
Chapter 11

Chip Assembly

THE PROCESSof wiring up pre-designed modules to make a complete
chip core, or taking a finished core and routing it to the chip pads
is known aschip assembly. Cadence has yet another tool that is

designed specifically for this set of tasks known as theCadence Chip As-
sembly Router (ccar) which is part of theIC Craftsman (ICC) tool set.
This tool will route between large pre-designed blocks which are not placed
on a regular grid. This makes it fundamentally different thanSOC En-
counter which wants to place small cells on a fixed grid. The blocks that
are routed byccar could be blocks that are placed and routed bySOC En-
counter, or could also be blocks that are designed by hand or by other tools
(i.e. custom datapath circuits, memories, or other dense regular arrays). Al-
though there are certainly more features ofccar then are described here, we
useccar strictly for routing. That is, the user places the blocks by hand,
connects the global power and ground nets, then usesccar to connect the
signal wires between those large blocks. Theccar tool is also used to route
between finished cores and the pad ring.

11.1 Module Routing with ccar

Theccar tool, unlike other tools we’ve used so far, is not invoked directly.
Instead it is used in conjunction with theCadence ComposerandVirtuoso
tools. The overall process is:

1. Make a schematic that contains your modules connected together. In-
put and output pins should be used to indicate signals that enter and
leave the collection of modules.

2. UseVirtuoso-XL to generate a new layout based on that schematic.

CHAPTER 11: Chip Assembly Draft September 3, 2007

3. Place the modules by hand in thelayout view.

4. Place the IO pins that were defined in the schematic (and generated in
the layout) in the desired spots in the layout.

5. Connectvdd! andgnd! so that the modules are connected to a com-
mon power network.

6. Export thelayout view toccar for signal routing

7. Route the signal nets inccar

8. Import the routed module back toVirtuoso-XL . Then DRC, extract,
and LVS.

So, to start out you need:

1. The modules that you will be connecting need to have layout views
that have all the connection points marked with shape pins of the right
type (metal1, metal2, or metal3) and named the same things as on the
symbol (blocks routed bySOC Encounteralready have these).

2. For each cell you also need a symbol view of that cell that has the
same pins on the interface of the symbol that are in the layout (cell
blocks imported from the structural Verilog view generated bySOC
Encounter have these symbols too).

3. You need a schematic showing the connection of parts that you want
to route together. That is, you make a schematic that includes in-
stances of the parts that you want to use, and all the connections be-
tween them. This is a good thing to have in general because you’ll
need it to simulate the functionality of the schematic and for LVS
anyway. It’s also what tellsccar which signals it should route and to
where.

4. A rules file for theIC Craftsman (icc) ccar router calledicc.rul.
Copy this file from
/uusoc/facility/cad common/local/class/6710/cadence/ICCto the di-
rectory from which you startcad-ncsu.

5. Also copy thedo.dofile from that same class directory to the directory
from which you startcad-ncsu. You’ll need both of these later when
you start upccar.

What this process will do is generate a connected layout that corre-
sponds to the schematic. You will do the placement by hand, but the router

DRAFT - Please do not distribute 342

Draft September 3, 2007 11.1: Module Routing with ccar

Figure 11.1: Startingschematicshowing the three connected modules

will connect everything. For this example I’ll take three modules that I’ve
previously placed and routed withSOC Encounter: the moore example
from Chapter 8, thecounter example from Chapter 10, and thecontroller
state machine from the MIPS example in the Harris/Weste CMOS text-
book [1]. Connecting these cells together makes absolutely no functional
sense, but it does show how three pre-assembled modules can be connected
together withccar. Each of these three examples has been imported into
icfb using the procedure described in Chapter 10, Section 10.1.12. This
means that I have (among other things)layout, schematic, and symbol
views of each of these modules that I can use to make my new schematic
as a starting point. The example starting schematic is shown in Figure 11.1.
Note that thisschematiccan be in a whole new library if you like in order
to keep things separated.

11.1.1 Preparing a Placement with Virtuoso-XL

In this part of the process you will generate a layout from the schematic and
drag the components to where you want them placed. Start by opening the
schematicview. From the schematic view selectTools→Design Synthesis
→ Virtuoso-XL . Virtuoso-XL is just Virtuoso with some extra features
enabled. In this step you will be asked if you want to open an existing

DRAFT - Please do not distribute 343

CHAPTER 11: Chip Assembly Draft September 3, 2007

cellview or make a new one. It’s talking about the layout view that it’s about
to generate. I’m assuming that you have no layout for the current schematic
yet so you’ll want to make a new one. If you have an existing layout but
want to start over, this is where you can start over with a new layout view.
This command will open a newVirtuoso-X window, and resize and replace
the other windows on your screen. You may need to move things around
after this process to see everything.

