
Chapter 10

SOC Encounter
Place and Route

PLACE AND ROUTE is the process of taking a structural file (Verilog
in our case) and making a physical chip from that description. It
involvesplacing the cells on the chip, androuting the wiring con-

nections between those cells. The structural Verilog file gives all the in-
formation about the circuit that should be assembled. It is simply a list of
standard cells and the connections between those cells. The cell layouts are
used to place the cells physically on the chip. More accurately, theabstract
views of the cells are used. The abstracts have only information about the
connection points of the cells (thepins), androuting obstructions in those
cells. Obstructions are simply layers of material in the cell that conflict with
the layers that the routing tool wants to use for making the connections. Es-
sentially it is a layout view of the cell that is restricted to pins and metal
routing layers. This reduces the amount of information that’s required by
the place and route tool, and it also lets the vendor of the cells to keep other
details of their cells (like transistor information) private. It’s not need for
place and route, so it’s not included in theabstract view.

The files required before starting place and route are:

Cell characterization data: This should be in aliberty (or<filename>.lib)
formatted file. It is the detailed timing, power, and functionality infor-
mation that you derived through the characterization process (Chap-
ter 7). It’s possible that you might have up to three different.lib files
with typ, worst, and best timing, but you can complete the process
with only a single.lib file. It is very important that your.lib file in-
clude footprints for all cells. In particular you will need to know the
footprint of inverter, buffer, and delay cells (delay cells can just be
buffers or inverters). If you have special buffers/inverters for building

CHAPTER 10: SOC Encounter
Place and Route Draft September 3, 2007

clock trees, those should use a different footprint than the “regular”
buffers and inverters. If you have multiple drive strengths of any cells
with the same functionality, those cells should have the same foot-
print. This enables certain timing optimizations in the place and route
tool.

You might have multiple.lib files if your structural Verilog uses cells
from multiple libraries.

Cell abstract information: This is information that you generated through
theabstractprocess (Chapter 9), and is contained in aLEF (or<filename>.lef)
file. The LEF file should include technology information and macro
information about all the cells in your library.

You might have multiple.lef files if your structural Verilog uses cells
from multiple different libraries.

Structural Verilog: This file defines the circuit that you want to have as-
sembled by the place and route tool. It should be a purely structural
description that contains nothing but instantiations of cells from your
library or libraries.

If your design is hierarchical you might have multiple Verilog files
that describe the complete design. That is, some Verilog modules
might include instantiations of other modules in addition to just cells.
In any case you should know the name of the top-level module that is
the circuit that you want to place and route.

Delay constraint information: This is used by the place and router dur-
ing timing optimization and clock tree generation. It describes the
timing and loading of primary inputs and outputs. It also defines the
clock signal and the required timing of the clock signal. This file
will have been generated by theSynopsys synthesis process, and is
<filename>.sdc. You can also generate this by hand since it’s just a
text file, but it’s much easier to let Synopsys generate this file based on
the timing constraints you specified as part of the synthesis procedure
(Chapter 8).

If you have all these files you can proceed to use the place and route
tool to assemble that circuit on a chip. In our case we’ll be using theSOC
Encounter tool from Cadence. My recommendation is to make a new
directory from which to run the tool. I’ll make anIC CAD/soc direc-
tory, and in fact, under that I’ll usually make distinct directories for each
project I’m running through thesoc tool. In this example I’ll be using a
simple counter that is synthesized from the behavioral Verilog code in Fig-
ure 10.1 so I’ll make anIC CAD/soc/count directory to run this ex-
ample. Inside this directory I’ll make copies or links to the.lib and .lef

DRAFT - Please do not distribute 294

Draft September 3, 2007 10.1: Encounter GUI

module counter (clk, clr, load, in, count);
parameter width=8;
input clk, clr, load;
input [width-1 : 0] in;
output [width-1 : 0] count;
reg [width-1 : 0] tmp;

always @(posedge clk or negedge clr)
begin

if (!clr)
tmp = 0;

else if (load)
tmp = in;

else
tmp = tmp + 1;

end
assign count = tmp;
endmodule

Figure 10.1: Simple counter behavioral Verilog code

files I’ll be using. In this case I’ll useexample.lib andexample.leffrom
the small library example from Chapters 7 and 9. The structural Verilog
file (count struct.v)generated from Synopsys (Chapter 8) is shown in Fig-
ure 10.2, and the timing constraints file,count struct.sdc is shown in Fig-
ure 10.3. This is generated from the synthesis process and encodes the tim-
ing constraints used in synthesis. Once I have all these files in place I can
begin.

10.1 Encounter GUI

As a first tutorial example of using theSOC Encounter tool, I’ll describe
how to use the tool from the GUI. Most things that you do in the GUI can
also be done in a script, but I think it’s important to use the tool interactively
so that you know what the different steps are. Also, even if you script the
optimization phases of the process, it’s probably vital that you do the floor
planning by hand in the GUI for complex designs before you set the tool
loose on the optimization phases.

First make sure that you have all the files you need in the directory you
will use to runSOC Encounter. I’m using the counter from the previous
Figures so I have:

count struct.v: The structural file generated by Synopsys

count struct.sdc: The timing constraints file generated by Synopsys

DRAFT - Please do not distribute 295

CHAPTER 10: SOC Encounter
Place and Route Draft September 3, 2007

module counter (clk, clr, load, in, count);
input [7:0] in;
output [7:0] count;
input clk, clr, load;
wire n39, n40, n41, n42, n43, N5, N6, N7, N8, N9, N10, N11, N12, N13, N14,

N15, N16, N17, N18, N19, N20, n2, n3, n4, n5, n6, n7, n8, n9, n10,
n11, n12, n13, n14, n15, n16, n17, n18, n19, n20, n21, n22, n23, n24,
n25, n26, n27, n28, n30, n31, n32, n33, n34, n36, n37;

