Full Bridge Converter

Conversion Ratio

\[M(D) = \frac{V}{V_g} = D_n \]

\[\phi = D_n V_g = V \]

\[\langle v_c \rangle = \phi = \langle v_s - V \rangle \]

\[D \leq D_n \leq 1 \]
Transformer Saturation

\[\langle V_T \rangle = \frac{1}{2T_s} \left(\frac{d}{dt} V_g - \frac{d}{dt} V_g \right) = 0 \]

\[\phi = 0 \]

- Ideally, V-T balance always satisfied on Lm

- Non ideal case:
 1. Conduction loss in Q, Qy = R_{a1} - R_{a2}
 2. Timing / control error

 \[D_1 = D + DD \]
 \[D_2 = D - DD \]

\[\langle V_T \rangle = \frac{1}{2T_s} \left[D_1 T_s \left(V_g - n \frac{L}{L} \left(R_{a2} + R_{a3} \right) \right) - D_2 T_s \left(V_g - n \frac{L}{L} \left(R_{a1} + R_{a3} \right) \right) \right] \]

- Any nonidealities may lead to transformer saturation
- Practical implementation may use:
 1. Current control
 2. DC blocking Cap

Push Pull Converter

![Push Pull Converter Diagram]

\[V = nDV_c \]

\[0 \leq D \leq 1 \]
Half Bridge Isolated Buck

- Replace transistors Q_3 and Q_4 with large capacitors
- Voltage at capacitor centerpoint is $0.5V_g$
- $v_c(t)$ is reduced by a factor of two
- $M = 0.5 nD$

6.3.2 Forward Converter

- Buck-derived transformer-isolated converter
- Single-transistor and two-transistor versions
- Maximum duty cycle is limited
- Transformer is reset while transistor is off
Subinterval 1 Q_1 on

Subinterval 2 $\rightarrow Q_2$ off
Subinterval 3

Forward Waveforms

\[\langle V_c \rangle = \phi = D_1 V_g \frac{n_3}{n_1} - V \]

\[\langle V_1 \rangle = \phi = \frac{V_g}{D_1} - \frac{n_3}{n_1} D_2 V_g \]

Constraints:
\[D_2 = \frac{n_3}{n_1} D_1 \]
\[D_1 + D_2 + D_3 = 1 \]
\[1 - D_1 - D_2 \geq \phi \]
\[1 - D_1 - D_2 \geq \phi \]
\[D_1 = \frac{1}{1 + \frac{n_3}{n_1}} \]
Transformer Saturation When D > 0.5

magnetizing current waveforms, for $n_1 = n_2$

\[
D_1 = \frac{1}{2} \quad D_2 = \frac{1}{1 + \frac{n_2}{n_1}}
\]

- want $\frac{V_{as, \text{max}}}{V_0} = \frac{n_2}{n_1}$ (small)
- want $\frac{n_1}{n_2}$ (small)

Fundamentals of Power Electronics

Chapter 6: Converter circuits