
Chapter 8

Verilog Synthesis

SYNTHESIS is the process of taking a behavioral Verilog file and con-
verting it to a structural file using cells from a standard cell library.
That is, the behavior that is captured by the Verilog program issyn-

thesized into a circuit that behaves in the same way. The synthesized circuit
is described as a collection of cells from thetarget cell library. This Verilog
file is known asstructural because it is strictly structural instantiations of
cells. It is the Verilog text equivalent of a schematic. This structural file can
be used as the starting point for the backend tools which will place those
cells on the chip and route the wire connections between them.

There are three different behavioral synthesis tools that are usable in our
flow, and one schematic-based helper application. They are:

Synopsys Design Compiler: This is the flagship synthesis tool fromTCL is Tool Command
Language and is a
standard syntax for
providing input
commands to tools.

Synopsys. It comes in two flavors:dc shell which has a TCL shell-
command interface anddesignvision which is a gui window/menu
driven version. Thedc shellversion is often driven by writing scripts
and executing those scripts on new designs.

Synopsys Module Compiler: This is a specialty synthesis tool fromSyn-
opsys that is specifically for synthesis of arithmetic circuits. It has
more knowledge of different arithmetic circuit variants thandesign
compiler, including many fast adder variants and even floating point
models. It also has its own circuit specification language that you can
use to describe complex arithmetic operations. It uses the same target
library database atdesign compiler.

Cadence Build Gates: This is the primary synthesis tool fromCadence.
It uses the.lib file directly as the cell database and it is also usually
driven from scripts.

CHAPTER 8: Verilog Synthesis Draft September 3, 2007

Cadence to Synopsys Interface (CSI): This is a tool integrated with
the Composer schematic capture tool that lets you take schemat-
ics that use a combination of standard cells and behavioral Verilog
(wrapped inComposer symbols) and output that schematic as a struc-
tural Verilog file.

8.1 Synopsys dc shell Synthesis

Add some intro stuff here

8.1.1 Basic Synthesis

In order to make use ofSynopsys synthesis you need (at least) the follow-
ing files:

.synopsysdc.setup: This is the setup file fordesign compilerandmodule
compiler. It can be copied from

/uusoc/facility/cadcommon/local/class/6710/synopsys

Note that it has a dot as the first character in the file name. You should
copy this file into the directory from which you plan to run theSyn-
opsys tools.

a cell database file:This is the binary.db file that contains the cell infor-
mation for the target library that you would like your behavior com-
piled to. Details of cell characterization and file formats for charac-
terized libraries are in Chapter 7. It’s helpful if you either have this
file in the directory from which you are runningSynopsys, or make
a link to it in that directory if it really lives elsewhere.

A behavioral Verilog file: This is the file whose behavior you would like
to synthesize into a circuit. It can contain purely behavioral code, or
a mixture of behavioral and structural (cell instantiations) code. This
should also be either in or linked to the directory you use for running
Synopsys

If you have these three files you can run very basic synthesis using a
class script. This script, namedbeh2str , converts a behavioral Verilog
file into a structural Verilog file in a very simplified way. It does no fancy
optimization, and it only works for a single behavioral Verilog file as input
(no multiple-file designs). It’s not really designed for final synthesis, it’s
just deigned as a quick and dirty script that you can use to check and see
how things are working, and for initial investigations into small designs. To

DRAFT - Please do not distribute 250

Draft September 3, 2007 8.1: Synopsys dc shell Synthesis

/* Behavioral Model of an Inverter */
module INV_Test(INV_in,INV_out);

input INV_in;
output INV_out;

assign INV_out = ˜INV_in;
endmodule

Figure 8.1: Verilog behavioral description of an inverter

use the script you don’t need to know anything about whatdesign compiler
is actually doing. For more advanced synthesis you’ll want much more
direct control. But, this is a good introduction to the process of synthesis,
and a good way to see what the synthesis engine does to different ways of
expressing things in Verilog.

Tiny Example: An Inverter

As an example, consider the extremely basic piece of Verilog code in Fig-
urẽreffig:synth-inv which describes the behavior of a single inverter. I’ll
start by making a new directory in which to run the synthesis tools. I’ll call
it $HOME/IC CAD/synth and I’ll put the file from Figurẽreffig:synth-inv
(namedinv-behv.v) in that directory. I’ll also put a copy (or a link) of a
.db file of a target library in that directory. (I’ll useUofU Digital v1 1.db
but you can use a file which describes your own cell library). Finally I’ll
put a copy of the.synopsysdc.setupfile in this directory. If you make a
directory calledWORK in your synth directory, then some of the files that
get generated in the synthesis process will go there instead of messing up
yoursynth directory. I recommend doing this.

Once I have all these files in mysynth directory I can connect to that
directory and fire up the basic synthesis script. The usage information is
shown in Figure 8.2. The command I’ll use is:

beh2str inv-behv.v inv-struct.v UofU Digital v1 1.db

This will fire updesign compilerwith the right arguments and produce
a file calledinv-struct.v as output. This output file is seen in Figure 8.3. As
you might hope, the tool has synthesized the behavior of the inverter into a
single inverter cell from the target library.

Small Example: A Finite State Machine

As a (very) slightly larger example, consider the Verilog description of a
simple four-state finite state machine in Figure 8.4. This FSM description

DRAFT - Please do not distribute 251

CHAPTER 8: Verilog Synthesis Draft September 3, 2007

> behv2str

CORRECT>beh2str (y|n|e|a)? yes
beh2str - Synthesises a verilog RTL code to a structural code

based on the synopsys technology library specified.
Usage : beh2str f1 f2 f3

f1 is the input verilog RTL file
f2 is the output verilog structural file
f3 is the compiled synopsys technology library file

Figure 8.2: Usage information for thebeh2strscript

module INV_Test (INV_in, INV_out);
input INV_in;
output INV_out;

invX1 U2 (.A(INV_in), .Y(INV_out));
endmodule

Figure 8.3: Synthesized inverter using a cell from the target library

uses parameters to define state encodings, and defines a state register in an
alwaysstatement. The register will have an active-high clock and an active-
low asynchronous clear. The state transition logic is defined with a case
statement, and the output is defined with a continuous assignment.