DFF tmp_reg_0_ (.D(N12), .G(clk), .CLR(clr), .Q(n43));
DFF tmp_reg_1_ (.D(N13), .G(clk), .CLR(clr), .Q(n42));
DFF tmp_reg_2_ (.D(N14), .G(clk), .CLR(clr), .Q(n41));
DFF tmp_reg_3_ (.D(N15), .G(clk), .CLR(clr), .Q(n40));
DFF tmp_reg_4_ (.D(N16), .G(clk), .CLR(clr), .Q(n39));
DFF tmp_reg_5_ (.D(N17), .G(clk), .CLR(clr), .Q(count[5]));
DFF tmp_reg_6_ (.D(N18), .G(clk), .CLR(clr), .Q(count[6]));
DFF tmp_reg_7_ (.D(N19), .G(clk), .CLR(clr), .Q(count[7]));
MUX2_INV U13 (.A(N20), .B(in[5]), .S(load), .Y(n4));
MUX2_INV U14 (.A(N9), .B(in[4]), .S(load), .Y(n5));
MUX2_INV U15 (.A(N8), .B(in[3]), .S(load), .Y(n6));
MUX2_INV U16 (.A(N7), .B(in[2]), .S(load), .Y(n7));
MUX2_INV U17 (.A(N6), .B(in[1]), .S(load), .Y(n8));
MUX2_INV U18 (.A(N5), .B(in[0]), .S(load), .Y(n9));
INVX1 U5 (.A(n4), .Y(N17));
INVX1 U9 (.A(n8), .Y(N13));
INVX4 U19 (.A(n27), .Y(n15));
NAND2 U20 (.A(n23), .B(n20), .Y(n10));
INVX1 U21 (.A(n10), .Y(n21));
INVX1 U22 (.A(n30), .Y(n12));
MUX2_INV U23 (.A(count[0]), .B(N5), .S(n11), .Y(N6));
XOR2 U24 (.A(n25), .B(count[2]), .Y(N7));
NAND2 U25 (.A(count[2]), .B(n25), .Y(n14));
MUX2_INV U26 (.A(n40), .B(n13), .S(n14), .Y(N8));
XOR2 U27 (.A(count[4]), .B(n15), .Y(N9));
MUX2_INV U28 (.A(count[5]), .B(n16), .S(n28), .Y(N20));
NOR2 U29 (.A(n27), .B(n32), .Y(n17));
XOR2 U30 (.A(count[6]), .B(n17), .Y(N10));
INVX1 U31 (.A(count[7]), .Y(n18));
INVX1 U32 (.A(count[6]), .Y(n19));
NOR2 U33 (.A(n19), .B(n16), .Y(n20));
NOR2 U34 (.A(n31), .B(n22), .Y(n23));
NAND2 U35 (.A(n12), .B(count[2]), .Y(n22));
INVX1 U36 (.A(n26), .Y(n24));
NAND2 U37 (.A(n40), .B(count[2]), .Y(n26));
NAND2 U38 (.A(n12), .B(n24), .Y(n27));
NOR2 U39 (.A(N5), .B(n11), .Y(n25));
NAND2 U40 (.A(count[4]), .B(n15), .Y(n28));
MUX2_INV U41 (.A(n18), .B(count[7]), .S(n21), .Y(N11));
INVX1 U42 (.A(N5), .Y(count[0]));
INVX1 U43 (.A(n42), .Y(n11));
NAND2 U44 (.A(n43), .B(n42), .Y(n30));
INVX1 U45 (.A(n40), .Y(n13));
NAND2 U46 (.A(count[4]), .B(n40), .Y(n31));
INVX1 U47 (.A(n33), .Y(n32));
NOR2 U48 (.A(n37), .B(n16), .Y(n33));
INVX1 U49 (.A(n43), .Y(N5));
INVX1 U50 (.A(count[5]), .Y(n16));
INVX1 U51 (.A(n41), .Y(n34));
INVX4 U52 (.A(n34), .Y(count[2]));
INVX1 U53 (.A(n11), .Y(count[1]));
INVX1 U54 (.A(n13), .Y(count[3]));
INVX1 U55 (.A(n39), .Y(n37));
INVX1 U56 (.A(load), .Y(n36));
INVX1 U57 (.A(n7), .Y(N14));
MUX2_INV U58 (.A(in[7]), .B(N11), .S(n36), .Y(n2));
INVX4 U59 (.A(n37), .Y(count[4]));
INVX1 U60 (.A(n5), .Y(N16));
INVX1 U61 (.A(n6), .Y(N15));
MUX2_INV U62 (.A(in[6]), .B(N10), .S(n36), .Y(n3));
INVX1 U63 (.A(n9), .Y(N12));
INVX1 U64 (.A(n3), .Y(N18));
INVX1 U65 (.A(n2), .Y(N19));

endmodule

Figure 10.2: Simple counter structural Verilog code using theexample.lib
cell library

DRAFT - Please do not distribute 296

Draft September 3, 2007 10.1: Encounter GUI

###

Created by write_sdc on Sun Oct 8 17:14:10 2006

###
set sdc_version 1.6

set_driving_cell -lib_cell INVX4 -library example [get_ports clr]
set_driving_cell -lib_cell INVX4 -library example [get_ports load]
set_driving_cell -lib_cell INVX4 -library example [get_ports {in[7]}]
set_driving_cell -lib_cell INVX4 -library example [get_ports {in[6]}]
set_driving_cell -lib_cell INVX4 -library example [get_ports {in[5]}]
set_driving_cell -lib_cell INVX4 -library example [get_ports {in[4]}]
set_driving_cell -lib_cell INVX4 -library example [get_ports {in[3]}]
set_driving_cell -lib_cell INVX4 -library example [get_ports {in[2]}]
set_driving_cell -lib_cell INVX4 -library example [get_ports {in[1]}]
set_driving_cell -lib_cell INVX4 -library example [get_ports {in[0]}]
set_load -pin_load 0.0659802 [get_ports {count[7]}]
set_load -pin_load 0.0659802 [get_ports {count[6]}]
set_load -pin_load 0.0659802 [get_ports {count[5]}]
set_load -pin_load 0.0659802 [get_ports {count[4]}]
set_load -pin_load 0.0659802 [get_ports {count[3]}]
set_load -pin_load 0.0659802 [get_ports {count[2]}]
set_load -pin_load 0.0659802 [get_ports {count[1]}]
set_load -pin_load 0.0659802 [get_ports {count[0]}]
create_clock [get_ports clk] -period 3 -waveform {0 1.5}
set_input_delay -clock clk 0.25 [get_ports clr]
set_input_delay -clock clk 0.25 [get_ports load]
set_input_delay -clock clk 0.25 [get_ports {in[7]}]
set_input_delay -clock clk 0.25 [get_ports {in[6]}]
set_input_delay -clock clk 0.25 [get_ports {in[5]}]
set_input_delay -clock clk 0.25 [get_ports {in[4]}]
set_input_delay -clock clk 0.25 [get_ports {in[3]}]
set_input_delay -clock clk 0.25 [get_ports {in[2]}]
set_input_delay -clock clk 0.25 [get_ports {in[1]}]
set_input_delay -clock clk 0.25 [get_ports {in[0]}]
set_output_delay -clock clk 0.25 [get_ports {count[7]}]
set_output_delay -clock clk 0.25 [get_ports {count[6]}]
set_output_delay -clock clk 0.25 [get_ports {count[5]}]
set_output_delay -clock clk 0.25 [get_ports {count[4]}]
set_output_delay -clock clk 0.25 [get_ports {count[3]}]
set_output_delay -clock clk 0.25 [get_ports {count[2]}]
set_output_delay -clock clk 0.25 [get_ports {count[1]}]
set_output_delay -clock clk 0.25 [get_ports {count[0]}]

Figure 10.3: Timing information (.sdcfile) for the counter example

DRAFT - Please do not distribute 297

CHAPTER 10: SOC Encounter
Place and Route Draft September 3, 2007

example.lib: A link to my cell library’s characterized data in.lib format.
Make sure this file has footprint information for all cells.

example.lef: A link to my cell library’s abstract data in.lef form. Make
sure that you have correctly appended theTechHeader.lef informa-
tion in front of theMACRO definitions.

