Plotting a Single Pole Response

\[R = 10k\Omega \]
\[C = 10nF \]

Graphical Construction of Bode Plots
8.1.6 Resonant Poles

Example

\[G(s) = \frac{v_2(s)}{v_1(s)} = \frac{1}{1 + \frac{sL}{R} + s^2LC} \]

Second-order denominator, of the form

\[G(s) = \frac{1}{1 + a_1s + a_2s^2} \]

with \(a_1 = \frac{L}{R} \) and \(a_2 = LC \)

How should we construct the Bode diagram?

Standard Form for Complex Poles

\[G(s) = \frac{1}{1 + 2\zeta \frac{s}{\omega_0} + \left(\frac{s}{\omega_0} \right)^2} \]

or

\[G(s) = \frac{1}{1 + \frac{s}{Q\omega_0} + \left(\frac{s}{\omega_0} \right)^2} \]

- When the coefficients of \(s \) are real and positive, then the parameters \(\zeta, \omega_0, \) and \(Q \) are also real and positive
- The parameters \(\zeta, \omega_0, \) and \(Q \) are found by equating the coefficients of \(s \)
- The parameter \(\omega_0 \) is the angular corner frequency, and we can define \(f_0 = \omega_0/2\pi \)
- The parameter \(\zeta \) is called the damping factor. \(\zeta \) controls the shape of the exact curve in the vicinity of \(f = f_0 \). The roots are complex when \(\zeta < 1 \).
- In the alternative form, the parameter \(Q \) is called the quality factor. \(Q \) also controls the shape of the exact curve in the vicinity of \(f = f_0 \). The roots are complex when \(Q > 0.5 \).
The Q Factor

In a second-order system, ζ and Q are related according to

$$Q = \frac{1}{2\zeta}$$

Q is a measure of the dissipation in the system. A more general definition of Q, for sinusoidal excitation of a passive element or system is

$$Q = 2\pi \frac{\text{peak stored energy}}{\text{energy dissipated per cycle}}$$

For a second-order passive system, the two equations above are equivalent. We will see that Q has a simple interpretation in the Bode diagrams of second-order transfer functions.

Magnitude Asymptotes

In the form

$$G(s) = \frac{1}{1 + \frac{s}{Q\omega_0} + \left(\frac{s}{\omega_0}\right)^2}$$

let $s = j\omega$ and find magnitude:

$$\|G(j\omega)\| = \sqrt{\left(1 - \left(\frac{\omega}{\omega_0}\right)^2\right)^2 + \frac{1}{Q^2}\left(\frac{\omega}{\omega_0}\right)^2}$$

Asymptotes are

$$\|G\| \rightarrow 1 \text{ for } \omega << \omega_0$$
$$\|G\| \rightarrow \left(\frac{f}{f_0}\right)^{-2} \text{ for } \omega >> \omega_0$$
Exact Magnitude Curve

\[|G(j\omega)| = \frac{1}{\sqrt{1 - \left(\frac{\omega}{\omega_0}\right)^2 + \frac{1}{Q^2} \left(\frac{\omega}{\omega_0}\right)^2}} \]

At \(\omega = \omega_0 \), the exact magnitude is

\[|G(j\omega_0)| = Q \quad \text{or, in dB:} \quad |G(j\omega_0)|_{\text{dB}} = |Q|_{\text{dB}} \]

The exact curve has magnitude \(Q \) at \(f = f_0 \). The deviation of the exact curve from the asymptotes is \(|Q|_{\text{dB}} \).

Curves for Varying \(Q \)
Asymptotes for Complex Poles, $Q>0.5$

The Low Q Approximation

Given a second-order denominator polynomial, of the form

$$G(s) = \frac{1}{1 + a_1 s + a_2 s^2} \quad \text{or} \quad G(s) = \frac{1}{1 + \frac{s}{Q \omega_0} + \left(\frac{s}{\omega_0}\right)^2}$$

When the roots are real, i.e., when $Q < 0.5$, then we can factor the denominator, and construct the Bode diagram using the asymptotes for real poles. We would then use the following normalized form:

$$G(s) = \frac{1}{\left(1 + \frac{s}{\omega_1}\right) \left(1 + \frac{s}{\omega_2}\right)}$$

This is a particularly desirable approach when $Q << 0.5$, i.e., when the corner frequencies ω_1 and ω_2 are well separated.
Derivation of Low-\(Q\) Approximation