If this state machine is synthesized using thebeh2str script with the
command

beh2str moore.v moore-struct.v UofU Digital v1 1.db

this results in the structural file shown in Figure 8.5. Note that internal
wires have been defined by the synthesis procedure. Also note that for un-
known reasons the synthesis procedure choose to use adff qb cell for state
register bit 1 (state reg 1) even though it didn’t use theQB output. I have
no explanation for this, other than that thebeh2strscript is extremely basic
and doesn’t apply many optimizations.

8.1.2 Scripted Synthesis

If you look “under the hood” of thebeh2strscript you find that it is a wrap-
per that calls the much more generalSynopsys dc shell interface ofdesign
compiler with a very simple script. The script, shown in Figure 8.2, shows
a very basic version of a general synthesis flow. AllSynopsys scripts are

DRAFT - Please do not distribute 252

Draft September 3, 2007 8.1: Synopsys dc shell Synthesis

module moore (clk, clr, insig, outsig);
input clk, clr, insig;
output outsig;

// define state encodings as parameters
parameter [1:0] s0 = 2’b00, s1 = 2’b01, s2 = 2’b10, s3 = 2’b11;

// define reg vars for state register and next_state logic
reg [1:0] state, next_state;

//define state register (with asynchronous active-low clear)
always @(posedge clk or negedge clr)
begin

if (clr == 0) state = s0;
else state = next_state;

end

// define combinational logic for next_state
always @(insig or state)
begin

case (state)
s0: if (insig) next_state = s1;

else next_state = s0;
s1: if (insig) next_state = s2;

else next_state = s1;
s2: if (insig) next_state = s3;

else next_state = s2;
s3: if (insig) next_state = s1;

else next_state = s0;
endcase

end

// now set the outsig. This could also be done in an always
// block... but in that case, outsig would have to be
// defined as a reg.
assign outsig = ((state == s1) || (state == s3));

endmodule

Figure 8.4: Simple State Machine

module moore (clk, clr, insig, outsig);
input clk, clr, insig;
output outsig;
wire n6, n7, n8, n9;
wire [1:0] next_state;

dff state_reg_0_ (.D(next_state[0]), .G(clk), .CLR(clr), .Q(outsig));
dff_qb state_reg_1_ (.D(next_state[1]), .G(clk), .CLR(clr), .Q(n6));
mux2_inv U7 (.A(n7), .B(outsig), .S(n6), .Y(next_state[1]));
nand2 U8 (.A(outsig), .B(insig), .Y(n7));
xor2 U9 (.A(insig), .B(n8), .Y(next_state[0]));
nor2 U10 (.A(n6), .B(n9), .Y(n8));
invX1 U11 (.A(outsig), .Y(n9));

endmodule

Figure 8.5: Result of runningbeh2stronmoore.v

DRAFT - Please do not distribute 253

CHAPTER 8: Verilog Synthesis Draft September 3, 2007

written in a scripting language calledTool Command Languageor TCL .
TCL is a standard language syntax for writing tool scripts that is used by
most CAD tools, and certainly by most tools fromSynopsys andCadence.
There is a basicTCL tutorial linked to the class web site, and eventually
there will be a written version in an appendix to this text.

By looking at thebeh2strscript you can see the basic steps in a synthe-
sis script. You can also see some basicTCL syntax fordc shell. Variables
are set using thesetkeyword. Lists are generated with alist command, or
built by concatenating values with theconcat command.UNIX environ-
ment variables are accessed using thegetenvcommand. Other commands
are specific todc shell. There are hundreds of variables that control dif-
ferent aspects of the synthesis process, and about as many commands. The
beh2str script uses just about the bare minimum of these commands. The
more advanced script shown later in this chapter uses a few more commands,
but even that only scratches the surface of the opportunities for controlling
the synthesis process.

The basic steps inbeh2strare:

1. Inform the tools which cell libraries you would like to use. Thetar-
get library is the cell library, or a list of libraries, whose cells you
would like to use in your final circuit. Thelink library is a list of
libraries that the synthesis tool can use during the linking phase of
synthesis. This phase resolves design references by linking the de-
sign to library components. As such it includes libraries that contain
more complex primitives than are in thetarget library . The syn-
thetic library is set in the.synopsysdc.setupfile and points to a
set of high level macros provided bySynopsys in theirDesignWare
package.

2. Read in the behavioral Verilog.

3. Set constraints and provide other information that will guide the syn-
thesis. In general this section will have many more commands in a
more advanced script. In this basic script the only constraint is to set
a variable that forces the structural circuit to have buffer circuits for
nets that might otherwise be implemented with a simpleassignstate-
ment (i.e. nets with no logic that just pass through a module). Some
downstream tools don’t considerassignstatements, even those with
only a single variable on the right hand side, to be structural.

4. Compile the behavioral Verilog into structural Verilog using the con-
straints and conditions, and using the libraries specified earlier in the
script. In this example hierarchy is flattened with theungroup all
command.

DRAFT - Please do not distribute 254

Draft September 3, 2007 8.1: Synopsys dc shell Synthesis

beh2str script
set target_library [list [getenv "LIBFILE"]]
set link_library [concat [concat "*" $target_library] $synthetic_library]

read_file -f verilog [getenv "INFILE"]

#/* This command will fix the problem of having */
#/* assign statements left in your structural file. */
set_fix_multiple_port_nets -all -buffer_constants

compile -ungroup_all
check_design

#/* always do change_names before write... */
redirect change_names { change_names -rules verilog -hierarchy -verbose }

write -f verilog -output [getenv "OUTFILE"]
quit

Figure 8.6:beh2str.tcl basic synthesis command script

5. Apply adc shell rewriting rule that makes sure that the output is cor-
rect Verilog syntax

6. Write the synthesized result to a structural Verilog file.

These steps are the basic synthesis flow that is used for this simple syn-
thesis script, and for a more complex script. Of course, you could start up
the dc shell command line interface and type each of these commands to
the shell one at a time, but it’s almost always easier to put the commands in
a script and execute from that script. The command to start thedc shell tool
with the command line interface is

syn-dc

All arguments that you give to that command will be passed through
to thedc shell program. So, if you wrote a script of your own synthesis
commands you could execute that with the following command.

syn-dc -f <scriptname >

You can usesyn-dc -help for a usage message, and if you start

the tool with syn-dc you cay typehelp at the shell prompt for a long
list of all available commands. This shell accepts commands inTCL syn-
tax, and each command generally has a help message of its own. So, for
example, typingwrite file -help to dc shellwill give detailed doc-
umentation on thewrite file command.

