
Frequency Response

Bode Plots

dB Scale

Decibels

$$\|G\|_{\mathrm{dB}} = 20 \log_{10}(\|G\|)$$

Decibels of quantities having units (impedance example): normalize before taking log

$$||Z||_{\mathrm{dB}} = 20 \log_{10} \left(\frac{||Z||}{R_{base}} \right)$$

Table 8.1. Expressing magnitudes in decibels

Actual magnitude	Magnitude in dB
1/2	- 6dB
1	0 dB
2	6 dB
5 = 10/2	20 dB - 6 dB = 14 dB
10	20dB
$1000 = 10^3$	$3 \cdot 20 dB = 60 dB$

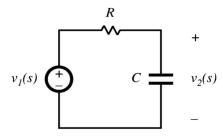
 5Ω is equivalent to 14dB with respect to a base impedance of R_{base} = 1Ω , also known as 14dB Ω .

 $60dB\mu A$ is a current 60dB greater than a base current of $1\mu A$, or 1mA.

Fundamentals of Power Electronics

9

Chapter 8: Converter Transfer Functions


Logarithm Review

Plotting on Logarithmic Axes

Single Pole Response

