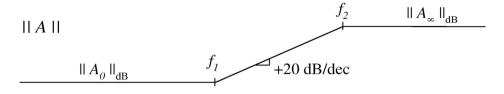
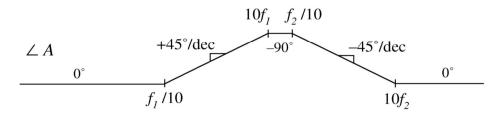
Example 2

Determine the transfer function A(s) corresponding to the following asymptotes:





Fundamentals of Power Electronics

34

Chapter 8: Converter Transfer Functions

Example 3

Resonant Poles

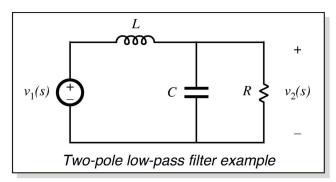
Example

$$G(s) = \frac{v_2(s)}{v_1(s)} = \frac{1}{1 + s\frac{L}{R} + s^2LC}$$

Second-order denominator, of the form

$$G(s) = \frac{1}{1 + a_1 s + a_2 s^2}$$

with $a_1 = L/R$ and $a_2 = LC$



How should we construct the Bode diagram?

Fundamentals of Power Electronics

37

Chapter 8: Converter Transfer Functions

Standard Form for Complex Poles

$$G(s) = \frac{1}{1 + 2\zeta \frac{s}{\omega_0} + \left(\frac{s}{\omega_0}\right)^2}$$

or
$$G(s) = \frac{1}{1 + \frac{s}{Q\omega_0} + \left(\frac{s}{\omega_0}\right)^2}$$

- When the coefficients of s are real and positive, then the parameters ζ , ω_0 , and Q are also real and positive
- The parameters ζ , ω_0 , and Q are found by equating the coefficients of s
- The parameter ω_0 is the angular corner frequency, and we can define f_0 $=\omega_0/2\pi$
- The parameter ζ is called the *damping factor*. ζ controls the shape of the exact curve in the vicinity of $f = f_0$. The roots are complex when $\zeta < 1$.
- In the alternative form, the parameter Q is called the quality factor. Q also controls the shape of the exact curve in the vicinity of $f = f_0$. The roots are complex when Q > 0.5.

Fundamentals of Power Electronics

The Q Factor

In a second-order system, ζ and Q are related according to

$$Q = \frac{1}{2\zeta}$$

 ${\it Q}$ is a measure of the dissipation in the system. A more general definition of ${\it Q}$, for sinusoidal excitation of a passive element or system is

$$Q = 2\pi \frac{\text{(peak stored energy)}}{\text{(energy dissipated per cycle)}}$$

For a second-order passive system, the two equations above are equivalent. We will see that Q has a simple interpretation in the Bode diagrams of second-order transfer functions.

Fundamentals of Power Electronics

40

Chapter 8: Converter Transfer Functions

Magnitude Asymptotes

In the form $G(s) = \frac{1}{1}$

$$G(s) = \frac{1}{1 + \frac{s}{Q\omega_0} + \left(\frac{s}{\omega_0}\right)^2}$$

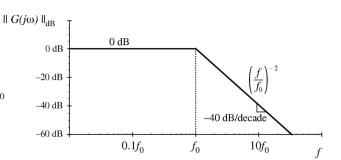
let $s = j\omega$ and find magnitude:

$$\|G(j\omega)\| = \frac{1}{\sqrt{\left(1 - \left(\frac{\omega}{\omega_0}\right)^2\right)^2 + \frac{1}{Q^2} \left(\frac{\omega}{\omega_0}\right)^2}}$$

Asymptotes are

$$\|G\| \to 1$$
 for $\omega \ll \omega_0$

$$\|G\| \rightarrow \left(\frac{f}{f_0}\right)^{-2}$$
 for $\omega \gg \omega_0$



Fundamentals of Power Electronics

42

Chapter 8: Converter Transfer Functions

Exact Magnitude Curve

$$\|G(j\omega)\| = \frac{1}{\sqrt{\left(1 - \left(\frac{\omega}{\omega_0}\right)^2\right)^2 + \frac{1}{Q^2} \left(\frac{\omega}{\omega_0}\right)^2}}$$