Given

\[G(s) = \frac{1}{1 + \frac{s}{Q\omega_0} + \left(\frac{s}{\omega_0}\right)^2} \]

Use quadratic formula to express corner frequencies \(\omega_1\) and \(\omega_2\) in terms of \(Q\) and \(\omega_0\) as:

\[
\omega_1 = \frac{\omega_0}{Q} \frac{1 - \sqrt{1 - 4Q^2}}{2} \\
\omega_2 = \frac{\omega_0}{Q} \frac{1 + \sqrt{1 - 4Q^2}}{2}
\]

Corner Frequency \(\omega_1\)

\[
\omega_1 = \frac{\omega_0}{Q} \frac{1 - \sqrt{1 - 4Q^2}}{2}
\]

can be written in the form

\[
\omega_1 = Q \frac{\omega_0}{F(Q)}
\]

where

\[
F(Q) = \frac{1}{2} \left(1 + \sqrt{1 - 4Q^2}\right)
\]

For small \(Q\), \(F(Q)\) tends to 1. We then obtain

\[
\omega_1 \approx Q \omega_0 \quad \text{for} \quad Q << \frac{1}{2}
\]

For \(Q < 0.3\), the approximation \(F(Q) = 1\) is within 10% of the exact value.
Corner Frequency ω_2

$$\omega_2 = \frac{\omega_0}{Q} \frac{1 + \sqrt{1 - 4Q^2}}{2}$$

can be written in the form

$$\omega_2 = \frac{\omega_0}{Q} F(Q)$$

where

$$F(Q) = \frac{1}{2} \left(1 + \sqrt{1 - 4Q^2} \right)$$

For small Q, $F(Q)$ tends to 1. We then obtain

$$\omega_2 \approx \frac{\omega_0}{Q} \text{ for } Q \ll \frac{1}{2}$$

For $Q < 0.3$, the approximation $F(Q) \approx 1$ is within 10% of the exact value.

The Low-Q Approximation

$$\| G \|_{dB} \approx Qf_0$$

$$f_1 = \frac{Qf_0}{F(Q)}$$

$$f_2 = \frac{f_0 F(Q)}{Q} \approx \frac{f_0}{Q}$$

0dB

-20dB/decade

-40dB/decade
Example: Damped Input EMI Filter

\[G(s) = \frac{i_g(s)}{i_c(s)} = \frac{1 + s \frac{L_1 + L_2}{R}}{1 + s \frac{L_1 + L_2}{R} + s^2 L_1 C + s^3 \frac{L_1 L_2 C}{R}} \]

Chapter 8: Converter Transfer Functions

8.1.8: Approximate Roots of a Polynomial

Generalize the low-Q approximation to obtain approximate factorization of the \(n^{th} \)-order polynomial

\[P(s) = 1 + a_1 s + a_2 s^2 + \cdots + a_n s^n \]

It is desired to factor this polynomial in the form

\[P(s) = \left(1 + \tau_1 s\right)\left(1 + \tau_2 s\right) \cdots \left(1 + \tau_n s\right) \]

When the roots are real and well separated in value, then approximate analytical expressions for the time constants \(\tau_1, \tau_2, \ldots, \tau_n \) can be found, that typically are simple functions of the circuit element values.

Objective: find a general method for deriving such expressions. Include the case of complex root pairs.
Derivation of the Approximation

Multiply out factored form of polynomial, then equate to original form (equate like powers of \(s \)):

\[
\begin{align*}
a_1 &= \tau_1 + \tau_2 + \cdots + \tau_n \\
a_2 &= \tau_1 (\tau_2 + \cdots + \tau_n) + \tau_2 (\tau_3 + \cdots + \tau_n) + \cdots \\
&\quad \vdots \\
a_n &= \tau_1 \tau_2 \tau_3 \cdots \tau_n
\end{align*}
\]

- Exact system of equations relating roots to original coefficients
- Exact general solution is hopeless
- Under what conditions can solution for time constants be easily approximated?

