

Power Electronic Circuits

Prof. Daniel Costinett

ECE 482 Lecture 1 January 8, 2014

- New course in design an implementation of power converters
 - Course website: http://web.eecs.utk.edu/courses/spring2014/ece482/
 - Course uses electric bicycle platform as framework for the investigation of practical issues in SMPS construction
- Unlike ECE 481, this is not a theory-focused course; expect to spend most of your effort on construction/debugging with relatively little new theory
- Goal of course is practical experience in designing, building, testing, and debugging power electronics; system, components, architectures can be modified based on student initiative
- Prerequisites: undergraduate Circuits sequence, Microelectronics, ECE 481 – Power Electronics

U

Instructor: Daniel Costinett

• Office: MK502

OH during canceled lectures, in-lab

• E-mail: Daniel.Costinett@utk.edu

 Email questions will be answered within 24 hours (excluding weekends)

• Please use ECE 482 in the subject line

Course Structure

- Scheduled for three 1-hr lectures and one 1-hr lab session per week
- Theory is presented as necessary for practical design
- Plan to spend ~10 hours per week on course; mostly lab time
- Lectures will only be used as needed when no theory/review is necessary, lectures will give way to additional lab time
 - Check course website often for cancelled lectures
- Additional theory may be presented in brief sessions during lab time

Textbook and materials

Portions of the Textbook

R.Erickson, D.Maksimovic, *Fundamentals of Power Electronics*, Springer 2001

will be used. The textbook is available on-line from campus network

- MATLAB/Simulink, LTSpice, Altium Designer, Xilinx ISE will be used; All installed in MK227 and in the Tesla Lab
- Lecture slides and notes, additional course materials, prelabs, experiments, etc. posted on the course website

Assignments

- Labs will be complete in groups of 2-3
- Lab Reports and Demonstrations (~7 labs total): 50% of total grade
 - Turn in one lab writeup per group
- Demonstrations each lab session: 10% of grade
 - Show functionality/progress and demonstrate understanding
- Pre-labs completed prior to starting each experiment: 20% of grade
 - Turn in one pre-lab assignment per person
- Midterm exam (open book/notes, in-class), 20% of the grade
- Late work **will not** be accepted except in cases of documented emergencies
- Due dates posted on website course schedule

Use of Lab Time

- Attendance is required during all lectures and scheduled lab time (Wed, 9:05-11:55)
 - Make use of designated time with Instructor present
 - Informal Q&A and end-of-experiment demonstrations
- Work efficiently but do not work independently
 - Understand all aspects of design
- Build in stages; test one stage at a time
- Outside of normal lab hours, key access will be granted per group

Topics Covered

• Course Topics

- Battery Modeling
- Modeling and Characterization of AC Machines
- DC/DC Converter Analysis and Design
- Loss Modeling of Power Electronics
- Basic Magnetics and Transformers
- Feedback Loop Design
- Layout of Power Electronics Circuits
- Electric Motor Drivers
- BLDC and PMSM Control Methods
- System-Level Control Design

Transportation Electrification

Motivation

- Improve efficiency: reduce energy consumption
- Displace petroleum as primary energy source
- Reduce impact on environment
- Reduce cost

EIA:

- Transportation accounts for 28% of total U.S. energy use
- Transportation accounts for 33% of CO2 emissions
- Petroleum comprises 93% of US transportation energy use

Conventional Vs. Electric Vehicle								
	Tank + Internal Combustion Engine	Electric Vehicle (EV) Battery + Inverter + AC machine						
Regenerative braking	NO	YES						
Tank-to-wheel efficiency	≈ 20%	≈ 85%						
	1.2 kWh/mile, 28 mpg	0.17 kWh/mile, 200 mpg equiv.						
Energy storage	Gasoline energy content	LiFePO₄ battery						
	12.3 kWh/kg, 36.4 kWh/gallon	0.1 kWh/kg, 0.8 kWh/gallon						
Refueling	5 gallons/minute	Level I (120Vac): 1.5 kW, <8 miles/hour						
	11 MW, 140 miles/minute	Level II (240Vac): 6 kW, <32 miles/hour Level III (DC): 100 kW, <9 miles/minute						
Cost	12 ¢/mile [\$3.50/gallon]	2 ¢/mile [\$0.12/kWh]						
CO ₂ emissions (tailpipe, total)	≈ (300, 350) g CO ₂ /mile	(0, ≈120) g CO ₂ /mile [current U.S. electricity mix]						

Electric-Drive Vehicle Technologies

- Hybrid Electric Vehicle (HEV)
 - Combination of a gasoline-powered ICE and electric drive with a <u>relatively</u> <u>small battery</u>
 - HEV efficiency improvements
 - · Regenerative braking
 - "Downsizing:" a smaller, more efficient ICE
 - ICE operated around the most efficient operating point, not directly tied to the required drive power & speed
 - No idling required when the vehicle stops, keep ICE off
- Plug-In Hybrid Electric Vehicle (PHEV)
 - Same efficiency improvements as HEV
 - Larger battery for an all-electric range
- Electric Vehicle (EV)
 - No ICE, (much) larger battery

CO₂ emissions

http://www.epa.gov/cleanenergy/energy-resources/calculator.html

Gasoline CO₂ emissions (tailpipe only)

 $8.89*10^{-3}$ metric tons CO_2 /gallon of gasoline = **8892** g CO_2 / gallon = **264** g CO_2 /kWh

 CO_2 emissions from electricity generation (average over year, average over US) 7.18 x 10^{-4} metric tons CO_2 / kWh = **718** g CO_2 / kWh

(eGRID2007 Version 1.1, U.S. annual non-baseload CO₂ output emission rate, year 2005 data)

	Conv. Ga	soline V.	HEV	EV	(zero tailpi	pe)
MPGequiv.	20	30	50	99	135	225
kWh/mile	1.685	1.123	0.674	0.340	0.250	0.150
g CO2/mile	445	296	178	244	179	108

Trends and Challenges

- Paths to electrified (personal) transportation
 - Hybrid electric vehicles
 - Plug-in hybrid electric vehicles
 - Battery electric vehicles
 - Hydrogen + fuel cell electric vehicles
- Electricity generation mix: shift to renewables
- Challenges
 - Batteries
 - Engineering of electric drivetrain components, including efficient, high-density, reliable power electronics
 - Charging infrastructure

Electric Bicycles Worldwide

- E-bikes accounted for \$6.9 billion in revenue in 2012
- By utilizing sealed lead-acid (SLA) batteries, the cost of ebicycles in China averages about \$167 (compared to \$815 in North America and \$1,546 in Western Europe)
- China accounts for 90% of world market
- Western Europe accounts for majority of remaining 10% despite \$1,546 average cost
- North America: 89,000 bicycles sold in 2012