

PCB Layout

ECE 482 Lecture 10 February 28, 2014

Announcements

- Prelab 4 due Friday
 - Decide on System Improvements
- Next week:
 - Demo closed-loop Voltage Regulation
 - Begin PCB Layout ASAP. Designs due Wed. Mar 21st.

U

Basic PCB Layout Concepts

- Trace Resistances
- Kelvin Sensing
- Loop Inductances / Decoupling
- Ground Plane / Return Currents
- Partitioning

Trace Sizing Rough Guidelines

2.2 PCB Etch

Table 1 is helpful to determine the current carrying capacity of PCB etches. The table assumes:

- 1oz/sq foot copper (0.035mm thickness).
- 10°C rise on outer layers, 20°C inner layers
- Groups of high current tracks are de-rated
- . Tracks are not near or over heat sink areas

Table 1. Current Capacity PCB Etch

WIDTH	CURRENT CAPACITY
0.010"	0.8 A
0.015"	1.2 A
0.020"	1.5 A
0.050"	3.2 A
0.100"	6.0 A

2.3 Vlas or Feedthrus

Vias limit the current and add inductance between the power supply and load. Layouts are usually done with 10-mil inner ring feedthrus. At this size, current capability is about 1 A per feedthru. To access power from the inner layer plane to the MOSFET input in our example requires 18 feedthrus

Gate Drive Resistors

 Inclusion of gate drive resistors slows switching transitions and thus reduces high frequency content in signals

Ground Plane

- Benefits:
 - Common reference voltage
 - Shielding
 - Heat dissipation
 - Reduced inductance (increased capacitance)
- Resist urge to cut ground plane as much as possible; consider paths of return currents when cuts are unavoidable

Acceptable Cuts in Ground Plane

- Cuts that are necessary should be kept short and out of the path of any significant (high frequency) return paths
- Cuts can be used effectively for isolation, and to reduce noise coupled between digital/analog/power circuitry
- Reducing parasitic capacitance in sensitive signal locations (i.e. op-amp circuitry)