The basic sequence of a genericSynopsys synthesis flow, along with
commands to consider at each step, is as follows (this is a more elaborate
version of what you saw in Figure 8.6). Note that you don’t have to write

DRAFT - Please do not distribute 255

CHAPTER 8: Verilog Synthesis Draft September 3, 2007

these scripts from scratch. There is a class example of a relatively full-
featured synthesis script that you can use.

Write behavioral Verilog: First, of course, you need to develop your de-
sign as a set of Verilog files. The description can use a combina-
tion of behavioral and structural Verilog, but remember that you can
only use the “synthesis subset” of Verilog, and any structural refer-
ences must come from your eventualtarget library or from aSyn-
opsys-provided library such as theDesignWare cells (more about
them later).

Specify Paths and Libraries: These are paths and libraries thatSynopsys
uses.

searchpath: This is the search path thatdesign compiler uses to
search for libraries and other files and it is set in the.synop-
sysdc.setupfile. You can override that in your script by setting
the searchpath variable there. At a minimum you probably
want this path to contain. (your current directory) and the/li-
braries/syn directory in theSynopsysinstallation directory for
the generic libraries. You should also include any other directo-
ries that hold database files of interest to your synthesis.

target library: This is the library, or list of libraries, that you want
design compilerto target as the result of the synthesis. It’s your
cell library in .db format.

synthetic library: This is the list of libraries that contain informa-
tion about pre-defined structures. The most common example
is theDesignWarelibraries fromSynopsys that contain infor-
mation about a host of datapath structures thatdesign compiler
can use. Include at leastdw foundation.sldb on this list.

link library: A list of libraries that you want your design linked to.
This is typically a list of* (meaning your own module descrip-
tions in your Verilog code), yourtarget library list and your
synthetic library list.

symbol library: This is a list of libraries that have graphical symbol
information for showing the gates of the design in the graphi-
cal design tooldesign vision. This is typically just the built-in
Synopsys generic librarygeneric.sdb.

Read in the Verilog code: If you have a single Verilog file you can read it
with the one-stepread file command, but in general (and required if
you have more than one Verilog file in your input) you should use the
sequence ofanalyzeandelaborate.

DRAFT - Please do not distribute 256

Draft September 3, 2007 8.1: Synopsys dc shell Synthesis

analyze -format verilog -lib WORK <files> This command parses
all the input files and puts the semi-digested versions into a di-
rectory calledWORK .

elaborate<top-module-name> -lib WORK -update This command
compiles the input files into an intermediate technology inde-
pendent internal form. As part of this step all the inferred mem-
ory devices are discovered and reported.

Set the Operating Environment: In this phase you telldesign compiler
which operating conditions, wire load models, etc to use from the.db
file, and also define the input and output drive expected to and from
the module. Typically the operating conditions (worst, typ, best) are
set in the.db file so you don’t have to change it, as is the wire load
model. If your .lib (and thus your.db) file has multiple operating
conditions defined in it, here’s you chance to pick one.

Other commands to consider at this point are:set drive, set driving cell,
set load, set load cell, andset fanout load. You can get details of
the syntax of these commands from thedesign compilershell. There
are also examples in the class generic script. If you don’t set the
driving cell or the drivedesign compilerwill assume there is infinite
drive available on the inputs. This may or may not be what you want
to assume. I typically set the input driving cell to be a 4X inverter,
and the output load to be driving the input of a 4x inverter. The D and
Q signals from a DFF are another good choice.

Set the Design Constraints:This is where you telldesign compilerhow
fast you want the synthesized circuit to run, how big it should be,
and other constraints. This is a critical section. It’s where you set
speed and area goals for synthesis and it determines how harddesign
compiler tries to optimize things. Commands include:create clock,
set clock latency, set propagated clock, set clock uncertainty,
set clock transition , set input delay, set output delay, andset max area.

The most important of these commands are:

create clock This is the command to use to set your speed goal for
the synthesis. If you have a clock signal in your design, use that
signal as the clock signal (which should be the obvious thing to
do). The period you set is the speed goal thatdesign compiler
tries to hit. Think about this carefully! Too aggressive a speed
goal will causedesign compilerto spend along time trying to
meet the goal and then failing. Too conservative a goal will be
easily met, but with a very conservative design. You can also set
a virtual clock if your design is combinational. This is a name
you use for a fake clock that is used just to set the speed goal for
synthesis. See the example of this command in the class script.

DRAFT - Please do not distribute 257

CHAPTER 8: Verilog Synthesis Draft September 3, 2007

set max area This sets the area goal. Speed is always the primary
goal for synthesis. But, after speed is achieved,design compiler
will try to optimize for a smaller circuit. This is one situation
where it’s common to set the max area goal to 0 to forcedesign
compiler to try to make as small a design as possible.

Compile (synthesize/optimize) your design:In this step you call thecom-
pile command to synthesize your circuit, subject to your constraints.
The newest version ofdesign compilerhas amega command called
compile ultra which runs through aSynopsys-approved set of com-
pilation procedures. You should probably use this one unless you have
a good reason not to. The other choice is the plaincompilecommand
which has lots of switches you can read about indesign compiler
documentation.

Analyze and report results: The check design command will check the
result to make sure nothing funny has happened. You can also re-
port the area, timing, power, and other results as analyzed byde-
sign compiler. The commands you might use here are:

write -format verilog This command will write out the synthesized
structural Verilog. Before you issue this command you should
always issue thechangenames -rules verilogcommand which
will make sure that correct Verilog syntax is used. Why this isn’t
an automatic part of thewrite command I don’t know.

write rep This generates a synthesis report that describes (among
other things) the critical path of the design and whether the syn-
thesis has achieved the speed target.

write ddc This writes aSynopsys formatted binary database file
that you can read in to eitherdesign compileror design vision
for further processing.

write sdf This writes astandard delay format file that you can use to
back-annotate your simulations with extracted timings from the
synthesized circuit.

write sdc This writes a constraints file that is used to pass the con-
straints that you set in your synthesis script on to other tools like
the place and route tool. It’s expecially important for the clock
tree synthesis phase of the place and route tool.

write pow This writes a report file that describes the power your de-
sign will dissipate as best asdesign compilercan tell.