In the newVirtuoso-XL window selectDesign→Gen From Source...
This will generate an initial layout based on the schematic as the source
file. The dialog box is shown in Figure 11.2. The dialog lets you pick a
layer for each external IO pin. This will determine what layer the end of the
wire will be when the router creates it. If you have a lot of pins it’s faster
to choose one layer as default and apply that default to everything. You
can then change individual pins to something else if you like. Make sure
you choose a reasonable routing layer for your pins like one of the metal
layers. The default layer before you change things is likely to be something
unreasonable likenwell.

After you execute theGen From Sourceyou will see that the layout
has a large purple box which defines the placement area (it’s a box of type
prBoundary), and your cells scattered outside that box. This view is shown
in Figure 11.3. You can’t see them until you zoom in, but all the IO pins de-
fined in your schematic are just below the lower left corner of theprBound-
ary box.

Now that you have in initial layout in theVirtuoso-XL window youYou may need to make
prBoundary an active
layer using the Edit →

Set Valid Layers menu
in the LSW (Layer

Selection Window) in
order to resize that layer.

can pick them up and move them to where you want them. Your job is
to place both the modules and the IO pins inside theprBoundary square.
You can also resize theprBoundary if you’d like a smaller or differently
shaped final module. When you move the cells connecting lines show up
that show you how this component is connected to the other. Also, when
you select a cell in the layout window that same cell is highlighted in the
schematic window. This is very handy for figuring out which cell in one
window corresponds to which cell in the other.

Placing the IO pins is a little tricky just because they’re likely to be very
small compared with the modules. I find that it’s easiest if I zoom in to
the lower left corner of theprBoundary where the pins are and select a pin.
Then use themovehotkey (m) to indicate that you’re about to move the pin
and click near the pin to define a starting point. Now you can usef and
the zoom keys (Z and ctl-z) to change views while you’re still moving
the pin. You can also see the connecting line which shows where the pin
will eventually be connected which can guide you to a good placement.

When you’ve placed all the modules and pins you can look at the con-

DRAFT - Please do not distribute 344

Draft September 3, 2007 11.1: Module Routing with ccar

Figure 11.2: TheGen From Sourcedialog box

DRAFT - Please do not distribute 345

CHAPTER 11: Chip Assembly Draft September 3, 2007

Figure 11.3: Initial layout before module and IO placement

DRAFT - Please do not distribute 346

Draft September 3, 2007 11.1: Module Routing with ccar

Figure 11.4: A placement of modules and IO pins with unrouted nets turned
on

nectivity using theConnectivity→Show Incomplete Netsoption inVirtuoso-
XL . Because nothing is routed yet, this shows all the connections that will
eventually be made byccar. A placement of the modules and pins is shown
in Figure 11.4.

Now you should connect the power and ground nets of the various mod-
ules in your layout. If you don’t do this now you might run out of space
to do it later once the signals are routed. In Figure 11.5 I’ve connected the
rings of the modules together with fat 9.9 micron wires to match the pitch
of the power and ground rings that were placed bySOC Encounter. Notice
that I’ve kept the routing conventions intact. That is,metal1 is used hori-
zontally andmetal2 is used as a vertical routing layer. Becauseccar will
also use these conventions it’s important to keep that in mind so as not to
restrict the routing channels. At this point you should save the layout and
run DRC to make sure that everything is all right before you send the layout

DRAFT - Please do not distribute 347

CHAPTER 11: Chip Assembly Draft September 3, 2007

to therouter tool.

Make sure that your module placement, IO pin placement,prBoundary
size and shape, and power routing is how you want it. You can play around
with this a lot to get things looking just right before you send it to the router.
The router will fill in the rest of the signal routing for you. Of course, if
you’ve made yourprBoundary too small and left too little room for signal
routing you might have to redo the floorplan later!

11.1.2 Invoking the ccar router

Now that you have a placed and power-routed layout you can send this to
the router. Use theRouting → Export to Router command. The dialog
box is shown in Figure 11.6. Everything should be filled in correctly, butRemember to copy

icc.rul and do.do from
the class ICC directory

before you run this step.

make sure that theUse Rules Filebox is checked and that theicc.rul file is
specified. Also make sure that theRouter that is specified isCadence chip
assembly router. Clicking OK will start upccar on your cell. A newccar
window will pop up that shows your layout with the not-yet-connected nets
shown as in Figure 11.7.

Look at the log information that show up in the shell you used to start
cad-ncsuand make sure that there are no issues withccar as it starts up.
Unless you have specified your pins strangely back in theGen From Source
step, it’s unlikely that there will be issues here, but you should always check.

The first thing you should do is execute ado file. This will set up aThis may not actually be
strictly necessary, but it

has seemed to ease some
problems in the past so

for historical reasons
I’m leaving this

instruction in.

few things in the icc tool so you won’t have to do them by hand. SelectFile
→ Execute Do Fileand tell it to executedo.do (which you have already
copied into your current directory).

