Repeated Roots - Equating Coefficients

$$
a+/ F(s)=\frac{32 s(s+1)}{(s+2)(s+10)^{2}}=\frac{k_{1}}{s+2}+\frac{K_{x} s+k_{y}}{(s+10)^{2}}
$$

for k_{1}, find the same way $k_{1}=\left.\frac{32_{s}(s+1)}{(s+1)^{2}}\right|_{s=-2}=1=k_{1}$
find $k_{x} \equiv k_{y} \rightarrow$ multiply both sides by the fill denominator of original F_{s})

Repeated Roots - Differentiating
ex

$$
\begin{aligned}
F(s)= & \frac{32 s(s+1)}{(s+2)(s+10)^{2}}=\frac{k_{1}}{s+2}+\frac{k_{2}}{s+10}+\frac{k_{3}}{(s+10)^{2}} \\
& \text { for } k \text { k k k find as normal } \quad\left\{\begin{array}{l}
k_{1}=\left.\frac{32 s(s+1)}{\left(s+(0)^{2}\right.}\right|_{s=-2}=1=k_{1} \\
k_{3}=\left.\frac{32 s(s+1)}{(s+2)}\right|_{s=-10}=-360=k_{3}
\end{array}\right.
\end{aligned}
$$

for k_{2} : multiply both sides by $(s+10)^{2}$ then ${ }^{3} \frac{d}{d s}$ before setting $s=-10$

$$
\begin{gathered}
k_{2}=\left.\frac{d}{d s}\left[\frac{32 s(s+1)}{(s+2)}\right]\right|_{s c-10}=\left.\frac{(64 s+32)(s+2)-(1)\left(32 s^{2}+32 s\right.}{(s+2)^{2}}\right|_{s=-10} \\
k_{2}=31
\end{gathered}
$$

$$
F(s)=\frac{1}{s+2}+\frac{31}{s+10}+\frac{-360}{(s+10)^{2}}
$$

$$
\begin{aligned}
& 32_{s}(s+1)=k_{1}(s+10)^{2}+\left(k_{x} s+k_{y}\right)(s+2) \\
& 32_{0}^{2}+32 s=s^{2}\left(k_{1}+k_{x}\right)+s\left(20 k_{1}+2 k_{x}+k_{g}\right)+100+2 k_{y} \\
& \text { equating } \quad \text { coettrients } \begin{cases}s^{2}: & 32=k_{1}+k_{y} \longrightarrow k_{x}=31 \\
s: & 32=20 k_{1}+2 k_{x}+k_{y} \sqrt{ } \\
1: & 0=100+2 k_{y} \rightarrow k_{y}=-50\end{cases} \\
& F(s)=\frac{32 s(s+1)}{(s+2)(s+10)^{2}}=\frac{1}{s+2}+\frac{31 s-50}{(s+10)^{2}} \\
& =\frac{1}{s+2}+\frac{31}{s+10}+\frac{-360}{(s+10)^{2}}
\end{aligned}
$$

PFE: Complex Roots
ex

$$
\begin{aligned}
& F(s)=\frac{1}{s^{2}-2 s+2} \\
& F(s)=\frac{1}{(s-(1+j))(s-(1-j))}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Roots } \\
& \text { roots e } \frac{2 \pm \sqrt{4-4(1)(2)}}{2}=\underset{\tau_{\text {Rena }}}{1 \pm j}
\end{aligned}
$$

$\tau_{\text {Recall }}$ mat for any real sigalal/system, complex rook always show up in a conjugate pair so do residues
(1) Do nothing different

$$
\begin{aligned}
& \text { Do nothing different } \\
& \begin{aligned}
& F(s)=\frac{k_{1}}{s-(1+j)}+\frac{k_{2}}{s-(1-j)} \quad\left\{\begin{array}{l}
k_{1}=\left.\frac{1}{s-(1-j)}\right|_{s=1+j}=\frac{1}{2 s}=\frac{-j}{2} \\
k_{2}=\left.\frac{1}{s-(1+j)}\right|_{s=1-j}=\frac{1}{-2 j}=\frac{j}{2} \\
F(s)=\frac{-j / 2}{s-(1+j)}+\frac{j / 2}{s-(1-j)} \\
\mathcal{L}^{-1}\{F(s)\}=\frac{j}{2}\left[-e^{(1-j) t}+e^{(1-j) t}\right] u(t)
\end{array}=e^{t-\frac{1}{2 j}\left[-e^{j t}+e^{-j t}\right] u(t)}\right. \\
&=e^{t} \frac{e^{j t}-e^{-j t}}{2 j} u(t) \\
& f(t)=e^{t} \sin (t) u(t)
\end{aligned}
\end{aligned}
$$

