Repeated Roots: Differentiation
Method 2 : Differentiating.

$$
\begin{aligned}
& \text { Method 2: Differentiating } \\
& e \frac{k_{1}}{e y}+\frac{32 s(s+1)}{(s+2}+\frac{k_{2} ;}{(s+10}+\frac{k_{3}}{(s+10)^{2}} \\
& \quad k_{1}=\left.\frac{32 s(s+1))^{2}}{(s+10)^{2}}\right|_{s=-2}=1 \\
& \quad k_{1} \$ k_{3} \rightarrow \text { Normal cover-1p reload } \\
& k_{3}=\left.\frac{32 s(s+1)}{(s+2)}\right|_{s=-10}=-360
\end{aligned}
$$

for $k_{2}:$ multiply both sides by $(s+10)^{2}$, then differentiate w.r.t.

$$
\begin{aligned}
& s \text { before plugging in } s=-10 \\
& {\left.\left[\frac{d}{d s}\left[\frac{32 s(s+1)}{s+2}\right]\right]\right|_{s=-10}=\left.\left[\frac{d}{d s}\left[\frac{n_{s}^{(s)}}{s+2}(s+10)^{2}+\frac{k_{2}}{s+1(s+10)^{l}}+k s / 3\right]\right]\right|_{s=-k}} \\
& {\left[g(s) y(s+10)+g^{\prime}(s)(x / 10)^{\prime \prime}+k_{2}+0\right]_{s=-10}} \\
& k_{2}=\left.\left[\frac{d}{d s}\left[\frac{32 s^{2}+3 c s}{s+2}\right]\right]\right|_{s=-10}=\frac{(64 s+32)(s s 2)-\left(32 s^{2}+322\right.}{(s+2)^{2}} \int_{s=10} \\
& =31 \\
& F(s)=\frac{1}{s+2}+\frac{31}{s+10}+\frac{-360}{(s+6)^{2}}
\end{aligned}
$$

$$
F(s)=\frac{1}{(s+1)^{3}}=\frac{k_{1}}{s+1}+\frac{k_{2}}{(s+1)^{2}}+\frac{k_{3}}{(s+1)^{3}}=\frac{A_{s} s^{2}+B_{s}+C}{(s+1)^{3}}
$$

Differentiation \rightarrow find k_{2} w/ multiple by $(s+1)^{3}$, $d / d s$, plug in $s=-1$
find m by multiply by $(s+1)^{?}$, $\frac{d^{2}}{d s^{2}}$, plug in $s=-1$

PFE: Complex Roots
$Q 4 / F(s)=\frac{1}{s^{2}-2+2} \quad$ rooks $e^{\frac{2 \pm \sqrt{4-4 \cdot 1 \cdot 2}}{2}=1 \pm j}$
Note: fer real circuits $\$$ signals, complex roots (ard their residues) will always shew op in conjugate pairs

$$
\begin{aligned}
& \text { esidues) will always shew op in conjugate } \\
& F(s)=\frac{1}{s^{2}-2_{s}+2}=\frac{1}{(s-(1+j))(s-(1-j))}=\frac{k_{1}}{s-(1+j)}+\frac{k_{1}^{*}}{s-\left(1-j^{\prime}\right)}
\end{aligned}
$$

Option 1: Do nothing Different
(could skip

$$
\begin{aligned}
& \text { thing Different } \\
& k_{1}=\left.\frac{1}{s-(1-j)}\right|_{s=1+j}=\frac{1}{2 j}=\frac{-j}{2} \\
& k_{2}=\left.\frac{1}{s-(1+j)}\right|_{s=1-j}=\frac{1}{-2 j}=\frac{j}{2}=k_{1}^{*}
\end{aligned}
$$ trowing $k_{2}-\lambda_{4}^{4}$)

$$
f(t)=L^{-1}[f(s)\}=\frac{j}{2} \mathcal{L}^{-1}\left\{\frac{-1}{s-(1+j)}+\frac{1}{s-(1-j)}\right\}=
$$

$$
\begin{aligned}
f(t)= & \frac{j}{4}\left(-e^{(1-j) t} u(t)+e^{(1-j) t} u(t)\right) \\
& =\frac{j}{2} e^{t}\left(-e^{j t}+e^{-j t}\right) u(t)
\end{aligned}=e^{t \frac{\left(e^{j t}-e^{-j t}\right.}{2 j} u(t)} \begin{aligned}
& =e^{t} \sin (t) u(t)
\end{aligned}
$$

Option 2:- Let's do the general cause?

$$
\frac{+\sqrt{ } \frac{+(T)}{\cos \theta}=\frac{e^{j \theta}+e^{-j \theta}}{2}}{e^{j \theta-}-e^{-j \theta}}
$$

$$
\begin{aligned}
& =L^{-1}\left\{\frac{k}{s-(\sigma+j \omega)}+\frac{h^{*}}{s-(\sigma-j \omega)}\right\} \\
& \sin \theta=\frac{e^{j 0}-e^{-j}}{2 j} \\
& =k e^{(\sigma-\beta \mu) t} u(t)+k^{\infty} e^{(\sigma-j \omega) T u(t)} \\
& =e^{\sigma t}\left(k e^{j \omega t}+k^{k} e^{-j \omega t}\right) u(t) \\
& =e^{a t}\left(\operatorname{Re}\{k\}\left(e^{j \omega t}+e^{-j \omega t}\right)+j I_{m}\{k\}\left(e^{j \omega t}-e^{-j \omega t}\right)\right) u(t) \\
& =e^{\sigma t}\left(\operatorname{Re}\{1\} 2 \cos (\omega t)-I_{m}\{t\} 2 \sin (\omega t)\right) u(t)
\end{aligned}
$$

$$
\begin{aligned}
& =2 e^{\sigma t}\left(\sqrt{R_{e}\{h\}^{2}+I_{m}\left\{h 3^{2}\right.} \cos \left(\omega t-\tan ^{-1}\left(\frac{I_{m}(h\}}{R_{e}(h\}}\right)\right) u(t)\right. \\
& =2 e^{\sigma t}(|k| \cos (\omega t-\Delta h \mid) u(t) \\
& \frac{k}{s-(\sigma+j \omega)}+\frac{k^{*}}{s-(\sigma-j \nu)}=2 e^{\sigma t}|k| \cos (\omega t-4 h) u(t)
\end{aligned}
$$

Oftion 3: Manipulate polyromial inte one of the existing ithems in the trable