Now, if you want to, you can select the layers used byccar to do the
routing. Everything is set up so that the router will use metal1 as a horizontal
layer, metal2 as a vertical layer, and metal3 as a horizontal layer. If you
want to change this, or restrict the router to not use a certain layer, you can
do that now. Select the layer icon, which is the icon with the three rectangles
overlapping on the left side of theccar window. The pop-up will look like
Figure 11.8. The icons next to the metal1, metal2, and metal3 layers show
what direction they will be routed in. If you want to change the direction or
restrict the router from using that layer, you can change that icon. The circle
with the slash means not to use that layer as a routing layer. Note that the
vias are marked asdon’t useThis doesn’t mean that the router won’t put in
vias (it will), it just means it won’t make a wire out of the via layer. There’s
really nothing you need to change here unless you want to.

The next thing you might want to do is change the costs of various rout-
ing features. This is a mechanism to control how the router does the routing.

DRAFT - Please do not distribute 348

Draft September 3, 2007 11.1: Module Routing with ccar

Figure 11.5: Layout showing placement and power routing before routing

DRAFT - Please do not distribute 349

CHAPTER 11: Chip Assembly Draft September 3, 2007

Figure 11.6:Export to Router dialog box

DRAFT - Please do not distribute 350

Draft September 3, 2007 11.1: Module Routing with ccar

Figure 11.7: Initialccar window

DRAFT - Please do not distribute 351

CHAPTER 11: Chip Assembly Draft September 3, 2007

Figure 11.8: Layer configuration dialog box

DRAFT - Please do not distribute 352

Draft September 3, 2007 11.1: Module Routing with ccar

Figure 11.9: Routing cost factor dialog box

ChooseRules→ Cost/taxesand you can modify the relative costs of vari-
ous routing features. The dialog box is shown in Figure 11.9. The -1 means
that there is no penalty. Putting in any number raises the cost penalty in the
routing algorithm and makes it less likely that the router will behave in that
way. For example, if you feel strongly that the routing layers should stick
with the h-v-h routing plan, then add some penalty for wrong-way routing.
I haven’t played with this enough to know how changing this really affects
the circuit. Feel free to play around here and see what happens. Leaving it
alone will result in good, generic results.

Normally you wantccar to route all the signal pins. However, if you
want it to leave some wires unrouted (because you want to route them by
hand for some reason) you can use theEdit → [UN]Fix Nets to fix the
nets that you don’t wantccar to route. There are clearly many many more
options that you can play with, but these are the basics. Feel free to explore
the others.

Once you’ve finished setting things up you can tellccar to route the
nets. This is a multi-step process:

1. SelectAutoroute → Global Route→ Local Layer Direction and
tell it to get its layer directions from theLayer Panel.

2. Now selectAutoroute → Global Route→ Global Route and tell

DRAFT - Please do not distribute 353

CHAPTER 11: Chip Assembly Draft September 3, 2007

it how many routing passes you’d like it to try before giving up (the
default of 3 is probably fine unless you have a very congested cir-
cuit). This may not look like it’s doing anything if the layout is small.
It’s making some notes for the global routing of signals. If you get
warnings about non-optimal results, go ahead and click OK.

3. Now selectAutoroute → Detail Route→ Detail Router to get all
the detailed wires. Again you tell it how many passes to take. The
tighter the layout and the smaller the area you’ve specified, the more
passes it’s likely to take to get a successful route. If you have lots
of room then it will probably only take 1-5 passes. A tighter routing
situation may require 25 or more passes. This is a fun step because
you get to watch as the router tries to connect everything.

4. If you don’t get a successful route, you’ll have go to the costs and
reduce the costs of some of the routing features, or go back to the lay-
ers window and give it more layers to use. You may even need to go
back to the layout and give the router some more room by increasing
the space around the modules or increasing the size of theprBound-
ary. This example has (relatively speaking) acres of routing room so
there’s no problem. In fact, it routes correctly in the second pass.

5. If you do get a successful route you need to clean up after the route.
The router may have introduced errors in the circuit and the routes
may be a little crooked with unnecessary jogs. SelectAutoroute →
Clean to clean up things. This will take a post-pass on the routing
and clean up messy bits.

6. You also need to remove notches. These are little gaps in the routing
that got left in because of corners being turned, or other features of
the routing. SelectAutoroute → Postroute→ Remove Notches.
The final routed circuit is shown in Figure 11.10.

Now you’re done. Save the routed circuit by selectingFile → Write →
Session. You want to save your work as a session so that you can import
it back into Virtuoso and use it as layout. Once you’ve saved your session
you can quitccar. You can see that this isn’t the best looking routing in
the world, but it is connected according to the connections shown in the
schematic, and it was done automatically.

