Non-inverting buck-boost converter

Figure below shows a converter consisting of buck switches Q_{1} and Q_{2}, and boost switches Q_{3} and Q_{4}. MOSFETs Q_{2} and Q_{4} are the synchronous rectifiers for the buck and boost stages, respectively. In all cases considered in this problem you can assume that switches are controlled such that Q_{1} and Q_{2} are operated in a complementary manner, and are never ON at the same time. Similarly, Q_{3} and Q_{4} are operated in a complementary manner, and are never ON at the same time. Switching frequency is $f_{\mathrm{s}}=1 / T_{\mathrm{s}}$.

The switches can be operated in two different ways:
(1) Buck-boost mode:
Q_{1} and Q_{3} are simultaneously ON during $D T_{s}, Q_{2}$ and Q_{4} are simultaneously ON during $D^{\prime} T_{s}$.
(2) Buck or boost modes:
(2.1) Buck mode: Q_{1} duty cycle is $D_{b u c k}$, while Q_{3} is OFF always and Q_{4} is ON always.
(2.2) Boost mode: Q_{3} duty cycle is $D_{\text {boost }}$, while Q_{1} is ON always, Q_{2} is OFF always.
(a) All MOSFETs have the same on-resistance $R_{\text {on }}$, and inductor winding resistance is R_{L}. Derive and sketch equivalent circuit models of the converter valid for (1) the buck-boost mode, and (2) the buck or boost modes. Solve the models to find analytical expressions for the dc conversion ratio $M=V / V_{\mathrm{g}}$, and for the average inductor current I_{L}. Switching losses can be neglected in this part of the problem.
(b) A switching transition between Q_{2} and Q_{1} can be described as follows: Q_{2} is initially ON , conducting inductor current i_{L}, while Q_{1} is OFF; once Q_{2} is turned OFF, the body diode of Q_{2} conducts i_{L}. Then, Q_{1} is turned ON , initiating reverse recovery of the Q_{2} body diode; upon completion of the Q_{2} body diode reverse recovery, Q_{1} is $O N$, conducting inductor current i_{L}, while Q_{2} is OFF. Assuming snappy, abruptrecovery diode, having reverse-recovery time t_{r} and reverse recovery charge Q_{r}, sketch the waveforms $i_{Q 1}$ and $v_{Q 1}$ during the switching transition described above.
(c) Following the description in part (b), similarly describe (in words) a transition between Q_{3} and Q_{4}, which involves reverse recovery of a MOSFET body diode. Sketch the corresponding waveforms.
(d) Derive and sketch equivalent circuit models for the converter operating in each of the buck, boost, and buck-boost modes of operation, including the loss mechanisms from part (a) as well as the reverse recovery behaviors.
(e) The converter is constructed using IRLH5036 MOSFETs having $R_{\text {on }}=6 \mathrm{~m} \Omega$, with body diode parameters $t_{r}=42 \mathrm{~ns}, Q_{r}=201 \mathrm{nC}$, which can be considered constant values. The inductor winding resistance is $R_{L}=5 \mathrm{~m} \Omega$. Inductor current ripple can be neglected. The converter is designed to produce output voltage $V=24 \mathrm{~V}$ across the load $R=2.3 \Omega$. The input voltage is between $V_{\text {gmin }}=$ 18 V and $V_{\text {gmax }}=30 \mathrm{~V}$. The switching frequency is $f_{\mathrm{s}}=100 \mathrm{kHz}$.

Solve the models you derived in part (d) to find the converter efficiencies for the two ways of operating the switches, and for the two input voltages. Show your efficiency results in a table, as shown below

	$V_{g}=V_{\text {gmin }}=18 \mathrm{~V}$	$V_{g}=V_{g \max }=30 \mathrm{~V}$
(1) Buck-boost mode		
(2) Buck or boost modes		

Briefly comment on the results: compare the two ways of operating the switches; compare switching and conduction losses.
(f) Examine the IRLH5036 MOSFET datasheet and explain how the values for $R_{o n}, t_{r}$ and Q_{r} were determined. Brief comments are sufficient. Search for alternative MOSFETs (e.g. on digikey.com), and suggest a replacement MOSFET that would result in improved efficiency results.