After connecting to your directory (I’m usingIC CAD/soc/counter)
you can start theSOC Encounter tool using thecad-soc script. You’ll
see the mainencounter window as seen in Figure 10.4. This Figure is
annotated to describe the different areas of the screen. The pallete on the
right lets you choose what is currently visible in the design display area.
TheDesign Viewschange how you see that design. From left to right the
Design Viewsare:

Floorplan View: This view shows the overall floorplan of your chip. It
lets you see the area that is generated for the standard cells, and how
the different pieces of your design hierarchy fit into that standard cell
area. For this first example there is no hierarchy in the design so the
entire counter will be placed inside the cell area. For a more complex
design you can manually place the different pieces of the design in
the cell area if you wish.

Amoeba View: This view shows information related to theAmoebaplace-
ment and routing of the cells. It gives feedback on cell placement,
density, and congestion.

Physical View: This view shows the actual cells as they are placed, and the
actual wires as they are routed by the tool.

All three views are useful, but I generally start out with thefloorplan
view during, as you might guess, floorplanning, then toggle between the that
view and thephysicalview once the place and route gets under way.

10.1.1 Reading in the Design

Once the tool is started you need to read all your design files into the tool.
Select theDesign→ Design Import... menu choice to get theDesign Im-
port dialog box. This box has multiple fields in multiple tabs that you need
to fill in. First fill in the Basicfields with the following (see Figure 10.5):

Verilog Netlist: Your structural Verilog file or files. You can either letSOC
Encounter pick the top cell, or you can provide the name of the top
level module.

DRAFT - Please do not distribute 298

Draft September 3, 2007 10.1: Encounter GUI

Figure 10.4: MainSOC Encountergui

DRAFT - Please do not distribute 299

CHAPTER 10: SOC Encounter
Place and Route Draft September 3, 2007

Figure 10.5:Design Import dialog box - basic tab

Timing Libraries: Your .lib file or files. If you have only one file it should
be entered into theCommon Timing Libraries line. If you havebest,
typ, worst timing libraries, they should be entered into the other fields
with theworst caseentered into themax field, thebest caseinto the
min field, and thetypical casein thecommonfield. This is optional
and the process works just fine with only one library in thecommon
field.

LEF Files: Enter your.lef file or files.

Timing Constraint File: Enter your.sdcfile.

Now, move to theAdvancedtab and make the following entries:

IPO/CTS: This tab provides information for theIPO (In Place Optimiza-
tion) andCTS (Clock Tree Synthesis) procedures by lettingSOC En-
counterknow which buffer and inverter cells it can use when optimiz-
ing things. Enter the name of the footprints for buffer, delay, inverter,
and CTS cells. Leave any blank that you don’t have. I’m enteringinv
as the footprint for delay, inverter, and CTS, and leaving buffer blank
as shown in Figure 10.6. Your library may be different.

Power: Enter the names of your power and ground nets. If you’re follow-
ing the class design requirements this will bevdd! andgnd! (Fig-
ure 10.7).

DRAFT - Please do not distribute 300

Draft September 3, 2007 10.1: Encounter GUI

Figure 10.6:Design Import IPO/CTS tab

Figure 10.7:Design Import Power tab

DRAFT - Please do not distribute 301

CHAPTER 10: SOC Encounter
Place and Route Draft September 3, 2007

Now you can pressOK and read all this information intoSOC En-
counter. The comments (and potential warnings and errors) will show up
in the shell window in which you invokedcad-soc . You should look at
them carefully to make sure that things have imported correctly. If they did
you will see theSOC Encounterwindow has been updated to show a set of
rows in which standard cells will be placed.

10.1.2 Floorplanning

Floorplanning is the step where you make decisions about how densely
packed the standard cells will be, and how the large pieces of your design
will be placed relative to each other. Because there is only one top-level
module in thecounter example, this is automatically assumed to cover the
entire standard cell area. If your design had mode structure in terms of hi-
erarchical modules, those modules would be placed to the side of the cell
placement area so that you could place them as desired inside the cell area.
The default is just to let the entire top-level design fill the standard cell area
without further structuring. In practice this spreads out the entire design
across the entire area which, for large systems with significant structure,
may result in lower performance. For a system with significant structure a
careful placement of the major blocks can have a dramatic impact on system
performance.

But, for this example, what we really care about is cell density and other
area parameters related to the design. SelectFloorplan → Specify Floor-
plan... to get the floorplanning dialog box (Figure 10.8). In this dialog box
you can change various parameters related to the floorplan:

Aspect Ratio: This sets the (rectangular) shape of the cell. An aspect of
close to 1 is close to square. An aspect of .5 is a rectangle with the
vertical edge half as long as the horizontal, and 1.5 is a rectangle with
the vertical edge twice the horizontal. This is handy if you’re trying
to make a subsystem to fit in a larger project. For now, just for fun,
I’ll change theaspect ratio to 0.5. Note that the tool will adjust this
number a little based on the anticipated cell sizes.

Core Utilization: This lets the tool know how densely packed the core
should be with standard cells. The default is around 70% which leaves
room for in place optimization and clock tree synthesis, both of
which may add extra cells during their operation. For a large complex
design you may even have to reduce the utilization percentage below
this.

Core Margins: These should be set byCore to IO Boundary and areAll measurements are
assumed to be in

microns. DRAFT - Please do not distribute 302

Draft September 3, 2007 10.1: Encounter GUI

to leave room for the power and ground rings that will be generated
around your cell. All theCore to ... values should be set to30. Note
that even though you specify30, when youapply those values they
may change slightly according toSOC Encounter’smeasurements.

Others: Other spots in theSpecify Floorplan dialog can be left as de-
fault. In particular you want the standard cell rows to beDouble-back
Rows, and you can leave theRow Spacingas zero to leave no space
between the rows. If your design proves hard to route you can start
again and leave extra space between the rows for routing.

After adjusting the floorplan, the mainSOC Encounterwindow looks
like Figure 10.9. The rows in which cells will be placed are in the center
with the little corner diagonals showing how the cells in those rows will
be flipped. The dotted line is the outer dimension of the final cell. The
power and ground rings will go in the space between the cells and the outer
boundary.