When you saved the session inccar you should have seen the routing
updated in theVirtuoso-XL layout window. If it didn’t you can import
it with the Routing → Import from Router menu. You should save this
view in Virtuoso-XL . This is now just like any otherlayout view. You can
use it in your chip, or generate a symbol and use it at another level of your
hierarchy, and even use it withccar at another level of the hierarchy. The

DRAFT - Please do not distribute 354

Draft September 3, 2007 11.1: Module Routing with ccar

Figure 11.10: Final routed circuit (shown inVirtuoso window)

DRAFT - Please do not distribute 355

CHAPTER 11: Chip Assembly Draft September 3, 2007

only difference between this and alayout view that you did by hand is that
after you did a placement of the cells by hand in this example, the Chip
Assembly Router did the interconnect for you.

Once you have the layout back in Virtuoso, you will want to do the usual
things to it: DRC and LVS for example. The first thing you should do is run
DRC to make sure that the autorouted circuit does not have any new DRC
errors in it. Although the autorouter is good, it’s not perfect and it may leave
a few small errors around. In particular, you may get metal spacing errors
at the point where the autorouted wires connect to theSOC-routed block.
This is because the connections thatSOC uses are shape pins that usepin
type material instead ofdrawing type material. You can see this if you open
the SOC-routed layout and zoom in close to one of the IO pins. The IOSOC uses pin layers for

the IO pins that it
generates, and an

extracted view uses net
purpose layers for the

extracted nets.

pin thatSOC put in looks different than real metal. Each of the layers in
Cadence is really alayer-purpose pair. That is, there is a set of layers, and
a set of purposes, and each layer can be paired with a purpose. Normally
you’re usingdrawing purpose. The layers in your LSW have a littledg
after them to show that they’re drawing-purpose layers.

If you do have metal spacing errors, you can fix them by hand by putting
a small piece of metal over the mistake, or you can fix them by editing your
SOC layout. To do this, open theSOC layout. Then use theEdit → Search
dialog to find all rectangles on layermetal1 pn (or metal2 pnor metal3 pn
depending on where you put your pins), and change them to layer theirdg
versions. This will convert them todrawing purpose layers and the DRC
process should stop complaining.

If you have any other DRC errors, you need to check them out and fix
them.

Now you can LVS against the schematic that you used to define the
connectivity in the first place. This is done in the usual way generate an
extracted view, LVS theextracted against theschematic. The only thing
you need to be careful of here is to make surevdd! andgnd! were connected
before you try to LVS. You will need to connect these supply nets by hand
(which you should have done before you routed the module).

11.2 Core to Pad Frame Routing with ccar

In this section I will walk through the procedure for using icc to connectActually, it does matter
for a grade in the class.

Everyone should
connect their core to the
pads for the final report

even if the core isn’t
working completely yet!

your chip core to a pad frame. Before you start the process of connecting
your core, you need a complete core! A complete core is the complete guts
of your chip with all the components connected, all thevdd! andgnd! lines
connected, and simulated for functionality. If you don’t have a functional,
simulated, complete core, then it doesn’t matter whether it has pads around

DRAFT - Please do not distribute 356

Draft September 3, 2007 11.2: Core to Pad Frame Routing with ccar

Figure 11.11: Symbol for theThree Blocksexample core

it!

For this example, I’ll start with a core made up of the three blocks from
the previous Section which were placed by hand inVirtuoso-XL and routed
by ccar. Your core may be completely placed and routed bySOC, or it
might include blocks routed byccar or it might be completely custom. The
point is to start with a completed core. A complete core should have (at
least)layout, schematic, andsymbol views, should havevdd! andgnd!
connected in the core, and should pass DRC and LVS. The three-block ex-
ample from Section 11.1 has all of these characteristics. The layout was
seen in Figure 11.10 and the schematic in Figure 11.1. The symbol was
created usingDesign→ Create Cellview→ From Cellview and is seen in
Figure 11.11.

11.2.1 Copy the Pad Frame

The first step is to copy the pad frame that you want to use from theUofU Pads
library into your own library. You need to copy the frame because you’re
going to modify the frame to contain the pads you want to use. The frame
defines the placement of the pads, but you can adjust which type of pad you
want in each pad position. Using the pre-designed frames is very impor-
tant. The frames are designed to be the exact outside dimensions allowed
by MOSIS for class fabrication. Making the frames one micron bigger
would double the cost. Our “cost” is measured inTiny Chip Units or TCUs.
Each TCU is 1500 X 1500 microns in outside dimensions. It’s possible to
use multiple TCUs together to make larger chips. But, because we have a
limited TCU budget, you should definitely try to fit your core in the smallest
frame you can. The available frames are:

Frame1 38: A single tiny chip (1 TCU) frame with 38 signal pins (plus

DRAFT - Please do not distribute 357

CHAPTER 11: Chip Assembly Draft September 3, 2007

1-vdd and 1-gnd). Usable core area is approximately 900 X 900 mi-
crons.