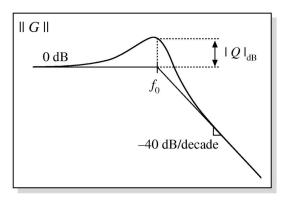
At $\omega = \omega_0$, the exact magnitude is

$$\left\| G(j\omega_0) \right\| = Q$$

or, in dB:

$$\left\| G(j\omega_0) \right\|_{dB} = \left| Q \right|_{dB}$$

The exact curve has magnitude Q at $f=f_0$. The deviation of the exact curve from the asymptotes is $\mid Q\mid_{\mathrm{dB}}$



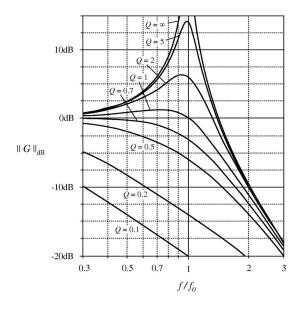
Fundamentals of Power Electronics

43

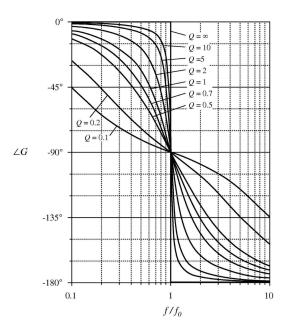
44

Chapter 8: Converter Transfer Functions

Curves for Varying Q



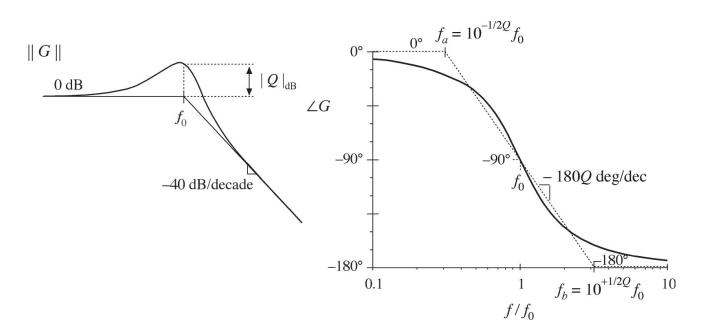
Fundamentals of Power Electronics



Chapter 8: Converter Transfer Functions

Magnitude

Phase



Low Q Factorization

Given a second-order denominator polynomial, of the form

$$G(s) = \frac{1}{1 + a_1 s + a_2 s^2}$$

$$G(s) = \frac{1}{1 + \frac{s}{Q\omega_0} + \left(\frac{s}{\omega_0}\right)^2}$$

When the roots are real, i.e., when Q < 0.5, then we can factor the denominator, and construct the Bode diagram using the asymptotes for real poles. We would then use the following normalized form:

$$G(s) = \frac{1}{\left(1 + \frac{s}{\omega_1}\right)\left(1 + \frac{s}{\omega_2}\right)}$$

This is a particularly desirable approach when $Q \ll 0.5$, i.e., when the corner frequencies $\omega_{_{I}}$ and $\omega_{_{2}}$ are well separated.

$$\omega_1 = \frac{\omega_0}{Q} \frac{1 - \sqrt{1 - 4Q^2}}{2}$$

$$\omega_1 = \frac{\omega_0}{Q} \frac{1 - \sqrt{1 - 4Q^2}}{2}$$
 $\omega_2 = \frac{\omega_0}{Q} \frac{1 + \sqrt{1 - 4Q^2}}{2}$

Corner Frequency ω_1

$$\omega_1 = \frac{\omega_0}{Q} \, \frac{1 - \sqrt{1 - 4Q^2}}{2}$$

can be written in the form

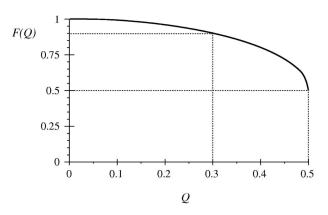
$$\omega_1 = \frac{Q \, \omega_0}{F(Q)}$$

where

$$F(Q) = \frac{1}{2} \left(1 + \sqrt{1 - 4Q^2} \right)$$

For small Q, F(Q) tends to 1. We then obtain

$$\omega_1 \approx Q \, \omega_0$$
 for $Q \ll \frac{1}{2}$



For Q < 0.3, the approximation F(Q) = 1 is within 10% of the exact value.

Fundamentals of Power Electronics

50

Chapter 8: Converter Transfer Functions

The Low-Q Approximation