Saving the Design

This is a good spot in which to save the current design. There are lots ofI like to save the design
at each major step so
that I can go back if I
need to try something
different at that step. Be
aware that there’s no
general “undo” function
in Encounter.

steps in the process that are not “undo-able.” It’s nice to save the design at
various points so that if you want to try something different you can reload
the design and try other things. Save the design withDesign→ Save De-
sign... and name the saved file<filename>.enc. In my case I’ll name it
floorplan.encso that I can restore to the point where I have a floorplan if I
want to start over from this point. Saved designs are restored into the tool
using theDesign→ Restore Design...menu.

10.1.3 Power Planning

Now it’s time to put the power and ground ring around your circuit, and
connect that ring to the rows so that your cells will be connected to power
and ground when they’re placed in the row. Start withPower → Power
Planning → Add Rings. From this dialog box (Figure 10.10) you can
control how the power rings are generated. The fields of interest are: Remember that all the

sizes and spacings you
specify must be divisible
by the basic lambda unit
of our underlying
technology. That is,
everything is measured
in units of 0.3 microns,
so values should be
divisible by 0.3.

Ring Type: The defaults are good here. You should have theCore ring(s)
contouring: set toAround core boundary.

Ring Configuration: You can select the metal layers you want to use for
the ring, their width, and their spacing. I’m making the top and
bottom of the ring horizontalmetal1, and the right and left vertical

DRAFT - Please do not distribute 303

CHAPTER 10: SOC Encounter
Place and Route Draft September 3, 2007

Figure 10.8: TheSpecify Floorplandialog box

DRAFT - Please do not distribute 304

Draft September 3, 2007 10.1: Encounter GUI

Figure 10.9: Main design window after floorplanning

DRAFT - Please do not distribute 305

CHAPTER 10: SOC Encounter
Place and Route Draft September 3, 2007

metal2 to match our routing protocol. Change thewidth of each side
of the ring to9.9 and the spacing should be set to1.8 because of the
extra spacing required for wide metal. Finally, the offset can be left
alone or changed tocenter in channel. If it’s left alone it should
probably be changed to1.8 to match the wide metal spacing.

When you clickOK you will see the power and ground rings generated
around your cell. You can also zoom in and see that the tool has generated
arrays of vias where the wide horizontal and vertical wires meet.

Now, for this simple small design, this would be enough, but for a larger
design you would want to addpower stripes in addition to thepower rings.
Stripes are additional vertical power and ground connections that turn the
power routing into more of a mesh. Add stripes using thePower→ Power
Planning→ Add Stripes... menu (Figure 10.11. The fields of interest are:

Set Configuration: Make sure that all your power and ground signals are
in the Net(s) field (vdd! andgnd! in our case). Choose the layer
you want to the stripes to use. In our case the stripes are vertical so
it makes sense to have them in the normal vertical routing layer of
metal2. Change the width and spacing as desired (I’m choosing4.8
for the width and1.8 for the spacing - remember that they need to be
multiples of 0.3).

Set Pattern: This section determines how much distance there is between
the sets of stripes, how many different sets there are, and other things.
You can leave theSet-to-set distanceto the default of100.

Stripe Boundary: Unless you’re doing something different, leave the de-
fault to have the stripes generated for yourCore ring.

First/Last Stripe: Choose how far from the left (or right) you want your
first stripe. I’m using75 from the left in this example so that the
stripes are roughly spaced equally in the cell. Note that this is proba-
bly overkill from a power distribution point of view. For a larger cell
250 micron spacing might be a more reasonable choice.

Advanced Tab - Snap Wire to Routing Grid: Change this fromNone to
Grid . The issue here is that our cells are designed so that if two cells
are placed right next to each other, no geometry in one cell will cause
a design rule violation in the other cell. That’s the reason that no
cell geometry (other than the well) is allowed within 0.6µ from the
prBoundary . That way layers, such as metal layers, are at least 1.2µ
from each other when cells are abutted. However, the power stripes
don’t have that restriction and if you don’t center the power stripes on
the grid, a cell could be placed right next to a power grid and cause a

DRAFT - Please do not distribute 306

Draft September 3, 2007 10.1: Encounter GUI

Figure 10.10: Dialog box for adding power and ground rings around your
cell

DRAFT - Please do not distribute 307

CHAPTER 10: SOC Encounter
Place and Route Draft September 3, 2007

Figure 10.11: Dialog box for planning power stripes

metal spacing DRC violation when the metal of the stripe is now only
0.6µ from the metal in the cell. Centering the stripe on a grid keeps
this from happening by placing the metal of the stripe in a position so
that the next legal cell position isn’t directly abutting with the power
stripe.

Clicking Apply will apply the stripes to your design. If you don’t like
the looks of them you can select and delete them and try again with different
parameters. Or you can selectOK and be finished.

Once you have the stripes placed you can connect power to the rowsNow is another good
time to save the cell

again. This time I’ll save
it as powerplan.enc.

where the cells will be placed. SelectRoute→ Special Routeto route the
power wires. Make sure that all your power supplies are listed in theNet(s)

DRAFT - Please do not distribute 308

Draft September 3, 2007 10.1: Encounter GUI

Figure 10.12: Advanced Tab of Dialog box for planning power stripes

DRAFT - Please do not distribute 309

CHAPTER 10: SOC Encounter
Place and Route Draft September 3, 2007

Figure 10.13: Floorplan after power rings and stripes have been generated
and connected to the cell rows

field (vdd! andgnd! in our case). Other fields don’t need to be changed
unless you have specific reasons to change them. ClickOK and you will see
the rows have their power connections made to the ring/stripe grid as seen
in Figure reffig:soc-pp4. Zoom in to any of the connections and you’ll see
that an array of vias has been generated to fill the area of the connection.

10.1.4 Placing the Standard Cells

Now you want the tool to place the standard cells in your design into that
floorplan. SelectPlace→ Standard Cells and Blocks.... Leave the defaults
in the dialog box as seen in Figure 10.14. You definitely want to usetiming
driven placementandpre-place optimization.

After pressingOK your cells will be placed in the rows of the floorplan.
This might take a while for a large design. When it’s finished the screen
won’t look any different. Change to thephysical view(the rightmost design
view widget - see Figure 10.15) and you’ll see where each of your cells has
been placed. The placed counter looks like that in Figure 10.16.

DRAFT - Please do not distribute 310

Draft September 3, 2007 10.1: Encounter GUI

Figure 10.14: Placement dialog box

Figure 10.15: Widget for changing to the physical view of the cell

DRAFT - Please do not distribute 311

CHAPTER 10: SOC Encounter
Place and Route Draft September 3, 2007

Figure 10.16: View after placement of the cells

DRAFT - Please do not distribute 312

Draft September 3, 2007 10.1: Encounter GUI

If your design had more than one floorplan elements you could go back
to the floorplan view and select one of the elements. Then moving to the
physical view you would see where all the cells from that element had ended
up. This is an interesting way of seeing how the placement has partitioned
things.