Frame2h 70: A two-tiny-chip (2 TCU) frame with 70 signal pins (plus 1-
vdd and 1-gnd). The core a horizontal rectangle (long edges on top
and bottom). Usable core area is approximately 2300 X 900 microns.
If you aren’t using all the signal pad locations and want to add extra
power and ground pads you can add them as follows: vdd on pads 16
and 33, gnd on pads 48 and 74.

Frame2v 70: A two-tiny-chip (2 TCU) frame with 70 signal pins (plus 1-
vdd and 1-gnd). The core a vertical rectangle (long edges on right and
left). Usable core area is approximately 900 X 2300 microns. If you
aren’t using all the signal pad locations and want to add extra power
and ground pads you can add them as follows: vdd on pads 16 and
33, gnd on pads 48 and 74.

Frame4 78: A four-tiny-chip frame with 78 signal pins (plus 3-vdd and
3-gnd). Usable core area is approximately 2300 X 2300 microns.

For this example I’ll use theFrame1 38. I’ll copy that cell from the
UofU Padslibrary to my own library so that I can modify for the needs of
the core.

11.2.2 Modify the Frame schematic view

Once the frame of your choice is copied into the library you are using for
chip assembly, you need to replace pads that are in the frame with the pads
you want. The frames havevdd andgnd pads in the correct places for the
tester soDO NOT change the location of the vdd and gnd pads! All the
other pads in the frame arepad nc for no-connect. You should replace the
pad nc cells with the pads you want. The cells available are:

pad bidirhe: A bidirectional (tri-state) pad with high-enable. From the
core to the pad the signals areDataOut andEN. These are outputs
from your core, and inputs to the pad cell. From the pad to the core
the signals areDataIn andDataInB. These are outputs from the pad
and inputs to your core. The pad itself is connected to an inout pin
calledpad.

pad in: An input pad meaning from the outside world to your core. The
signals areDataIn and DataInB going from the pad to your core.
The pad itself is on an input pin calledpad.

DRAFT - Please do not distribute 358

Draft September 3, 2007 11.2: Core to Pad Frame Routing with ccar

pad out: An output pad, meaning going from your core out to the outside
world. The signal that comes from your core is calledDataOut, and
the pad itself is on an output pin calledpad.

pad nc: This is a pad that does not connect to your core. If you are not
using all the pads in the pad ring make sure that the ones you’re not
using are padnc so that the vdd and gnd are connected in the pad ring,
and so thatMOSIS doesn’t get confused by the number of bonding
areas that it expects to see.

pad vdd: A vdd pad. These are in the right spots for our test board so you
should not move them! There are no pins because the globalvdd!
Label is used inside the pad schematic. There is avdd connection in
the layout view.

pad gnd: Same thing, but forgnd.

pad corner: You shouldn’t have to mess with these. They are layout-only
and providevdd and gnd connectivity for the pad ring. They are
placed in the correct locations in the pad frame layout views.

pad io: An analog input/output pad with a series resistor in the io signal
path. You shouldn’t have to use this! Don’t confuse this for the
pad bidirhe !

pad io nores: An analog pad with no series resistor. You shouldn’t have to
use this either!

At this point I should choose which pad locations get which signals and
which pad type. This depends somewhat on the physical placement of the
pins on the core layout, and somewhat on how you want your external pins
to map to the package. Anything will work, but you may want to be more
deterministic about where each pin goes. In this example I’m picking pin
locations somewhat randomly. I’ll map the signals to pins and pad types as
follows:

Pin Name Pad Number
clk 15 pad in
clr 27 pad in

zero 37 pad in
aluop<1:0> 79, 78 padout

alusrcb<1:0> 73, 72 padout
c<7:6> 70, 69 padout

irwrite<3:0> 11, 10, 9, 8 padout
out1 55 padout
out2 54 padout

DRAFT - Please do not distribute 359

CHAPTER 11: Chip Assembly Draft September 3, 2007

This involves changing the appropriatepad nc cells into pad in and
pad out cells in theschematicview. You can use theq Object PropertiesIt’s possible that the

origins of the cells may
be in different spots and

you may have to move
things around to keep

things looking neat.

menu to change which cell is instantiated in that spot without moving the
cell.

Once I’ve made the cell type changes, I will add wires and pins to the ap-
propriate cell inputs and outputs. What we’re aiming for is to define the in-
put and output signals of the frame, collect this into asymbolview, and then
make another schematic that has our core and frame connected together.
This will be the starting point for theccar router to route the signal pins to
the pads.