A much more advanced script that demonstrates this flow is available in
the /uusoc/facility/cad common/local/class/6710/synopsysdirectory. It’s
calledsyn-script.tcl. This is a much more general script for synthesis that

DRAFT - Please do not distribute 258

Draft September 3, 2007 8.1: Synopsys dc shell Synthesis

you can use for many of your final synthesis tasks, and as a starting point
if you’d like to use other features. The script is shown in three separate
Figures, but should be kept in a single file for execution. The first part of
the script, shown in Figure 8.7, is where you set values specific to your
synthesis task. Note that this script assumes that the following variables are
set in your.synopsysdc.setupfile (which they will be if you make sure that
you’ve linked the class version to your synthesis directory):

SynopsysInstall: The path to the main synopsys installation directory

synthetic library: The path to theDesignWarefiles

symbol library: The path to a library of generic logic symbols for making
schematics

In this first part of thesyn-script.tcl file you need to modify things for
your specific synthesis task. You should look at each line carefully, and in
particular you should change everything that has “!!” in front and back to
the correct values for your synthesis task. Some comments about the things
to set follow:

• You need to set the name of your.db file as thetarget library , or
make this a list if you have multiple libraries with cell descriptions.

• You also need to list all of your Verilog behavioral files. The examples
have all been with a single Verilog file, but in general a larger design
will most likely use multiple files.

• Thebasenameis the basename that will be used for the output files.
An extra descriptor will be appended to each output file to identify
them.

• myclk is the name of your clock signal. If your design has no clock
(i.e. it’s combinational not sequential) you can use avirtual clock for
purposes of defining a speed target.Synopsys uses the timing of the
clock signal to define a speed goal for the synthesis. Avirtual clock
is a name not attached to any wire in your circuit that can be used for
this speed goal if you don’t actually have a clock.

• TheuseUltra switch defines whether to use “ultra mode” for compil-
ing or not. Unless you have very specific reasons to drive the synthesis
directly, “ultra mode” will probably give you the best results.

• The timing section is where you set speed goals for the synthesis. The
numbers are in ns. A period of10would set a speed goal of 100MHz,
for example.

DRAFT - Please do not distribute 259

CHAPTER 8: Verilog Synthesis Draft September 3, 2007

#/* search path should include directories with memory .db files */
#/* as well as the standard cells */
set search_path [list . \
[format "%s%s" SynopsysInstall /libraries/syn] \
[format "%s%s" SynopsysInstall /dw/sim_ver] \
!!your-library-path-goes-here!!]

#/* target library list should include all target .db files */
set target_library [list !!your-library-name!!.db]

#/* synthetic_library is set in .synopsys_dc.setup to be */
#/* the dw_foundation library. */
set link_library [concat [concat "*" $target_library] $synthetic_library]

#/* below are parameters that you will want to set for each design */

#/* list of all HDL files in the design */
set myfiles [list !!all-your-files!!]
set fileFormat verilog ;# verilog or VHDL
set basename !!basename!! ;# choose a basename for the output files
set myclk !!clk!! ;# The name of your clock
set virtual 0 ;# 1 if virtual clock, 0 if real clock

#/* compiler switches... */
set useUltra 1 ;# 1 for compile_ultra, 0 for compile

#mapEffort, useUngroup are for
#non-ultra compile...

set mapEffort1 medium ;# First pass - low, medium, or high
set mapEffort2 medium ;# second pass - low, medium, or high
set useUngroup 1 ;# 0 if no flatten, 1 if flatten

#/* Timing and loading information */
set myperiod_ns !!10!! ;# desired clock period (sets speed goal)
set myindelay_ns !!0.5!! ;# delay from clock to inputs valid
set myoutdelay_ns !!0.5!!;# delay from clock to output valid
set myinputbuf !!invX4!! ;# name of cell driving the inputs
set myloadcell !!UofU_Digital/invX4/A!! ;# name of pin that outputs drive
set mylibrary !!UofU_Digital!! ;# name of library the cell comes from

#/* Control the writing of result files */
set runname struct ;# Name appended to output files

#/* the following control which output files you want. They */
#/* should be set to 1 if you want the file, 0 if not */
set write_v 1 ;# compiled structural Verilog file
set write_db 0 ;# compiled file in db format (obsolete)
set write_ddc 0 ;# compiled file in ddc format (XG-mode)
set write_sdf 0 ;# sdf file for back-annotated timing sim
set write_sdc 0 ;# sdc constraint file for place and route
set write_rep 1 ;# report file from compilation
set write_pow 0 ;# report file for power estimate

Figure 8.7: Part 1 of thesyn-script.tcl synthesis script

DRAFT - Please do not distribute 260

Draft September 3, 2007 8.1: Synopsys dc shell Synthesis

• The other delays define how inputs from other circuits and outputs to
other circuits will behave. That is, how will this synthesized circuit
connect to other circuits.

• The myinputbuf variable should be set to the name of the cell in
your library that is an example of what would be driving the external
inputs to your circuit, and themyloadcellvariable should be the name
of the pin on a cell in your library that represents the output load of
an external output. The example in Figure 8.7 references theA input
of the invX4 inverter in theUofU Digital library (also defined as the
target library . These must be names of cells and cell inputs in one
of your target libraries.

• Thewrite flags define which outputs should be generated by the syn-
thesis process. You almost certainly want to generate a structural Ver-
ilog file. You will usually also want at least a report file for timing
and area reports. The other output files are used for other phases of
the total flow. Theddc file is theSynopsys binary database format.
You can save the synthesized circuit in.ddc format for ease of read-
ing it back in toSynopsys for further processing. The.sdf and.sdc
files are timing and constraint files that are used later in the flow. The
power report uses power information in the.db file to generate a very
rough estimate of power usage by your design.

.

The second part of thesyn-script.tcl is seen in Figure 8.8. It contains
the synthesis commands that use the variables you set in the first part of the
file. You shouldn’t have to modify anything in this part of the file unless
you’d like to change how the synthesis proceeds. Note that theread com-
mand frombeh2str has been replaced with a two-step process ofanalyze
andelaborate. This is because if you have multiple Verilog files to syn-
thesize, you need to analyze them all first before combining them together
and synthesizing them. The other commands are documented in the script.
You can see that constraints are set according to your information in part1.
Finally the design is compiled, checked, and violations are checked.

The third part of thesyn-script.tcl file is where the outputs are written
out. It’s pretty straightforward. Note that when you write the structural Ver-
ilog output you alsochangenamesto make sure that the output is in correct
Verilog syntax. You’d think that this would be part of thewrite command,
but it’s not. The output file names are constructed frombasenameandrun-
namewhich are set in the first part of the file.