10.1.5 First Optimization Phase

Now you can perform the first timing and optimization step. At this stage
of the process there are no wires so the timing step will do atrial route
to estimate the wiring. This is a low-effort not-necessarily-correct routing
of the circuit just for estimation. SelectTiming → Optimization . Notice
that underDesign Stageyou should selectpre-CTS to indicate that this
analysis is before any clock tree has been generated (Figure 10.17). You’re
also doing analysis only onsetup time of the circuit. ClickOK and you’ll
see the result of the timing optimization and analysis in the shell window. If
you refresh the screen you’ll also see that it looks like the circuit has been
routed! But, this is just atrial route . These wires will be replaced with real
routing wires later.

In this case the timing report (shown in Figure 10.18) shows that we
are not meeting timing. In particular, there are 7 violating paths and the
worst negative slackis -1.757ns. The timing was specified in the.sdcfile
and came from the timing requirements at synthesis time. In this case the
desired timing is an (overly aggressive) 3ns clock period just to demonstrate
how things work.

Note that you can always re-run the timing analysis after trying things by
selectingTiming → Timing Analysis from the menu. Make sure to select
the correctDesign Stageto reflect where you are in the design process. At
this point, for example, I am inPre-CTSstage.

10.1.6 Clock Tree Synthesis

Now we can synthesize a clock tree which will (hopefully) help our timing
situation. In a large design this will have a huge impact on the timing. In
this small example design it will be less dramatic. SelectClock → Cre-
ate Clock Tree Specto start. You should fill in the footprint information
that the CTS process can use to construct a clock tree. This should have
been filled in with the information from our original design import but it’s
not for some reason. I’m filling ininv as the inverter footprint and another
for buffers because my library doesn’t have non-inverting buffers (see Fig-
ure 10.19). Your library may be different. ClickingOK will generate a
clock tree specification in the (default)counter.ctstchfile.

DRAFT - Please do not distribute 313

CHAPTER 10: SOC Encounter
Place and Route Draft September 3, 2007

Figure 10.17: Dialog box for timing optimization

DRAFT - Please do not distribute 314

Draft September 3, 2007 10.1: Encounter GUI

--
timeDesign Summary

--

+--------------------+---------+---------+---------+---------+---------+---------+
| Setup mode | all | reg2reg | in2reg | reg2out | in2out | clkgate |
+--------------------+---------+---------+---------+---------+---------+---------+
WNS (ns):	-1.757	-1.757	0.700	0.891	N/A	N/A
TNS (ns):	-7.589	-7.589	0.000	0.000	N/A	N/A
Violating Paths:	6	6	0	0	N/A	N/A
All Paths:	24	8	16	8	N/A	N/A
+--------------------+---------+---------+---------+---------+---------+---------+

Figure 10.18: Initial pre-CTS timing results

Figure 10.19: Generating a clock tree specification

DRAFT - Please do not distribute 315

CHAPTER 10: SOC Encounter
Place and Route Draft September 3, 2007

Now you need to specify the clock tree based on this spec (yes, this
seems a little redundant...). SelectClock → Specify Clock Treeand use
the clock tree specification file (counter.ctstch) that you just generated.

Now you can actually generate the clock tree withClock→ Synthesize
Clock Tree. You can leave the defaults in this dialog box and just clickOK
to generate the clock tree. This will use the cells you told it about to generate
a clock tree in your circuit. If you watched carefully you would have seen
some cells added and other cells moved around during this process.

If you’d like to see the clock tree that was generated you can select
Clock→ Display→ Display Clock Tree to see the tree. This will annotate
the display to show the tree. You should selectClock Route Only in the
dialog box (Figure 10.20). If you selectDisplay Clock Phase Delayyou’ll
see the clock tree (in blue) and the flip flops connected to that tree colored
by their differing phase delays. If you selectDisplay Min/Max Paths you’ll
see the min and max path from the clock pin to the flip flop displayed. See
Figure 10.21 for an example. You can clear the clock tree display with
Clock → Display→ Clear Clock Tree Display.

10.1.7 Post-CTS Optimization

After you have generated the clock tree you can do another phase of timing
optimization. Again selectTiming → Optimization but this time select
post-CTS(refer back to Figure 10.17). This optimization phase shows that
the addition of the clock tree and the subsequent optimization helped a little,
but not much. In a larger design this would have a much more dramatic
impact. See Figure 10.22.

10.1.8 Final Routing

Now that the design has a clock tree you can perform final routing of the
design. SelectRoute→ NanoRoute→ Route to invoke the router. ThereFor a large complex

design you may need to
go all the way back to

the floorplanning stage
and add more space

between rows for routing
channels. Because this

technology has only
three routing layers, and

you have likely used a
lot of metal1 in your
cells, the chance for

routing congestion in
large designs is high.

are lots of controls, butTiming Driven is probably the only one you need to
change from the default (see Figure 10.23). Of course, you are welcome to
play around with these controls to see what happens. Once you selectTim-
ing Driven you can also adjust theEffort slider to tell the tool how much
effort to spend on meeting timing and how much on reducing congestion.
On a large, aggressive design you may need to try things are various settings
to get something you like. Because this is not un-doable, you should save
the circuit in a state just before routing so that you can restore to that state
before trying different routing options.

This can take a long time on a large design. Check the shell window

DRAFT - Please do not distribute 316

Draft September 3, 2007 10.1: Encounter GUI

Figure 10.20: Dialog box to display the clock tree

DRAFT - Please do not distribute 317

CHAPTER 10: SOC Encounter
Place and Route Draft September 3, 2007

Figure 10.21: Design display showing the clock tree

--
optDesign Final Summary

--

+--------------------+---------+---------+---------+---------+---------+---------+
| Setup mode | all | reg2reg | in2reg | reg2out | in2out | clkgate |
+--------------------+---------+---------+---------+---------+---------+---------+
WNS (ns):	-1.649	-1.649	1.061	0.442	N/A	N/A
TNS (ns):	-7.542	-7.542	0.000	0.000	N/A	N/A
Violating Paths:	6	6	0	0	N/A	N/A
All Paths:	24	8	16	8	N/A	N/A
+--------------------+---------+---------+---------+---------+---------+---------+

Figure 10.22: Timing results after the second (Post-CTS) optimization

DRAFT - Please do not distribute 318

Draft September 3, 2007 10.1: Encounter GUI

Figure 10.23:NanoRoutedialog box

DRAFT - Please do not distribute 319

CHAPTER 10: SOC Encounter
Place and Route Draft September 3, 2007

Figure 10.24: The counter circuit after usingNanoRouteto do final routing

for updates on how it is progressing. When it finishes you should see that
there are 0violations and 0 fails. If there are routing failures left then
you will either have to go in and fix them by hand or start over from a
whole new floorplan! An example of a completely routed circuit is shown
in Figure 10.24.