Now add input, output, and inout (if you have bidirectional pads) pins
(and wires) to your frame schematic. There are two types of pins that you
need to add: signals coming from the outside world to your pad ring (these
connect to thepad pins on the pad cells as if you were wiring the external
signals to the pads), and signals going between your pad ring and your core
(connecting to theDataIn, DataInB, andDataOut pins on the pad cells).
The pad frame for this example is shown in Figure 11.12.

Make sure to get the directions right! Remember that going from your
core to the pad frame is an output as far as the overall chip is concerned, but
that will be an input to the frame cell because it’s coming in to the frame
from your core. Likewise, a signal going from your pad frame to the core
is an input to your core because it’s coming into your core from the outside
world, but it’s an output with respect to your frame cell. Think of the frame
as a doughnut with the core in the hole. Outputs from your core go into the
inside edge of the doughnut and emerge at the pads on the outside edge of
the doughnut.

I like to name the pins that go between the core and the pad frame to be
the names of the signals with ai suffix for “internal,” and use the existing
“real” signal names on the signals that are on the pads. That way I can keep
track of which signals are internal and which are on the pads and connect
to the outside world. It also lets me use the same testbench on the version
with pads as with just the core itself. Of course you can come up with your
own naming scheme. An example of my naming scheme is seen in Fig-I modified the frame

symbol slightly to
position the pins of the

symbol in a “nice” way
with respect to the core

symbol.

ure 11.13. An automatically generated frame symbol is seen in Figure 11.14
where it is connected to the core macro in a core-with-padsschematicview
that I’ll call wholechip. The frame symbol was generated automatically us-
ing theDesign→ Create Cellview→ From Cellview menu. Note that I’ve
collected some of the buses into bus pins in the frame schematic, and left
some expanded as individual wires just to show that both are possible.

When I save thewholechip schematicI get some warnings about the
DataInB signals being floating outputs. I didn’t connect them because I
wasn’t using them, so I’ll ignore those warnings. Unconnected outputs are

DRAFT - Please do not distribute 360

Draft September 3, 2007 11.2: Core to Pad Frame Routing with ccar

Figure 11.12: Pad frame with signal wires

DRAFT - Please do not distribute 361

CHAPTER 11: Chip Assembly Draft September 3, 2007

Figure 11.13: Pad frame with signal wires - zoomed view

generally all right (assuming that you really didn’t want to connect them).
Unconnected inputs, on the other hand, are usually a big problem. Remem-
ber that thepad in input pads have bothDataIn andDataInBar so you can
count on getting both polarities of signals from the input pads.

Once you have awholechip schematicthat shows your core connected
to your frame, and assuming that you’ve used the same naming conventions
that I have, you can now simulate the whole chip at the Verilog switch level
using the same test fixture that you used for the core. The only difference
will be that the signals now go through pads on their way to and from your
core, but the functionality should be the same as the core itself. This is a
very good check that you have things connected properly!

If you’ve used bidirectional data paths in your design you should be
usingpad bidirhe pads to drive those signals to and from the outside world,
and you should have putinout pins on thepad connections of those pads.
The connection between your core and thepad bidirhe pad should have
separate input and output pins for each signal, and an enable signal that
determines whether the pad is driving to the output or not. If your core
wants to drive a signal to the outside world then you need to make sure that
the enableEN is high, and that the outside world isn’t also trying to drive in.
If you’re trying to get a signal from the outside world then you need to make

DRAFT - Please do not distribute 362

Draft September 3, 2007 11.2: Core to Pad Frame Routing with ccar

Figure 11.14: Frame and core components connected together

sure that the enableENsignal is low and that the outside world is driving a
signal value.

In Verilog simulation there is one strange thing that happens when you
simulation withinout pins. Because the testbench is in aninitial block, the
inout pins need to be reg type. So, the netlister makes a fake reg signal for
you. If your signal is namedfoo, then the fake reg-type signal that shows up
in the testfixture is calledio foo. The way to use this signal is as follows:

• If you’re trying to drive a value into your chip from the outside world
then set the value ofio foo in your testbench.

• If you’re trying to let the chip drive a value out through the pad then
set the value ofio foo to z. This lets the chip drive the signal through
the pad, and theio pad isn’t trying to overdrive what your chip is
sending.

• If you want to see ($display) the value on the pad, then look atfoo
(NOT io foo).

11.2.3 Modify the Frame layout view

Before you fire upccar, you need to modify your frame’slayout to have
the same pins as in your frame schematic. Once you do this you can LVS
the frame layout against the schematic, and you can also useccar to route
the signals. First you need to update the layout of the frame to match the
changes made to the schematic. That is, you need to edit the layout view
of the frame and replace thepad nc cells with thepad in, pad out, and

DRAFT - Please do not distribute 363

CHAPTER 11: Chip Assembly Draft September 3, 2007

Figure 11.15:pad in cell with clk andclk i connections

pad bidirhe cells to match the schematic. Again, you can do this by select-
ing the cell, getting the properties withq and changing the cell name to the
cell you want. This will maintain the orientation of the cell. Cell orientation
is important in the layout because they need to be placed correctly with the
pad itself on the outside of the ring.It’s critical that you NOT change the
placement of the cells in the layout, just which cell they are!