Case When All Roots Separate

\[
\begin{align*}
a_1 &= \tau_1 + \tau_2 + \cdots + \tau_n \\
a_2 &= \tau_1 (\tau_2 + \cdots + \tau_n) + \tau_2 (\tau_3 + \cdots + \tau_n) + \cdots \\
&\quad \vdots \\
a_n &= \tau_1 \tau_2 \tau_3 \cdots \tau_n
\end{align*}
\]

System of equations: (from previous slide)

Suppose that roots are real and well-separated, and are arranged in decreasing order of magnitude:

\[
|\tau_1| >> |\tau_2| >> \cdots >> |\tau_n|
\]

Then the first term of each equation is dominant

\(\Rightarrow \) Neglect second and following terms in each equation above
Approximation When Roots are Well Separated

System of equations:
(only first term in each equation is included)

\[
\begin{align*}
a_1 & = \tau_1 \\
a_2 & = \tau_1 \tau_2 \\
a_3 & = \tau_1 \tau_2 \tau_3 \\
& \vdots \\
a_n & = \tau_1 \tau_2 \tau_3 \cdots \tau_n
\end{align*}
\]

Solve for the time constants:

\[
\begin{align*}
\tau_1 & = a_1 \\
\tau_2 & = \frac{a_2}{a_1} \\
\tau_3 & = \frac{a_3}{a_2} \\
& \vdots \\
\tau_n & = \frac{a_n}{a_{n-1}}
\end{align*}
\]

Results

If the following inequalities are satisfied

\[
\left| a_1 \right| >> \left| \frac{a_2}{a_1} \right| >> \left| \frac{a_3}{a_2} \right| >> \cdots >> \left| \frac{a_n}{a_{n-1}} \right|
\]

Then the polynomial \(P(s) \) has the following approximate factorization

\[
P(s) \approx \left(1 + a_1 s \right) \left(1 + \frac{a_2}{a_1} s \right) \left(1 + \frac{a_3}{a_2} s \right) \cdots \left(1 + \frac{a_n}{a_{n-1}} s \right)
\]

- If the \(a_n \) coefficients are simple analytical functions of the element values \(L, C \), etc., then the roots are similar simple analytical functions of \(L, C \), etc.
- Numerical values are used to justify the approximation, but analytical expressions for the roots are obtained
Quadratic Roots: Not Well Separated

Suppose inequality \(k \) is not satisfied:

\[
\left| a_1 \right| \gg \left| \frac{a_2}{a_1} \right| \gg \cdots \gg \left| \frac{a_k}{a_{k-1}} \right| \gg \left| \frac{a_{k+1}}{a_k} \right| \gg \cdots \gg \left| \frac{a_n}{a_{n-1}} \right|
\]

Then leave the terms corresponding to roots \(k \) and \((k + 1)\) in quadratic form, as follows:

\[
P(s) = \left(1 + a_1 s\right) \left(1 + \frac{a_2}{a_1} s\right) \cdots \left(1 + \frac{a_k}{a_{k-1}} + \frac{a_{k+1}}{a_k} s^2\right) \cdots \left(1 + \frac{a_n}{a_{n-1}} s\right)
\]

This approximation is accurate provided

\[
\left| a_1 \right| \gg \left| \frac{a_2}{a_1} \right| \gg \cdots \gg \left| \frac{a_k}{a_{k-1}} \right| \gg \left| \frac{a_{k-2} a_{k+1}}{a_k} \right| \gg \left| \frac{a_{k+2}}{a_{k+1}} \right| \gg \cdots \gg \left| \frac{a_n}{a_{n-1}} \right|
\]

First Inequality Violated

When inequality 1 is not satisfied:

\[
\left| a_1 \right| \gg \left| \frac{a_2}{a_1} \right| \gg \left| \frac{a_3}{a_2} \right| \gg \cdots \gg \left| \frac{a_n}{a_{n-1}} \right|
\]

Then leave the first two roots in quadratic form, as follows:

\[
P(s) = \left(1 + a_1 s + a_2 s^2\right) \left(1 + \frac{a_3}{a_2} s\right) \cdots \left(1 + \frac{a_n}{a_{n-1}} s\right)
\]

This approximation is justified provided

\[
\left| \frac{a_2^2}{a_3} \right| \gg \left| a_1 \right| \gg \left| \frac{a_3}{a_2} \right| \gg \left| \frac{a_4}{a_3} \right| \gg \cdots \gg \left| \frac{a_n}{a_{n-1}} \right|
\]
Other Cases

• Several nonadjacent inequalities violated
 – Apply same process multiple times

• Multiple adjacent inequalities violated
 – More than two roots close in value
 – Must use 3rd order or higher polynomial