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8.1.6 Resonant Poles

Example L
Vy(s
G(s) = 2(8) _ Ll 55 .
vils) 1+ Sp s’LC
; vi(s C —= R V(S
Second-order denominator, of 1f$) 5 2(%)
the form
G(s) = | S .
1+as+a,s Two-pole low-pass filter example
with @, = L/R and a, = LC
How should we construct the Bode diagram?
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Standard Form for Complex Poles

1 1
G(S) = 2 or G(S) = 5
S o4 (S S S
1+2Cw0+(w0) 1+Qm0+(w0)
+ When the coefficients of s are real and positive, then the parameters €,
®,, and Q are also real and positive

+ The parameters T, w,, and Q are found by equating the coefficients of s

+ The parameter o, is the angular corner frequency, and we can define f;
= /21

« The parameter T is called the damping factor. ¢ controls the shape of the
exact curve in the vicinity of f= f,. The roots are complex when T < 1.

+ In the alternative form, the parameter Q is called the quality factor. O
also controls the shape of the exact curve in the vicinity of f=f,. The
roots are compiex when O >0.5.
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The Q Factor

In a second-order system, T and Q are related according to

_ 1
0=at

Q is a measure of the dissipation in the system. A more general
definition of Q, for sinusoidal excitation of a passive element or system

is
(peak stored energy)

- (energy dissipated per cycle)

Q

For a second-order passive system, the two equations above are
equivalent. We will see that Q has a simple interpretation in the Bode
diagrams of second-order transfer functions.
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Magnitude Asymptotes

Inthe form  G(s) = 1
1+ + (i)z
Qw, D
let s = jo and find magnitude: | G(jw) | = L
1—(@)) 4 1 (w)
@ 0* (D
Asymptotes are Il Gjw) llgg 1
0dB
|G| =1 for <<, 0B
f -2 ~20dB | (i)’z
|G| — (—) for w >>w, Jo
fo —40 dB
—40 dB/decade
-60 dB . .
0.1£, o 101, 7
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Exact Magnitude Curve

|GG | = :

At o = w,, the exact magnitude is

| Glwn | =0 or, in dB: | GGwo) | =] 2]
The exact curve has magnitude
. Gl
Q at f=f,. The deviation of the -
exact curve from the 0dB 1 1@
asymptotesis | Q |,
fo
—40 dB/decade
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Curves for Varying Q
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Asymptotes for Complex Poles, Q>0.5

Magnitude Phase

Gl 0"

0dB

—90° -
—40 dB/decade

—-180°
0.1
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The Low Q Approximation

Given a second-order denominator polynomial, of the form

_ 1 1

When the roots are real, i.e., when Q < 0.5, then we can factor the
denominator, and construct the Bode diagram using the asymptotes
for real poles. We would then use the following normalized form:

Gl = [ +m%)1(1 +3)

This is a particularly desirable approach when Q << 0.5, i.e., when the
corner frequencies w, and w, are well separated.
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Derivation of Low-Q Approximation

Given

Use quadratic formula to express corner frequencies w, and o, in
terms of Q and w,, as:

w, 1-4/1-40Q? w, 1+y1-4Q°
“=9 7 “=o 1
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Corner Frequency w,

se . R

can be written in the form e
2o 05 -
= F0) :

where 025
F(Q)=%(l+\/l—4Q2) o]

0 0.1 02 03 0.4 05
For small Q, F(Q) tends to 1. 0

We then obtain
| For Q < 0.3, the approximation F(Q)=1is
o, =~Quw, for @<<5 within 10% of the exact value.
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Corner Frequency w,

0= Q0 1+Y1-40 '
S e 2 R
can be written in the form 0.75 T
0, = % F(Q) 05
where 025 +
1 10?2 ]
F(Q)—2(1+W) 00 0.1 02 03 0.4 05
For small Q, F(Q) tends to 1. 0

We then obtain
For Q < 0.3, the approximation F(Q)=1is

®, ~ % for Q <<% within 10% of the exact value.
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The Low-Q Approximation

