinational circuits that you design. That’s a simple thing to do and
helps a lot in terms of confusing outputs.

DRAFT - Please do not distribute 114