It’s possible that you might have an error associated with a pin after
routing. It seems to happen every once in a while, and I don’t know exactly
what the cause is. You can fix it by starting over and routing again to see
if you still have the error, or you can zoom in to the error and move things
around to fix the error. I generally just move the wires a little bit and they
snap to the grid and everything’s fine. If you want to do this you can zoom
into the correct part of the layout using the right mouse button. Once you’re
there you can use theTool Widgets in the upper left of the screen (in blue)
to move, add, etc. the wires on the screen. TheEdit → Edit Route andEdit
→ Edit Pin tools can help with this. Usually you don’t need to mess with
this though. Or, you can wait to fix things back inVirtuoso after you’ve
finished withSOC Encounter.

Figure 10.25 shows one of these errors. In this case themetal2 of the
pin is too close to themetal2 of the power stripe. I’ll fix it by moving the
whole pin over to the left as seen in Figure 10.26.

DRAFT - Please do not distribute 320

Draft September 3, 2007 10.1: Encounter GUI

Figure 10.25: An error in pin placement after final routing

DRAFT - Please do not distribute 321

CHAPTER 10: SOC Encounter
Place and Route Draft September 3, 2007

Figure 10.26: Design display after fixing the pin routing error

DRAFT - Please do not distribute 322

Draft September 3, 2007 10.1: Encounter GUI

--
optDesign Final Summary

--

+--------------------+---------+---------+---------+---------+---------+---------+
| Setup mode | all | reg2reg | in2reg | reg2out | in2out | clkgate |
+--------------------+---------+---------+---------+---------+---------+---------+
WNS (ns):	-1.524	-1.524	1.051	0.363	N/A	N/A
TNS (ns):	-8.050	-8.050	0.000	0.000	N/A	N/A
Violating Paths:	7	7	0	0	N/A	N/A
All Paths:	24	8	16	8	N/A	N/A
+--------------------+---------+---------+---------+---------+---------+---------+

Figure 10.27: Final post-route timing optimization results

Post-Route Optimization

You can now run one more optimization step. Like the others, you use
Timing → Optimization but this time you choosePost-Routefor theDe-
sign Stage. In this case the timing was improved slightly again, but still
doesn’t meet the (overly aaggressive) timing that was specified. See Fig-
ure 10.27.

10.1.9 Adding Filler Cells

After the final optimization is complete, you need to fill the gaps in the
cell row with filler cells. These are cells in your library that have no active
circuits in them, just power and ground wires andNWELL layers. Select
Place→ Filler → Add and either add the cell names of your filler cells or
use thebrowsebutton to find them. In my library I have two different filler
cells: a one-wideFILL and a two-wideFILL2 (see Figure 10.28). Clicking
OK will fill all the gaps in the rows with filler cells for a final cell layout as
seen in Figure 10.29. You can also zoom around in the layout to see how
things look and how they’re connected as in Figure 10.30.

10.1.10 Checking the Result

There are a number of checks you can run on the design inSOC Encounter.
The first thing you should check is that all the connections specified in your
original structural netlist have been made successfully. To check this use
the Verify → Verify Connectivity menu choice. The defaults as seen in
Figure 10.31 are fine. This should return a result in the shell that says that
there are no problems or warnings related to connectivity. If there are, you
need to figure out what they are and start over from an appropriate stage
of the place and route process to fix them. If there are problems it’s likely
that routing congestion caused the problem. You could try a new route, a

DRAFT - Please do not distribute 323

CHAPTER 10: SOC Encounter
Place and Route Draft September 3, 2007

Figure 10.28: Filler cell dialog box

new placement, or go all the way back to a new floorplan with a lower core
utilization percentage or more space between rows for routing channels.

Another check you can make is to run a DRC check on the routing and
abstract views. To do this selectVerify → Verify Geometry. You should
probably un-check theCell Overlap button in this dialog box as seen in
Figure 10.32. I’ve found that with our cells and our technology information
(in the LEF file) that if you leaveCell Overlap checked the tool flags some
perfectly legal contact overlaps as errors. This isnot a substitute for a full
DRC check in Virtuoso. This check only runs on the routing and abstract
views, and has only a subset of the full rules that are checked inVirtuoso.
But, if you have errors here, you should try to correct them here before
moving on to the next step. You can view the errors with theviolation
browser from theVerify menu. You can use this tool to find each error, get
information about the error, and zoom in to the error in the design window.

10.1.11 Saving and Exporting the Placed and Routed Cell

Now that you have a completely placed, routed, optimized, and filled cell
you need to save it and export it. There are a number of options depending
on how you want to use the cell in your larger design.

DRAFT - Please do not distribute 324

Draft September 3, 2007 10.1: Encounter GUI

Figure 10.29: Final cell layout after filler cells are added

DRAFT - Please do not distribute 325

CHAPTER 10: SOC Encounter
Place and Route Draft September 3, 2007

Figure 10.30: A zoomed view of a final routed cells

DRAFT - Please do not distribute 326

Draft September 3, 2007 10.1: Encounter GUI

Figure 10.31: Dialog box for verifying connectivity

DRAFT - Please do not distribute 327

CHAPTER 10: SOC Encounter
Place and Route Draft September 3, 2007

Figure 10.32: Dialog box for checking geometry

DRAFT - Please do not distribute 328

Draft September 3, 2007 10.1: Encounter GUI

Figure 10.33: Dialog box for exportingDEF

Exporting a DEF file: In order to read the layout back in toVirtuoso so
that you can run DRC and other tests on the data. The format that is
used to pass the layout of the cell back toVirtuoso is calledDEF Without the version

specification change you
will get DEF version 5.6
which is not readable by
our version of Virtuoso
(IC 5.1.41)

(Design Exchange Format). You can export aDEF file by selecting
theDesign→ Save→ DEF... menu choice. In the dialog box (Fig-
ure 10.33) you can leave the default selections, but change theOutput
DEF Version from NULL to 5.5 so that you get the correct version
of DEF. You can also change the file name to whatever you like.

Exporting a structural Verilog file: Because we have hadSOC Encounter
generate a clock tree and run a number of optimization steps, the cir-
cuit that we’ve ended up with isnot the same circuit that we started
with. Cells may have been exchanged during optimization, and cells
were added to make the clock tree. So, if you want to compare the lay-
out to a schematic, you need the new structural file. Export this with
Design→ Save→ Netlist. This will generate a new structural Ver-
ilog file that contains the cells that are in the final placed and routed
circuit.