Add pins in the framelayout (shape pins onmetal2 for interior signal
pins, shape pins onmetal1 for thepad pins) to each of the pads that corre-
spond to the pins in the schematic. That is, you’ll put shape pins overlapping
pad cells forclk, clk i, clr , clr i, etc. Remember to pay attention to the di-
rection. Theclk pin is an input because it’s coming into the pad. Theclk i
is an output because it’s going out of the frame and into the core. A good
place to put thepad pin is on themetal1between the pad itself and the pad
driver circuits. It’s easier to see here, and you won’t have the tool routing
anything to that pin anyway. The signal pins need to go on the connectors
around the inside edge of the frame. Note that all signal pins are inmetal2.
Note also that the pins are placed in the framelayout not inside the pad lay-
outs, but placed so that they overlap themetal1or metal2 in the underlying
pad cell. You can also put avdd! andgnd! metal1 shape pin on thepad
connection of thepad vdd andpad gnd cells if you like. This will make
the LVS process a little faster because those nodes will be matched in that
process.

You can see a close up of thepad in pad used for theclk and clk i
signals in Figures 11.15 and 11.16. In the first figure you can see theThese figures are rotated

clockwise so they fit on
the page better...

metal1 pad shape pin for theclk connection on thepad, and themetal2
shape pin for theclk i connection on theDataIn connection of the pad.
The second figure has the same view, but with the pad cell expanded so
that you can see where the shape pins are overlapped with the pad layout.
Figures 11.17 and 11.18 show extreme close ups of theclk i connection to
theDataIn port of thepad in cell.

DRAFT - Please do not distribute 364

Draft September 3, 2007 11.2: Core to Pad Frame Routing with ccar

Figure 11.16: Expandedpad in cell with clk andclk i connections

Figure 11.17: Detail ofclk i connection

DRAFT - Please do not distribute 365

CHAPTER 11: Chip Assembly Draft September 3, 2007

Figure 11.18: Expanded detail ofclk i connection

11.2.4 Routing the Core to Frame with ccar

Now that you have the following, you can useccar to route the core to the
frame:

1. A core with your complete chip

2. A frame schematic with the pads replaced to be the correct type and
all the signals included. I put the signals with the names from your
core on the externalpad connections, and append ai to the internal
signals that go from core to frame.

3. A symbol for that frame.

4. A layout with the pads replaced to be the correct types and with shape
pins added to match the pins of the schematic/symbol

5. A wholething schematic view that includes the core and the frame
connected together. This is the schematic thatccar uses to know how
the core should be routed to the frame.

The process of routing the core to the frame is essentially the same one
as described in the generalccar discussion in Section 11.1. Start by opening
thewholechipschematic inComposerand useTools→ Design Synthesis
→ Layout XL to launch theVirtuoso-XL tool. Now useDesign→ Gen
from Source in theVirtuoso-XL window to generate a new layout view of
thewholething schematic.

DRAFT - Please do not distribute 366

Draft September 3, 2007 11.2: Core to Pad Frame Routing with ccar

In theGen from Sourcedialog box you have a chance to select which
pins you want to create. Pins are created for signals that are routed from this
layout view to an external pin so that the resulting routedlayout can be used
hierarchically. In this case, the external connections are all to pads. In other
words, there areno pins that you want created because there are no pins that
are exported outside this cell. All the connections are made internal to the
wholechip schematic. All the connections are made to connect the core to
the frame. In theGen from Sourcedialog box select all the pins (which
should be only external pads, not the internali signals) and turn off the
createbox. In the dialog box select all pins, turn off thecreatebutton, and
pressUpdate. Also un-select theGenerate I/O Pinsbutton in theLayout
Generationsection. This way none of those pins will be created.

Now you can place the frame and core layouts inVirtuoso-XL . Grab
the frame and put it inside the purpleprBoundary . You’ll probably want to
expand the view so that you can see inside the cells. Now move the core to
be inside the pad frame. When you do the placement inVirtuoso-XL you
should see the lines that connect the core to the frame. See Figure 11.19 for
an example. You can see that I didn’t do a particularly good job of placing
the pad frame pins in convenient locations for the core. For this example
that’s fine because there’s lots of routing room. For your chip you might
want to think about this a little more carefully.

Check to make sure that there aren’t any stray pads (likevdd! andgnd!)
down in the lower left just below theprBoundary . If there are, delete them!
You don’t want icc to route anything but the signal pads. If you didn’t
manage to get all the signal pins turned off in theGen from-Sourcestep,
here’s another chance to get rid of them.