DRAFT - Please do not distribute 261

CHAPTER 8: Verilog Synthesis Draft September 3, 2007

analyze and elaborate the files
analyze -format $fileFormat -lib WORK $myfiles
elaborate $basename -lib WORK -update
current_design $basename

The link command makes sure that all the required design
parts are linked together.
The uniquify command makes unique copies of replicated modules.
link
uniquify

now you can create clocks for the design
if { $virtual == 0 } {

create_clock -period $myperiod_ns $myclk
} else {

create_clock -period $myperiod_ns -name $myclk
}

Set the driving cell for all inputs except the clock
The clock has infinte drive by default. This is usually
what you want for synthesis because you will use other
tools (like SOC Encounter) to build the clock tree
(or define it by hand).
set_driving_cell -library $mylibrary -lib_cell $myinputbuf \

[remove_from_collection [all_inputs] $myclk]

set the input and output delay relative to myclk
set_input_delay $myindelay_ns -clock $myclk \

[remove_from_collection [all_inputs] $myclk]
set_output_delay $myoutdelay_ns -clock $myclk [all_outputs]

set the load of the circuit outputs in terms of the load
of the next cell that they will drive, also try to fix
hold time issues
set_load [load_of $myloadcell] [all_outputs]
set_fix_hold $myclk

This command will fix the problem of having
assign statements left in your structural file.
But, it will insert pairs of inverters for feedthroughs!
set_fix_multiple_port_nets -all -buffer_constants

now compile the design with given mapping effort
and do a second compile with incremental mapping
or use the compile_ultra meta-command
if { $useUltra == 1 } {

compile_ultra
} else {

if { $useUngroup == 1 } {
compile -ungoup_all -map_effort $mapEffort1
compile -incremental_mapping -map_effort $mapEffort2

} else {
compile -map_effort $mapEffort1
compile -incremental_mapping -map_effort $mapEffort2

}
}

Check things for errors
check_design
report_constraint -all_violators

Figure 8.8: Part 2 of thesyn-script.tcl synthesis script

DRAFT - Please do not distribute 262

Draft September 3, 2007 8.1: Synopsys dc shell Synthesis

set filebase [format "%s%s" [format "%s%s" $basename "_"] $runname]

structural (synthesized) file as verilog
if { $write_v == 1 } {

set filename [format "%s%s" $filebase ".v"]
redirect change_names \

{ change_names -rules verilog -hierarchy -verbose }
write -format verilog -hierarchy -output $filename

}

write out the sdf file for back-annotated verilog sim
This file can be large!
if { $write_sdf == 1 } {

set filename [format "%s%s" $filebase ".sdf"]
write_sdf -version 1.0 $filename

}

this is the timing constraints file generated from the
conditions above - used in the place and route program
if { $write_sdc == 1 } {

set filename [format "%s%s" $filebase ".sdc"]
write_sdc $filename

}

synopsys database format in case you want to read this
synthesized result back in to synopsys later (Obsolete db format)
if { $write_db == 1 } {

set filename [format "%s%s" $filebase ".db"]
write -format db -hierarchy -o $filename

}

synopsys database format in case you want to read this
synthesized result back in to synopsys later in XG mode (ddc format)
if { $write_ddc == 1 } {

set filename [format "%s%s" $filebase ".ddc"]
write -format ddc -hierarchy -o $filename

}

report on the results from synthesis
note that > makes a new file and >> appends to a file
if { $write_rep == 1 } {

set filename [format "%s%s" $filebase ".rep"]
redirect $filename { report_timing }
redirect -append $filename { report_area }

}

report the power estimate from synthesis.
if { $write_pow == 1 } {

set filename [format "%s%s" $filebase ".pow"]
redirect $filename { report_power }

}

quit

Figure 8.9: Part 3 of thesyn-script.tcl synthesis script

DRAFT - Please do not distribute 263

CHAPTER 8: Verilog Synthesis Draft September 3, 2007

module moore (clk, clr, insig, outsig);
input clk, clr, insig;
output outsig;
wire n2, n3, n4;
wire [1:1] state;
wire [1:0] next_state;

dff state_reg_0_ (.D(next_state[0]), .G(clk), .CLR(clr), .Q(outsig));
dff state_reg_1_ (.D(next_state[1]), .G(clk), .CLR(clr), .Q(state[1]));
mux2_inv U3 (.A(n2), .B(outsig), .S(state[1]), .Y(next_state[1]));
nand2 U4 (.A(outsig), .B(insig), .Y(n2));
xor2 U5 (.A(insig), .B(n3), .Y(next_state[0]));
nor2 U6 (.A(state[1]), .B(n4), .Y(n3));
invX4 U7 (.A(outsig), .Y(n4));

endmodule

Figure 8.10: Result of runningsyn-dcwith thesyn-script.tcl onmoore.v

Small Example: A Finite State Machine

As an example, if themoore.v Verilog file in Figure 8.4 was compiled
with this script, I would set thetarget library to UofU Digital.db, include
moore.v in themyfiles list, use abasenameof moore, amyclk of clk, and
use the ultra mode withuseUltra. With a speed goal of10ns period and
the input buffer and output load set as in the example, the result is seen in
Figure 8.10. Note that it’s almost the same as the simple result in Figure 8.5
(which would expect for such a simple Verilog behavioral description), but
there are differences. This version of the synthesis uses the samedff cells
for both state variables, and the inverter producing theoutsig output has
been sized up to aninvX4.

During the synthesis procedure a lot of output is produced bydc shell.
You should not ignore this output! You really need to look at it to make
sure that the synthesis procedure isn’t complaining about something in your
behavioral Verilog, or in your libraries!

One place that you really need to pay attention is in theInferred mem-
ory devicessection. This is in the elaboration phase of the synthesis where
all the memory (register and flip flop) devices are inferred from the be-
havioral code. In the case of this simple finite state machine the inferred
memory is described as seen in Figure 8.11. You can see that the synthe-
sis process inferred aflip-flop memory (as opposed to a gate latch) with a
width of 2. The other features withY/N switches define the features of the
memory. In this case theflip-flop has anAR switch which means Asyn-
chronous Reset. The other possibilities are Asynchronous Set, Synchronous
Reset, Synchronous Set, and Synchronous Toggle. One reason it’s critical
to pay attention to the inferred memories is that it is easy to write Verilog
code that will result in an inferred memory when you meant the construct to
be combinational.