Exporting an SDF file: Now that the circuit has been placed and routed,

DRAFT - Please do not distribute 329

CHAPTER 10: SOC Encounter
Place and Route Draft September 3, 2007

you can export anSDF (Standard Delay Format) file that has not only
timings for the cells but timing extracted from the interconnect. You
can use this file with your Verilog simulation if all your cells have
behavioral views withspecify blocks for timing to get quite accu-
rate timing in your behavioral simulation. Generate this file by first
selectingTiming → Extract RC to extract the RC timings of the in-
terconnect. You can leave the default of just saving the capacitance
to the .cap file if you just want anSDF file, or you can select other
types of RC output files. TheSPEFfile in particular can be used by
theSynopsys tool PrimeTime later for static timing analysis if you
want. Once you’ve extracted the RC information you can generate an
SDF file with theTiming → Calculate Delaymenu choice.

Exporting a LEF file: If you want to use this placed and routed cell as a
block in a larger circuit you need to export the cell as aLEF file and
as aliberty file. That is, you could take this entire cell and instantiate
it as a block in another larger circuit. It could be placed as a block
in the floorplanning stage and other standard cells could be placed
and routed around the block. TheLEF file would describe this entire
cell as oneMACRO , and you would include thatLEF file in the list
of LEF files in the design import phase. The.lib file would define
the timing of this cell. For some reason, exportingLEF and Lib
information is not in the menus. To generate these files you need
to type the commands directly to theSOC Encounterprompt in the
shell window. Type the commands:

do extractmodel -blackbox2d -force counter.characterize.lib
lefOut counter.lef -stripePin -PGpinLayers 1 2

This will generate both.lib and.lef files that you can use later to in-
clude this cell as a block in another circuit. The options to thelefOut
command make sure that the power and ground rings and stripes are
extracted in the cell macro. If you look at the.lef file you’ll notice that
the cell macro is defined to be ofCLASS BLOCK . This is different
from the lower level standard cells which areCLASS CORE. This
indicates that this is a large block that should be placed separately
from the standard cells inSOC Encounter.

10.1.12 Reading the Cell Back Into Virtuoso

Now your cell is complete so you can read it back in toVirtuoso for further
processing (DRC, extract, and LVS) or for further use as a macro cell in
other designs.

DRAFT - Please do not distribute 330

Draft September 3, 2007 10.1: Encounter GUI

Importing Layout Information

To import the cell layout , first go back to your cadence directory and start
icfb with the cad-ncsu script. Then create a new library to hold this cell.
Make sure that you attach theUofU TechLib ami05 technology library to
the new library. For this example I’ve made a new library calledcounter.
Now that you have a new library to put it in, you can import the cell. From
theCIW (Command Interpreter Window) select theFile→ Import →DEF
menu. In theDEF In dialog box fill in the fields:

Library Name: This is the library (counter in this example) where you
would like the cell to go.

Cell Name: This is the name of the top-level cell (counter in this case).

View Name: What view would you like the layout to go to? The best
choice is probablylayout.

Use Ref Library Names: Make sure to check this option and enter the
name of the library that contains all the standard cells in your library.
In this example the library isexample, but your library will be differ-
ent (probably6710Lib).

DEF File Name: This is the name of theDEF file produced bySOC En-
counter.

The other fields can be left at their defaults. This example is seen in Fig-
ure 10.34. When you clickOK you’ll get some warnings in theCIW . You
can ignore warnings about not being able to open thetechfile.cds, about be-
ing unable to findmaster coreand failing to open the cell views forviagen
cells. I don’t know the exact cause for all these warnings, but they don’t
seem to cause problems. You should be able to see a new layout view in
your new library. Zoom in to the cell and make sure that the connections
between the large power rings have arrays of vias. You may need to expand
the view to see the vias. If you have arrays of vias then the import has most
likely worked correctly. If you don’t have any vias in the connection then
something has failed. You may have used the wrong version ofDEF from
SOC Encounterfor example.

Now open thelayout view. You’ll see the circuit that consists of cells
and routing. But, you need to adjust a few things before everything will
work correctly.

• The first thing is that the layout has most likely opened inVirtuoso
Preview mode. You need to get back toLayout mode which is the
layout editor mode that you’re familiar with. SelectTools→ Layout

DRAFT - Please do not distribute 331

CHAPTER 10: SOC Encounter
Place and Route Draft September 3, 2007

Figure 10.34: Dialog box for importing DEF files toicfb

to put the editor back intoLayout mode. You’ll see the familiar set
of menu choices come back to the top of the window and theLSW
Layer Selection Window will return.

• All the cells in the design are currentlyabstract views. You need to
change them all to belayout views to be able to run the rest of the
procedures. This can be done with theEdit menu as follows:

1. SelectEdit → Searchto bring up thesearchdialog box. You
will use this search box to find all the cells in the design that are
currently using theabstract view. Click onAdd Criteria . In
the newcriteria change the leftmost selection toView Name,
and change the name of the view toabstract (see Figure 10.35).
Now clicking onApply will find all the cells in the design whose
View Name is equal toabstract. You should see every cell in
the design highlighted. The dialog box will also update to tell
you how many cells it found. In this example it found 113 cells.

2. Now you need to replace the view of those cells withlayout.
Click on theReplacefield to change it toView Nameand change
the name tolayout (See Figure 10.36). Now click onReplace
All and all the cells whose view used to beabstract will be
updated to uselayout views.

3. You can now cancel this dialog box and save the view.

DRAFT - Please do not distribute 332

Draft September 3, 2007 10.1: Encounter GUI

Figure 10.35:Searchdialog box for finding all the cell abstracts

Figure 10.36:Searchdialog box for replacing abstracts with layouts

DRAFT - Please do not distribute 333

CHAPTER 10: SOC Encounter
Place and Route Draft September 3, 2007

Now you can runDRC on the cell withVerify → DRC the same way
you’ve done for other cells. You should have zero errors, but if you do have
errors you’ll need to fix them. You can also extract the circuit usingVerify
→ Extract for LVS. Again you should have zero errors.

Importing the structural Verilog

Recall that the structural Verilog fromSOC Encounter is different than
the structural Verilog that came directly fromSynopsys design compiler
because things were optimized and a clock tree was added. To import the
new Verilog you can use the same procedure as described in Chapter 8. Use
theCIW menuFile → Import → Verilog.... Fill in the fields:

Target Library Name: The library you want to read the Verilog descrip-
tion into. In this case it will becounter.

Reference Libraries: These are the libraries that have the cells from the
cell libraries in them. In this case they will beexampleandbasic.
You will use your own library in place ofexample.

Verilog Files to Import: The structural Verilog fromSOC Encounter. In
this case it’scounter.v from my soc/counterdirectory.

-v Options: This is the Verilog file that has Verilog descriptions of all the
library cells. In this case I’m usingexample.v. You’ll use the file
from your own library.

The dialog box looks like that in Figure 10.37. You can click onOK to
generate a new schematic view based on the structural Verilog. Strangely
this will result in some warnings in theCIW related to bin files deep inside
the Cadence IC 5.1.41 directory, but it doesn’t seem to cause problems.
You now have a schematic (Figure 10.38) and symbol (Figure 10.39) of the
counter. The log file of the Verilog import process should show that all the
cell instances are taken from the cell library (examplein this case).