Before you send this to the router, you need to connectvdd! andgnd!.
Look at thepad vdd andpad gnd pads. There are bigmetal1 connection
points forvdd andgnd in the middle of the edge of the pad cell. The power
tabs should be 28.8u wide. These are what you use to make a connection
betweenvdd andgnd from the pads to your core. Use the largest wires that
make sense, and remember to put arrays of contacts if you have to switch
layers to connect large wires. DRC is a good idea at this point before you
send things to the router! there’s a view of the core placed inside the pad
frame just before I send it to theccar router in Figure 11.20.

Now that I have a placed and power-routed core and frame layout, I
can send it to theccar router with theRouting → Export to Router com-
mand as in Section 11.1. The initial view in theccar router is shown in
Figure 11.21. You can now perform the routing (set the costs/taxes, set lo-
cal layer direction, global route, detail route, cleanup, and remove notches).
The result (seen after importing back intoVirtuoso is seen in Figure 11.22.
This layout should then be processed for DRC, Extract, and LVS to make

DRAFT - Please do not distribute 367

CHAPTER 11: Chip Assembly Draft September 3, 2007

Figure 11.19: Frame and core placed inVirtuoso-XL

DRAFT - Please do not distribute 368

Draft September 3, 2007 11.2: Core to Pad Frame Routing with ccar

Figure 11.20: Frame and core placed inVirtuoso-XL and withvdd andgnd
routing completed

DRAFT - Please do not distribute 369

CHAPTER 11: Chip Assembly Draft September 3, 2007

sure that everything is still correct. If it is, you have a complete chip! You
can also (if you want to try something that will really bring large computers
to their knees) generate ananalog extractedview of the complete chip and
useSpectre to run analog simulations of the entire chip including the pad
frame.

11.3 Module Routing with SOC Encounter

Examples of hierarchical design using SOC - take a module that was placed
and routed with SOC. Generate the .lib file from SOC for timing. Then read
.def back to icfb, and use abstract to generate a .lef file. This .lef file can be
used to make this placed and routed pice a hard macro or fixed block in a
hierarchical route in Encounter. There are a number of steps to make this all
work...

11.3.1 Liberty File Generation with SOC

How to get the timing information exported from SOC

11.3.2 Abstract and LEF Generation for Hard Macros

How to get the hard macros in the right form for hierarchical place and route

11.3.3 Block Placement and Routing in the SOC Flow

How to get those blocks placed with standard cells flowing around them in
SOC

11.4 Core to Pad Frame Routing with SOC Encounter

Example of using SOC with a pad frame. The pad frame is specified using
pad descriptions in the structural Verilog file, and the locations defined in
the .io file.

The sequence should be:

1. UseAbstract to generate abstract views of the pad cells making sure
to place them in theIO bin. Generate a.lef file with these cells.

DRAFT - Please do not distribute 370

Draft September 3, 2007 11.4: Core to Pad Frame Routing with SOC
Encounter

Figure 11.21: Frame and core before routing inccar

DRAFT - Please do not distribute 371

CHAPTER 11: Chip Assembly Draft September 3, 2007

Figure 11.22: Frame and core after routing inVirtuoso

DRAFT - Please do not distribute 372

Draft September 3, 2007 11.5: Final GDS Generation

2. UseSignalStorm to characterize the pad cells and generate.lib tim-
ing information for the pads. This will also generate.v behavioral
information about the pads.

3. Use a placement file<filename>.io to describe the placement of pads
in the pad rings. This file describes which pads go on which sides of
the pad ring, and the spacing between the pad cells.

4. Make a new structural Verilog file that contains an instance of your
finished core cell and instances of all the pad cells. The names of
the pad cells in the structural Verilog must match the names of the
pad cells in the<filename>.io IO placement file. Connect the core
to the pads in this structural file by using internal wires that connect
between the core module and the pad cells.

5. Read this file intoSOC Encounter. The pad cells will be placed in
the IO site and the core will be placed in thecore site (as described
in theLEF technology header) because that’s how the macros will be
defined in the.lef files.

6. Use the floorplanning process inSOC Encounter to make sure that
the pad cells are in the right places, the right orientation, and that the
outside dimensions of the chip are what you want. Also make sure
that the core is the right size and in the right place.

7. Continue with the regularSOC Encounterflow as described in Chap-
ter 10.

11.4.1 Pad Frame Definition

Define the pad frame with a combination of structural Verilog and .io files

11.5 Final GDS Generation

Final Stream (GDS) output - talk about map files, also about metal/poly fill
(which can be done in SOC) and final DRC/LVS on the GDS file

DRAFT - Please do not distribute 373

CHAPTER 11: Chip Assembly Draft September 3, 2007

DRAFT - Please do not distribute 374