DRAFT - Please do not distribute 264

Draft September 3, 2007 8.1: Synopsys dc shell Synthesis

Inferred memory devices in process
in routine moore line 14 in file

’./moore.v’.
===
| Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ST |
===
| state_reg | Flip-flop | 2 | Y | N | Y | N | N | N | N |
===

Figure 8.11: Inferred memory from themoore.vexample

link

Linking design ’moore’
Using the following designs and libraries:
--
moore /home/elb/IC_CAD/syn-f06/moore.db
UofU_Digital_v1_1 (library) /home/elb/IC_CAD/syn-f06/UofU_Digital.db
dw_foundation.sldb (library) /uusoc/.../SYN-F06/libraries/syn/dw_foundation.sldb

Figure 8.12: Link information from thedc shell synthesis process (with
dw foundation path shortened)

Another section of the compilation log that you might want to pay at-
tention to is thelink information. This tells you which designs and libraries
your design has been linked against and lets you make sure that you’re us-
ing the libraries you want to be using. Thelink information for themoore.v
example is shown in Figure 8.12. Thedw foundation link library is the
Synopsys DesignWarelibrary that was defined in the.synopsysdc.setup
file.

The final timing report and area report are both contained in themoore struct.rep
file and are shown in Figures 8.13 and 8.14. The timing report (shown in
Figure 8.13) tells you how welldc shell did in compiling your design for
speed. It lists the worst-case timing path in the circuit in terms of the delay
at each step in the path. Then it compares that with the speed target you
set in the script to see if the resulting design is fast enough. All the tim-
ing information is from your cell library in the.db file. In the case of the
moore.v example you can see that the worst case path takes2.30nsin this
synthesized circuit. The required time set in the script is10ns, minus the
0.2nssetup time defined in the library for the flip flops. So, in order to meet
timing, the synthesized circuit must have a worst case critical path of less
than9.98ns. The actual worst case path according todc shell is 2.30nsso
the timing ismet with 7.69nsof slack.

If the timing was not met, the slack would tell you by how much you
need to improve the speed of the worst case path to meet the timing goal.
If I reset the speed goal to a1nsperiod with0.1nsinput and output delays

DRAFT - Please do not distribute 265

CHAPTER 8: Verilog Synthesis Draft September 3, 2007

to try to make a very fast (1GHz) circuit rerun the synthesis, the critical
path timing will be reduced to1.90nsbecausedc shell works harder in the
optimization phase, but that doesn’t meet the required arrival time of0.98ns
so the slack is violated by-0.98ns. That is, the circuit will not run at the
target speed.

The area report is shown in Figure 8.14. It tells us that the design has
four ports: three inputs (insig, clk, and clr), and one output (outsig). There
are seven cells used, and 10 total nets. It also estimates the area of the
final circuit using the area estimates in the.db file. This area does not take
placement and routing into account so it’s just approximate.

8.1.3 Design Vision GUI

Runningdc shell with a script (likesyn-script.tcl) is the most commonA “tall thin” designer is
someone who knows
something about the

entire flow from top to
bottom. This is as

oppose to a “short fat”
designer who knows
everything about one

layer of the design flow,
but not much about the

other layers.

way to use the synthesis tool in industry. What usually happens is that a
CAD support group designs scripts for particular designs and the Verilog
design group will develop the behavioral model of the design and then just
run the scripts that are developed by the CAD team. But, there are times
when you as a “tall thin” designer want to run the tool interactively and
graphically and see what’s happening at each step. For this, you would use
the graphical GUI interface todesign compilercalleddesignvision.

To startdesign compilerwith thedesignvision GUI use thesyn-dv
script. This will read your.synopsysdc.setupfile and then open a GUI
interface where you can perform the synthesis steps. Each step in thesyn-
script.tcl can be performed separately either by typing the command into
the command line interface ofdesignvision or by using the menus. The
maindesignvision window looks like that in Figure 8.15.

Small Example: A Finite State Machine

Using the same small Moore-style finite state machine as before (shown
in Figure 8.4) I can read this design intodesign visionusing theFile →
Analyze and File → Elaborate menu commands. After the elaboration
step the behavioral Verilog has been elaborated into an initial circuit. This
circuit, shown in Figure 8.16, is mapped to a generic set of internally defined
gates that are not related to any library in particular. It is this step where
memory devices are inferred from the behavioral Verilog code. You can see
the inferred memory information in theLog window.

Now you can set constraints on the design using the menu choices or by
typing the constraint-setting commands into the shell. One of the most im-
portant is the definition of the clock which sets the speed goal for synthesis.

DRAFT - Please do not distribute 266

Draft September 3, 2007 8.1: Synopsys dc shell Synthesis

**
Report : timing

-path full
-delay max
-max_paths 1

Design : moore
Version: Y-2006.06
Date : Mon Sep 25 15:52:13 2006
**

Operating Conditions: typical Library: UofU_Digital_v1_1
Wire Load Model Mode: enclosed

Startpoint: state_reg_0_
(rising edge-triggered flip-flop clocked by clk)

Endpoint: state_reg_0_
(rising edge-triggered flip-flop clocked by clk)

Path Group: clk
Path Type: max

Des/Clust/Port Wire Load Model Library
--
moore 5k UofU_Digital_v1_1

Point Incr Path

clock clk (rise edge) 0.00 0.00
clock network delay (ideal) 0.00 0.00
state_reg_0_/G (dff) 0.00 0.00 r
state_reg_0_/Q (dff) 1.31 1.31 f
U7/Y (invX2) 0.28 1.59 r
U6/Y (nor2) 0.30 1.89 f
U5/Y (xor2) 0.40 2.29 r
state_reg_0_/D (dff) 0.00 2.30 r
data arrival time 2.30

clock clk (rise edge) 10.00 10.00
clock network delay (ideal) 0.00 10.00
state_reg_0_/G (dff) 0.00 10.00 r
library setup time -0.02 9.98
data required time 9.98

data required time 9.98
data arrival time -2.30

slack (MET) 7.69

Figure 8.13: Timing report for themoore.vsynthesis usingsyn-script.tcl

DRAFT - Please do not distribute 267

CHAPTER 8: Verilog Synthesis Draft September 3, 2007

**
Report : area
Design : moore
Version: Y-2006.06
Date : Mon Sep 25 15:24:12 2006
**

Library(s) Used:

UofU_Digital_v1_1 (File: /home/elb/IC_CAD/syn-f06/UofU_Digital.db)

Number of ports: 4
Number of nets: 10
Number of cells: 7
Number of references: 6

Combinational area: 1231.199951
Noncombinational area: 1944.000000
Net Interconnect area: 8470.000000

Total cell area: 3175.199951
Total area: 11645.200195

Figure 8.14: Area report for themoore.vsynthesis usingsyn-script.tcl

You can set the clock by selecting theclk signal in the schematic view, and
then selectingAttributes → Specify Clock from the menu. An example
of a clock definition with a period of10nsand a symmetric waveform with
the rising edge of the clock at5nsand the falling edge at10nsis shown in
Figure 8.17.

