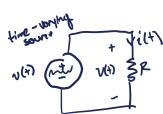

Circuit Simulation 2

TENNESSEE


From last class analysis

$$\frac{72}{72.5.0.5} = \frac{72}{72.5.0.5} = \frac{72}{72.5.5} = \frac{600}{72.5.5} = \frac{72}{72.5.5} = \frac{6000}{72.5.5} = \frac{72}{72.5.5} = \frac{72}{72.5.5} = \frac{72}{72.5.5} = \frac{72}{72.5.5} = \frac{72}{72.5.5} = \frac{72}{72.5.5} = \frac{72}{72.5} = \frac{72}{72.5}$$

AC CIRCUIT POWER ANALYSIS

$$P = \frac{1}{T} \int_{0}^{t_1+T} p(t) dt$$

Average power over all tome

$$P = \lim_{T \to \infty} + \int_{-T/2}^{T/2} p(t) dt$$

For any periodic signals, the overage over a pulled integer number of periods is the overage for all time.

Power in a Resistor

Power in a Resistor

Assume time-varying bras to a resistor
$$\omega$$
/ periodit voltage/current with period T
 $P_R = \frac{1}{T} \int_0^T p(t) dt = \frac{1}{T} \int_0^T i(t)^2 dt$

Let's make the expression look like $P = \pm^2 R$
 $P_R = \left[\sqrt{\frac{1}{T}} \int_0^T i(t)^2 dt \right]^2 R$

Let's make the expression look like $P = \pm^2 R$
 $P_R = \left[\sqrt{\frac{1}{T}} \int_0^T i(t)^2 dt \right]^2 R$

Let's make the expression look like $P = \pm^2 R$
 $P_R = \left[\sqrt{\frac{1}{T}} \int_0^T i(t)^2 dt \right]^2 R$

Let's make the expression look like $P = \pm^2 R$
 $P_R = \left[\sqrt{\frac{1}{T}} \int_0^T i(t)^2 dt \right]^2 R$

Let's make $P_R = \frac{1}{T} \int_0^T i(t)^2 dt$
 $P_R = \frac{1}{T} \int_0^T i(t)^2 dt$

Book calls this "effective" current Tett

RMS of a sinusoid

$$\dot{c}(t) = I_{A}\cos(\omega t + V_{E})$$

$$\dot{c}_{rms} = \sqrt{\frac{1}{T}} \int_{0}^{T} \left[I_{A}\cos(\omega t + V_{E}) \right]^{2} dt$$

$$\dot{c}_{rms} = I_{A}^{2} \frac{1}{T} \int_{0}^{T} \left[\frac{1}{2} + \frac{1}{2}\cos(2\omega t + 2V_{E}) \right] dt$$

$$= I_{A}^{2} \frac{1}{T} \left[\frac{1}{2} t - \frac{1}{4\omega} \sin(2\omega t + 2V_{E}) \right] \int_{0}^{2\pi} dt$$

$$= I_{A}^{2} \frac{1}{2\pi} \left[\frac{\pi}{4} - \mathcal{O} \right]$$

$$\dot{c}_{rms} = \frac{\pi}{4} \int_{0}^{2\pi} \left[\frac{\pi}{4} - \mathcal{O} \right]$$

$$\dot{c}_{rms} = \frac{\pi}{4} \int_{0}^{2\pi} \left[\frac{\pi}{4} - \mathcal{O} \right]$$

$$\dot{c}_{rms} = \frac{\pi}{4} \int_{0}^{2\pi} \left[\frac{\pi}{4} - \mathcal{O} \right]$$

$$\dot{c}_{rms} = \frac{\pi}{4} \int_{0}^{2\pi} \left[\frac{\pi}{4} - \mathcal{O} \right]$$

$$\dot{c}_{rms} = \frac{\pi}{4} \int_{0}^{2\pi} \left[\frac{\pi}{4} - \mathcal{O} \right]$$

TENNESSEE 1