Gl g f= F(fﬁ’)
0dB ~ 0o o 5 = 2FQ

—40dB/decade
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Example: Damped Input EMI Filter

L,
B0
i, A —— i
L, R c Converter
v
’* T
L,+L,
Gis) = i(s) I+s—5H—
(s L,+L L,L,C
{8) 1+S1T2+S2L1C+S3 1R2
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8.1.8: Approximate Roots of a Polynomial

Generalize the low-Q approximation to obtain approximate
factorization of the n”-order polynomial

P(s)=14+a,s+a,s*>+ - +a,s"
It is desired to factor this polynomial in the form
P(s)=(1+7s)(1+7,5) - (1+7,5)

When the roots are real and well separated in value, then approximate
analytical expressions for the time constants t,, T,, ... T, can be found,

that typically are simple functions of the circuit element values.

Objective: find a general method for deriving such expressions.
Include the case of complex root pairs.
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Derivation of the Approximation

Multiply out factored form of polynomial, then equate to original form
(equate like powers of s):

a, =T, +T,+ - +7,
a, =1§1(‘t2 + e +r,,) +172(153 + e +1:,,) + e

as :1112(13 + ee +17n) +1:21:3(174 + e +-c,,) + e

a, = 1:11:213"'-5,‘

+ Exact system of equations relating roots to original coefficients
+ Exact general solution is hopeless

« Under what conditions can solution for time constants be easily
approximated?
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Case When All Roots Separate

a, =T, +T,+ - +7T,
System of equations: a,= Tl(tz oot Tn) + 172(173 e s e Tn) -

(from previous slide) a;= "51112(153 +oet Tn) + Tz’Fz(T4 +oeet ‘Fn) + e

an = 'Cl‘l72173'"‘l7n

Suppose that roots are real and well-separated, and are arranged in
decreasing order of magnitude:

T

n

|t >> || >> - >>

Then the first term of each equation is dominant

= Neglect second and following terms in each equation above
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Approximation When Roots are Well Separated

System of equations: Solve for the time
(only first term in each constants:
equation is included) T, ~a,
a, =T a,
Tz ~—
a4, =TT, a,
a;=T,T,T a
.3 123 T, ~ ds
a,
an='l71'[521/'3""[:n :
a
T,~—
a,
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Results

If the following inequalities are satisfied
e}
a,

S>> o0 >

a

>>

a,
la,|>>
1

a

n-1

Then the polynomial P(s) has the following approximate factorization

P(s)=(1+als)(1+@s)(1+ﬁs) ---(1+ G s)
a, a, a

n-1

+ Ifthe q, coefficients are simple analytical functions of the element
values L, C, etc., then the roots are similar simple analytical
functions of L, C, etc.

*  Numerical values are used to justify the approximation, but
analytical expressions for the roots are obtained
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Quadratic Roots: Not Well Separated

Suppose inequality & is not satisfied:

a a a
la,|>> |2 |>> o> || 6 [Fliss sy )|
a, Ay ay a,
not
satisfied

Then leave the terms corresponding to roots k and (k + 1) in quadratic
form, as follows:

P(s)“(1+a1S)(1 +ﬂs) (1 + -2 +Ms2) (1+ it s)
a, a;_y Ap_y a,_

This approximation is accurate provided

a a a a a
e Bt B B P R ] o e P B
a y1 k-1 sy (O
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First Inequality Violated

When inequality 1 is not satisfied:

a a
la,| % | Z2[>>2[>> >
a a, a,_,
not
satisfied

Then leave the first two roots in quadratic form, as follows:

P(s) z(l +a,s +a2s2) (1 + %s) (1 + s)

a2 an—l

This approximation is justified provided

Fundamentals of Power Electronics 59 Chapter 8: Converter Transfer Functions

THE UNIVERSITY OF

TENNESSEE i §

KNOXVILLE




Other Cases

e Several nonadjacent inequalities violated
— Apply same process multiple times

* Multiple adjacent inequalities violated
— More than two roots close in value

— Must use 3" order or higher polynomial