After your desired constraints are set, you can compile the design with
the Design→ Compile Ultra menu. After the design is compiled and
mapped to your target library the schematic is updated to reflect the new
synthesized and mapped circuit as seen in Figure 8.18. This file can now be
written using theEdit → Save Asmenu. If you choose a filename with a.v
extension you will get the structural Verilog view. If you choose a file name
with a .ddc extension you will get aSynopsys database file. You can also
write out report files with theDesign→ Report ... menus.

Perhaps the most interesting thing you can do withdesign visionis use
the graphical display to highlight critical paths in your design. You can use
theTiming → Report Timing Paths menu command to generate a timing
report for the worst case path (if you leave the paths blank in the dialog box),
or for a specific path in your circuit (if you fill them in). You can also obtain
timing slack information for all path endpoints in the design using endpoint
slack histograms. These histograms show a distribution of the timing slack
values for all endpoints in the design giving an overall picture of how the
design is meeting timing requirements. Use theTiming → Endpoint Slack
command to generate this window. You can choose how many histogram
bins to use. Theendpoint slack histogramfor themooreexample isn’t all

DRAFT - Please do not distribute 268

Draft September 3, 2007 8.1: Synopsys dc shell Synthesis

Figure 8.15: General view of theDesign VisionGUI

DRAFT - Please do not distribute 269

CHAPTER 8: Verilog Synthesis Draft September 3, 2007

Figure 8.16: Initial mapping of themoore.vexample

Figure 8.17: Clock definition inDesign Vision

DRAFT - Please do not distribute 270

Draft September 3, 2007 8.1: Synopsys dc shell Synthesis

Figure 8.18: Final mapping of themoore.vexample

that interesting since there are only two paths of interest in the circuit (one
ending at each state bit). The result is shown in Figure 8.19. You can see
which path corresponds to each bar in the histogram by clicking on it. You
can also look at net capacitance, and general path slack (i.e. not ending at
points in the circuit. See Figures 8.20 and 8.21 for examples. Clicking on a
path in a slack window will highlight that path in the schematic as seen in the
Figures. You can also use theHighlight menu to highlight all sorts of things
about the circuit including the critical path. It’s a pretty slick interface. You
should play around with it to discover things it can do (especially on more
complex circuits than themooremachine).

Note that you can also usedesign visionto explore a circuit graphically
that has been compiled with a script. Make sure that your script writes a
Synopsys database file (a.ddc file), and then you can fire updesign vision
with syn-dv and read in the compiled file as a.ddc file. You can then
explore the timing and other features of the compiled circuit withdesign
vision.

8.1.4 DesignWare Building Blocks

Although you can write Verilog code to describe almost any behavior you
want to describe, there are some behaviors and structures that are so com-
mon you might ask “Isn’t there a pre-designed version out there somewhere
so I don’t have to do it from scratch?” In fact, there are. TheSynopsys
DesignWarepackage is a large set of library building blocks that are pre-

DRAFT - Please do not distribute 271

CHAPTER 8: Verilog Synthesis Draft September 3, 2007

Figure 8.19: Endpoint slack for the two endpoints inmoore

designed bySynopsys for use withdesign compiler. They are generally
quite parameterizable so you can tailor them to your particular application.
They are instantiated either by structural instantiation of a particular compo-
nent from theDesignWarelibrary in your Verilog code, or by writing your
code in such a way thatdesign compilercan easily figure out that it should
us aDesignWarecomponent for that circuit.

The full set ofDesignWarebuilding block IP components grows with
each release of thedesign compilertool. The current set includes arbiters,
datapath components (adders, subbtractors, shifters, incrementers, decre-
menters, multipliers, dividers, etc.), floating point arithmetic operations,
parity and CRC generators, FIR filters, clock-domain crossing circuits, en-
coders, decoders, counters, FIFOs, and even flip-flop based RAMs. The full
set of components can be seen on theSynopsys web site at
http://synopsys.com/dw/buildingblock.php. On this site you’ll find datasheets
for each component that describe how to use the component in Verilog code.
For example, if you want a decementer in your design, you can use the code
shown in Figure 8.22. Thewidth parameter controls how wide the synthe-I modified the class

syn-script.tcl with the
information needed to

synthesize the
decrementer.

sized decrementer is, and the reference toDW01 decpulls that model from
theDesignWarelibrary. Now when you usedecrementerin other Verilog
modules, it will be implemented with theDesignWareversion. Check the
Synopsys DesignWareweb site for a full list of modules and datasheets
that describe how to use them. If I synthesize the 8-bit decrementer with

syn-dc -f dec-script.tcl

(using theUofu Digital v1 1 library as a target), I get the structural
code shown in Figure 8.23.

Even if you don’t directly instantiate aDesignWaremodel, if design

DRAFT - Please do not distribute 272

Draft September 3, 2007 8.1: Synopsys dc shell Synthesis

Figure 8.20: Wiring capacitance histogram with highlighted path

DRAFT - Please do not distribute 273

CHAPTER 8: Verilog Synthesis Draft September 3, 2007

Figure 8.21: Timing path histogram with highlighted path

module decrementer(inst_A, SUM_inst);

parameter width = 8;

input [width-1 : 0] inst_A;
output [width-1 : 0] SUM_inst;

// Instance of DW01_dec
DW01_dec #(width)