Once you have a schematic view you can runLVS to compare theex-
tracted view of the cell to theschematic. They should match! This cell
may now be used in the rest of the flow. If this is the final circuit you can
use the chip assembly tools (Chapter 11) to connect it to pads. If it’s part f
a larger circuit you can use it in subsequent uses of with the chip assembly
router or back inSOC Encounter.

DRAFT - Please do not distribute 334

Draft September 3, 2007 10.1: Encounter GUI

Figure 10.37: Dialog box for importing structural Verilog into a new
schematic view

DRAFT - Please do not distribute 335

CHAPTER 10: SOC Encounter
Place and Route Draft September 3, 2007

Figure 10.38: Schematic that results from importing the structural counter
from SOC Encounter into icfb

Figure 10.39: Symbol that is created for the counter

DRAFT - Please do not distribute 336

Draft September 3, 2007 10.2: Encounter Scripting

10.2 Encounter Scripting

SOC Encounter, like most CAD tools, can be driven either from the window-
based GUI or from scripts. Once you’ve completed the process of place and
route a few times from the GUI, you may want to automate parts of the
process using scripts. In general, you probably want to do the floor plan-
ning portion of the flow by hand, and then use a script for the rest of the
flow (placement, optimization, clock tree synthesis, optimization, routing,
optimization, exporting data).

You can always peruse theSOC EncounterText Command Reference
Guide in the documentation to see how to write the script commands, or
you can look in the output logs from your use of the GUI.SOC Encounter
produces two logs while you are using the GUI:encounter.logwhich logs
the messages in the shell window, andencounter.cmdwhich logs the com-
mands that you execute while using the menus. You can use theencounter.cmd
file to replicate commands in scripts that you previously used in the GUI.

10.2.1 Design Import with Configuration Files

The first step in usingSOC Encounteris to use theDesign Import menu to
read in your initial structural Verilog file. You can streamline this process by
using aconfiguration file. In the class directory related toSOC Encounter
(/uusoc/facility/cad common/local/class/6710/cadence/SOCyou will find
an input configuration file calledUofU soc.confthat you can customize for
your use. Change the file names and library names in the top portion of
the file for your application before using it. The first part of this file, as
configured for thecounter example is shown in Figure 10.40. The full
configuration file template is shown in Appendix C, and, of course, you can
see it on-line.

To use this configuration file, after filling in your information, use the
Design→ Design Import menu, but chooseLoad and then load the.conf
file that you’ve customized for your circuit. This will read in the circuit with
all the extra information in the other tabs already filled in.

10.2.2 Floor Planning

You can now proceed to the floor planning stage of the process using the
Floorplan → Specify Floorplan menu. You’ll see that theAspect Ratio,
Core Utilization , andCore to IO Boundary fields will be already filled in,
although may not be exactly1, 0.7, and30 (but they’ll be close!). You can
modify things, or accept the defaults. From this point you can proceed as

DRAFT - Please do not distribute 337

CHAPTER 10: SOC Encounter
Place and Route Draft September 3, 2007

##
#
Encounter Input configuration file
University of Utah - 6710
#
##
Created by First Encounter v04.10-s415_1 on Fri Oct 28 16:15:04 2005
global rda_Input
#
###
Here are the parts you need to update for your design
###
#
Your input is structural verilog. Set the top module name
and also give the .sdc file you used in synthesis for the
clock timing constraints.
set rda_Input(ui_netlist) {counter_struct.v}
set rda_Input(ui_topcell) {sounter}
set rda_Input(ui_timingcon_file) {counter_struct.sdc}
#
Leave min and max empty if you have only one timing library
(space-separated if you have more than one)
set rda_Input(ui_timelib) {example.lib}
set rda_Input(ui_timelib,min) {}
set rda_Input(ui_timelib,max) {}
#
Set the name of your lef file or files
(space-separated if you have more than one).
set rda_Input(ui_leffile) {example.lef}
#
Include the footprints of your cells that fit these uses. Delay
can be an inverter or a buffer. Leave buf blank if you don’t
have a non-inverting buffer. These are the "footprints" in
the .lib file, not the cell names.
set rda_Input(ui_buf_footprint) {}
set rda_Input(ui_delay_footprint) {inv}
set rda_Input(ui_inv_footprint) {inv}
set rda_Input(ui_cts_cell_footprint) {inv}

Figure 10.40: Configuration file for reading in thecounter example

DRAFT - Please do not distribute 338

Draft September 3, 2007 10.2: Encounter Scripting

in the previous sections. The<filename>.conf configuration file will have
made theDesign Import process much easier.

10.2.3 Complete Scripting

You could run through the rest of the flow by hand at this point, or you could
script the rest of the flow. In the class directory you’ll find a complete script
that runs through the entire flow. This script is calledUofU opt.tcl. You
can modify this script for your own use. You may, for example, want to run
through the floor planning by hand, and run the script for everything else. Or
you may want to adjust yourconfiguration file for the floorplan you want,
and run the script for everything. Or you might want to extract portions of
the script to run separately. You can also use the script as a starting point
and add new commands based on the commands that you’ve run in the GUI.
It’s all up to you! This script isnot meant to be the end-all be-all of scripts.
It’s just a starting point.

I haven’t yet found a way to execute scripts from the GUI or the shell
onceSOC Encounter is running. Instead, you can run the script from
the initial program execution withcad-soc -init <scriptfile >
which will run the script when the program starts up. The first part of
the UofU opt.tcl script is shown in Figure 10.41 as I configured it for the
counter example. The full script is in the class directory and in Appendix C.
Remember that if you try something that works well in the GUI, you can
look in theencounter.cmdlog file to find the text version of that command
to add to your own script.

DRAFT - Please do not distribute 339

CHAPTER 10: SOC Encounter
Place and Route Draft September 3, 2007

###
#
Encounter Command script
#
###

set the basename for the config and floorplan files. This
will also be used for the .lib, .lef, .v, and .spef files...
set basename "counter"

set the name of the footprint of the clock buffers
from your .lib file
set clockBufName inv

set the name of the filler cells in your library - you don’t
need a list if you only have one...
set fillerCells [list FILL FILL2]

###
You may not have to change things below this line - but check!
#
You may want to do floorplanning by hand in which case you
have some modification to do!
###

Set some of the power and stripe parameters - you can change
these if you like - in particular check the stripe space (sspace)
and stripe offset (soffset)!
set pwidth 9.9
set pspace 1.8
set swidth 4.8
set sspace 100
set soffset 75

Import design and floorplan
If the config file is not named $basename.conf, edit this line.
loadConfig $basename.conf 0
commitConfig

...

Figure 10.41: The first part of theUofU opt.tcl script forSOC Encounter

DRAFT - Please do not distribute 340

