Effect of Feedback

Feedback moves the poles of the system transfer functions

- Good news: we can use feedback to alter the poles and improve the frequency response
- Bad news: if you’re not careful, feedback can move the poles into the right half of the complex s-plane (poles have positive real parts), leading to an unstable system

Open loop

\[G(s) \]

Closed loop

\[
\begin{align*}
\hat{v}_d(s) & \rightarrow G(s) & \hat{v}_o(s) \\
& \downarrow & \downarrow \\
& H(s) & T(s) \\
\hat{v}_m(s) & \rightarrow & \end{align*}
\]

Determining Stability From \(T(s) \)

- Nyquist stability theorem: general result.
- A special case of the Nyquist stability theorem: the phase margin test

 Allows determination of closed-loop stability (i.e., whether \(1/(1 + T(s)) \) contains RHP poles) directly from the magnitude and phase of \(T(s) \).

 A good design tool: yields insight into how \(T(s) \) should be shaped, to obtain good performance in transfer functions containing \(1/(1 + T(s)) \) terms.
9.4.1 – The Phase Margin Test

A test on $T(s)$, to determine whether $1/(1+T(s))$ contains RHP poles.

The crossover frequency f_c is defined as the frequency where

$$\| T(j2\pi f_c) \| = 1 \Rightarrow 0 \text{dB}$$

The phase margin φ_m is determined from the phase of $T(s)$ at f_c, as follows:

$$\varphi_m = 180^\circ + \angle T(j2\pi f_c)$$

If there is exactly one crossover frequency, and if $T(s)$ contains no RHP poles, then the quantities $T(s)/(1+T(s))$ and $1/(1+T(s))$ contain no RHP poles whenever the phase margin φ_m is positive.

Example: Unstable System

\[\angle T(j2\pi f_c) = -230^\circ \]

\[\varphi_m = 180^\circ - 230^\circ = -50^\circ \]
Example: Stable System

![Graph showing phase margin](image)

\[\angle T(j2\pi f_c) = -112^\circ \]

\[\phi_m = 180^\circ - 112^\circ = +68^\circ \]

Fundamentals of Power Electronics 26 Chapter 9: Controller design

Selecting Phase Margin

How much phase margin is required?

A small positive phase margin leads to a stable closed-loop system having complex poles near the crossover frequency with high \(Q \). The transient response exhibits overshoot and ringing.

Increasing the phase margin reduces the \(Q \). Obtaining real poles, with no overshoot and ringing, requires a large phase margin.

The relation between phase margin and closed-loop \(Q \) is quantified in this section.

Fundamentals of Power Electronics 28 Chapter 9: Controller design
Step Response of Second-Order System

The transfer function of a Second-Order System is given by:

\[T(s) = \frac{1000}{\left(\frac{s}{\omega_1}\right)\left(\frac{s}{\omega_2} + 1\right)} \]

A Second-Order System

Consider the case where \(T(s) \) can be well-approximated in the vicinity of the crossover frequency as:

\[T(s) = \frac{1}{\left(\frac{s}{\omega_0}\right)\left(1 + \frac{s}{\omega_2}\right)} \]
Closed-Loop Response

If
\[
T(s) = \frac{1}{\frac{s}{\omega_0}\left(1 + \frac{s}{\omega_2}\right)}
\]

Then
\[
\frac{T(s)}{1 + T(s)} = \frac{1}{1 + \frac{s}{T(s)}} = \frac{1}{1 + \frac{s}{\omega_0} + \frac{s^2}{\omega_0\omega_2}}
\]
or,
\[
\frac{T(s)}{1 + T(s)} = \frac{1}{1 + \frac{s}{Q\omega_c} + \left(\frac{s}{\omega_c}\right)^2}
\]

where
\[
\omega_c = \sqrt{\omega_0\omega_2} = 2\pi f_c \\
Q = \frac{\omega_0}{\omega_c} = \sqrt{\frac{\omega_0}{\omega_2}}
\]

Closed-Loop Step Response vs. Q_{CL}
Low-Q_{CL} Case

\[Q = \frac{\omega_0}{\omega_c} = \sqrt{\frac{\omega_0}{\omega_2}} \]

low-Q approximation: \[Q \omega_c = \omega_0 \quad \frac{\omega_c}{Q} = \omega_2 \]

High-Q_{CL} Case

\[\omega_c = \sqrt{\omega_0 \omega_2} = 2\pi f_c \]

\[Q = \frac{\omega_0}{\omega_c} = \sqrt{\frac{\omega_0}{\omega_2}} \]
\(Q_{CL} \text{ vs. } \varphi_m \)

Solve for exact crossover frequency, evaluate phase margin, express as function of \(\varphi_m \). Result is:

\[
Q = \frac{\sqrt{\cos \varphi_m}}{\sin \varphi_m}
\]

\[
\varphi_m = \tan^{-1} \sqrt{\frac{1 + \sqrt{1 + 4Q^4}}{2Q^4}}
\]
9.5 – Compensator Design

Typical specifications:

- Effect of load current variations on output voltage regulation
 This is a limit on the maximum allowable output impedance
- Effect of input voltage variations on the output voltage regulation
 This limits the maximum allowable line-to-output transfer function
- Transient response time
 This requires a sufficiently high crossover frequency
- Overshoot and ringing
 An adequate phase margin must be obtained

The regulator design problem: add compensator network $G_c(s)$ to modify $T(s)$ such that all specifications are met.
Design Approach

• Assume $G_c(s) = 1$, and plot the resulting uncompensated loop gain $T_u(s)$
• Examine uncompensated loop gain to determine the needs of the compensator
 - Is low-frequency loop gain amplitude $\|T(0)\|$ large enough to result in low steady-state error?
 - Is ϕ_m sufficient for stability and requirements on ringing/overshoot?
 - Is f_c high enough for a sufficiently fast response?
• Construct compensator to address shortcomings of $T_u(s)$
 - Use “toolbox” of compensators on following slides

Example: Uncompensated Loop Gain
Proportional (P) Compensator

\[G_c(s) = G_{c0} \]

Stabilization by (P) Compensator

\[\| T_o \| \]

\[\angle T_o \]
Another Example

![Graph showing frequency response](graph.png)