U1 (.A(inst_A), .SUM(SUM_inst));

endmodule

Figure 8.22:DesignWare9 bit decrementer instantiated in Verilog code

DRAFT - Please do not distribute 274

Draft September 3, 2007 8.1: Synopsys dc shell Synthesis

module decrementer (inst_A, SUM_inst);
input [7:0] inst_A;
output [7:0] SUM_inst;
wire n1, n2, n3, n4, n5, n6, n7, n8, n9, n10, n11, n12, n13;

nand2 U1 (.A(n1), .B(SUM_inst[0]), .Y(n3));
OAI U2 (.A(SUM_inst[0]), .B(n1), .C(n3), .Y(SUM_inst[1]));
nor2 U3 (.A(inst_A[2]), .B(n3), .Y(n4));
AOI U4 (.A(n3), .B(inst_A[2]), .C(n4), .Y(n2));
nand2 U5 (.A(n4), .B(n5), .Y(n6));
OAI U6 (.A(n4), .B(n5), .C(n13), .Y(SUM_inst[3]));
xnor2 U7 (.A(inst_A[4]), .B(n13), .Y(SUM_inst[4]));
nor2 U8 (.A(inst_A[4]), .B(n6), .Y(n10));
nor2 U9 (.A(inst_A[4]), .B(inst_A[3]), .Y(n7));
nand3 U10 (.A(n7), .B(n4), .C(n9), .Y(n8));
OAI U11 (.A(n10), .B(n9), .C(n8), .Y(SUM_inst[5]));
xnor2 U12 (.A(inst_A[6]), .B(n8), .Y(SUM_inst[6]));
nand2 U13 (.A(n10), .B(n9), .Y(n11));
nor2 U14 (.A(inst_A[6]), .B(n11), .Y(n12));
xor2 U15 (.A(inst_A[7]), .B(n12), .Y(SUM_inst[7]));
bufX4 U16 (.A(n6), .Y(n13));
invX1 U17 (.A(inst_A[1]), .Y(n1));
invX1 U18 (.A(inst_A[0]), .Y(SUM_inst[0]));
invX1 U19 (.A(inst_A[3]), .Y(n5));
invX1 U20 (.A(inst_A[5]), .Y(n9));
invX1 U21 (.A(n2), .Y(SUM_inst[2]));

endmodule

Figure 8.23: Structural code for the 8-bitDesignWaredecrementer

compiler runs across a piece of behavioral Verilog code that it thinks it can
best implement with aDesignWaremodule, that’s what it will use. There’s
a good chance you would get aDesignWarecircuit if you had an assignment
of the form

assign sum = in - 1;

in your code (or the equivalent inside of analwaysblock). That’s what
is happening if you get sub-modules in your synthesized circuit with names
that myeteriously start withDW. Of course, you have to havedw foundation.sldb
in your synthetic library list for this to happen. The flip side of this, of
course, is that if you don’t wantdesign compiler to have these libraries
available, you should remove that synthetic database file from that list.

8.1.5 Module Compiler

Module compiler is a separate tool specifically for synthesizing arithmetic
circuits. It uses the same cell library database asdc shell but has more
information about building efficient arithmetic structures, including floating
point units. More details are coming!

There’s some evidence that theModule Compiler tool is no longer rel-

DRAFT - Please do not distribute 275

CHAPTER 8: Verilog Synthesis Draft September 3, 2007

evant. It looks like theDesignWaremacros that used to be restricted to
Module Compiler are now available for generaldesign compiler. I’ll doc-
umentmodule compiler procedures here, but you may want to see if you
can do what you need to do directly indesign compilerwith the same (or
even better) results.

8.2 Cadence BuildGates Synthesis

8.2.1 Basic Synthesis

This is Cadence’s version of the generic synthesis tool. Some people report
better results for this tool than for dc shell. I’m sure it depends on your
circuit and your familiarity with the tools. More details are coming!

8.2.2 Scripted Synthesis

More advanced scripted synthesis

8.3 Importing Structural Verilog into Cadence

Once you have generated structural Verilog fromSynopsys or from Ca-
dence, one thing you might want to do is import that structural Verilog into
Cadence Composeras a schematic and as a symbol so that you can use
it in other schematics. This is known asimporting Verilog into Composer.
To import Verilog first decide whichCadence library you want to import
the structural Verilog into. you may want to make a new library (make sure
to attach it to theUofU AMI C5N technology library). Once you know
which library you want to import the circuit into, Use theCIW menuFile
→ Import → Verilog.... I’ll use the decrementer from Figure 8.23 for this
example. Fill in the fields:

Target Library Name: The library you want to read the Verilog descrip-
tion into. In this case I’ll use a new library that I created nameddecre-
menter.

Reference Libraries: These are the libraries that have the cells from the
cell libraries in them. In this case they will beexampleandbasic.
You will use your own library in place ofexample.

Verilog Files to Import: The structural Verilog from your synthesis pro-
cess. In this case it’sdec structr.v from my use ofSynopsys design
compiler.

DRAFT - Please do not distribute 276

Draft September 3, 2007 8.4: Cadence to Synopsys (CSI)
Schematic/Netlist Interface

-v Options: This is the Verilog file that has Verilog descriptions of all the
library cells. In this case I’m usingexample.v. You’ll use the file
from your own library.

The dialog box looks like that in Figure 8.24. You can click onOK to
generate a new schematic view based on the structural Verilog. Strangely
this will result in some warnings in theCIW related to bin files deep inside
the Cadence IC 5.1.41 directory, but it doesn’t seem to cause problems.
You now have a schematic (Figure 8.25) and symbol (Figure 8.26) of the
decrementer. The log file of the Verilog import process should show that all
the cell instances are taken from the cell library (examplein this case).

8.4 Cadence to Synopsys (CSI) Schematic/Netlist In-
terface

Generating structural netlists from schematics - Although this is billed as
an interface between Cadence and Synopsys, it is really a way to generate
a structural netlist from a schematic. If you have a schematic with standard
cells gates, this will generate a netlist that only goes down to those gates, and
not descend all the way to the transistors as would happen for simulation.
More details are coming!

DRAFT - Please do not distribute 277

CHAPTER 8: Verilog Synthesis Draft September 3, 2007

Figure 8.24: Dialog box for importing structural Verilog into a new
schematic view

DRAFT - Please do not distribute 278

Draft September 3, 2007 8.4: Cadence to Synopsys (CSI)
Schematic/Netlist Interface

Figure 8.25: Schematic that results from importing the decrementer into
Composer

Figure 8.26: Symbol that is created for the decrementer

DRAFT - Please do not distribute 279

CHAPTER 8: Verilog Synthesis Draft September 3, 2007

DRAFT - Please do not distribute 280

